JPS62224290A - Method for immobilizing mold of bacterium - Google Patents

Method for immobilizing mold of bacterium

Info

Publication number
JPS62224290A
JPS62224290A JP6806386A JP6806386A JPS62224290A JP S62224290 A JPS62224290 A JP S62224290A JP 6806386 A JP6806386 A JP 6806386A JP 6806386 A JP6806386 A JP 6806386A JP S62224290 A JPS62224290 A JP S62224290A
Authority
JP
Japan
Prior art keywords
gel
bacterium
mold
microorganisms according
total weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6806386A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Katagai
信義 片貝
Takayuki Senda
孝之 千田
Osamu Hirai
修 平井
Yoshiyuki Mukoyama
向山 吉之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6806386A priority Critical patent/JPS62224290A/en
Publication of JPS62224290A publication Critical patent/JPS62224290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

PURPOSE:To obtain a stable immobilized mold of bacterium keeping optimum activity simply, by polymerizing aqueous suspension containing a bacterium mold in the presence of a specific resin, a crosslinking agent, a radical polymerization initiator and a pH buffer agent at low temperature. CONSTITUTION:10-30wt% polyethylene glycol monomethacrylate having an average number m of ethylene oxide addition of >=4 as an unsaturated polyester resin, 0.3-1.5wt% N,N'-methylenebisacrylamide as a crosslinking agent, >=0.1wt% K2S2O3 as a radial polymerization initiator and >=0.2wt% dimethylaminopropionitrile as a polymerization promotor are blended with a pH buffer agent and aqueous suspension containing a bacterium mold and polymerization reaction is carried out at pH6-8 at <=40 deg.C. Then, the inclusion gel is immobilized to give an immobilized bacterium mold.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、活性汚泥法によるtJt−水の浄化法の改良
に役立つ固定化微生物の包括ゲルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an entrapping gel of immobilized microorganisms useful for improving the purification method of tJt-water by activated sludge method.

〔従来の技術〕[Conventional technology]

従来、微生物菌体の固定法として、担体結合法、架橋法
、包括法等が知られている。
Conventionally, carrier binding methods, crosslinking methods, entrapment methods, etc. are known as methods for immobilizing microbial cells.

担体結合法には、物理的吸着法として活性炭、多孔性ガ
ラス、カオリナイト、シリカゲル等の担体に微生孔を何
着する方法かある。この方法はυ1.水浄化の分野では
、+1着微生物法と呼はれ微生物と担体との結伯力か弱
(生物膜の生成、水流等の因子によって容易に離脱かお
きるので微、生物Mめコントロールという点で難点があ
った。さらに担体結合法には、イオン結合法という方法
がある。これはDEARセルロース、ポリアミノスチレ
ンといったイオン交換極脂に菌体をイオン重合させる方
法であるが、排水中の塩のPI 類<こよっては、菌体
がイオン交換されて溶出して(る場合もあるので、使え
ない。担体結合法の最も強い結合力を示す方法に共イ1
結合法かある。多糖類誘導体、ポリアクリルアミド訊4
メ体、スチレン誘導体等のアミノ基、カルボキシル基、
水酸基等を利用し菌体膜成分と共有結合させる方法で、
固定化酵素法の最も普及している固定法である。結合力
は強いが、反応条件等活性の保持が難しい。
The carrier binding method includes a method of attaching micropores to a carrier such as activated carbon, porous glass, kaolinite, silica gel, etc. as a physical adsorption method. This method is υ1. In the field of water purification, it is called the +1 microorganism method, and it is effective in controlling microorganisms and microorganisms because the binding force between microorganisms and carriers is weak (biofilm formation, water flow, etc., and they can easily separate). Furthermore, there is a method called ionic bonding method in the carrier bonding method.This method involves ionic polymerization of bacterial cells on ion-exchanged polar fats such as DEAR cellulose and polyaminostyrene, but the PI of salts in wastewater is In this case, the bacterial cells may be ion-exchanged and eluted, so they cannot be used.
There is a combination method. Polysaccharide derivative, polyacrylamide 4
amino group, carboxyl group of styrene derivatives,
A method of covalently bonding to bacterial cell membrane components using hydroxyl groups, etc.
This is the most popular immobilized enzyme method. Although the binding force is strong, it is difficult to maintain activity under reaction conditions.

架橋法とは、ゲルタールアルデヒド、ヘキサメチレンジ
イソシアネート等により架橋する方法で不溶性担体を用
いないのか特徴であるか、微生物菌体の固定化には用い
られていない。
The crosslinking method is a method in which crosslinking is performed using gel taraldehyde, hexamethylene diisocyanate, etc., and is unique because it does not use an insoluble carrier, and is not used for immobilizing microbial cells.

微生物菌体の固定化で最もポピユラーな方法として包括
法がある。包括法には2法あり格子型が最も採用される
方法である。格子型の代表例としては、ポリアクリルア
シド、ポリビニルアルコール、アルギン酸カルシウム、
カラギーナン、コラーゲン、寒天などがある。これらの
ゲル剤と微生物菌体を混合し、光ラジカル等の手法でゲ
ル剤を重合させ、その格子の中に微生物菌体を包含する
ものである。包括法の他の一法に、マイクロカプセル法
があり、菌体、細胞をナイロン、ポリウレア、ポリスチ
レン等の多孔性皮膜でくるむ方法であるか、高級な方法
であるので、排水浄化用の活性汚泥等を包括するには適
さないし、膜の透過コントロールの点で開発課踊が残っ
ている。
The most popular method for immobilizing microbial cells is the blanket method. There are two comprehensive methods, and the grid type is the most adopted method. Typical examples of lattice types include polyacrylic acid, polyvinyl alcohol, calcium alginate,
These include carrageenan, collagen, and agar. These gels and microbial cells are mixed, and the gel is polymerized using methods such as photoradicals, so that the microbial cells are included in the lattice. Another comprehensive method is the microcapsule method, in which bacterial bodies and cells are wrapped in a porous film such as nylon, polyurea, or polystyrene, or, as it is a high-grade method, activated sludge for wastewater purification is used. However, it is not suitable for comprehensively including other products, and there is still some development work to be done in terms of membrane permeation control.

本発明は、これらの方法の中で、包括法格子型担体の改
良に関するものである。
Among these methods, the present invention relates to improvements in comprehensive method lattice type carriers.

微生物菌体は、一般に熱に対して安定性か乏しい。中に
は70〜80℃でも増殖しつる耐熱性細菌もあるが、通
常は40℃を越すと死滅したり、活性が低下する。従来
の方法は反応温度か高いので、七つか(包括した菌のか
なりの割合が、死滅している場合かある。次に担体が具
備すべき条件として、特に排水浄化の分野では次の事が
要求される。固定化酵素のように生産プロセスではなく
、野外で長期間使用されるので、耐久性を持つこと、気
泡や水流等の力に耐えるだけの機械的強度を持つこと、
水中で使用され菌体の増殖の場である担体は、親水性、
通水性、多孔性を持つこと、排水の浄化に役立つとされ
る活性汚泥の活性維持が高い担体であること、等である
Microbial cells generally have poor stability against heat. Although there are some heat-resistant bacteria that can grow even at 70 to 80°C, they usually die or lose their activity when the temperature exceeds 40°C. In the conventional method, the reaction temperature is high, so in some cases, a large percentage of the bacteria contained in it may be killed. Since it is used outdoors for a long period of time, not in the production process like immobilized enzymes, it must be durable and have sufficient mechanical strength to withstand forces such as air bubbles and water flow.
The carrier, which is used in water and is a place for bacterial growth, is hydrophilic,
It has water permeability and porosity, and is a carrier that maintains the activity of activated sludge, which is said to be useful for purifying wastewater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これまでの親水性低分子モノマーとして、アクリルアミ
ド、ヒドロキシエチルメタクリレート、等と微生物菌体
の水溶性懸濁液を混合して重合反応を行うという方法で
は、反応温度が40℃以上となったり、未反応の低分子
モノマーが残存して生物毒性が懸念される。さらに、反
応条件がアルカリや酸性に傾いて至適P H域からはず
れている場合も有る。これらの問題点を改良すべく、本
発明は、ゲル重合反応温度を40℃以下とする反応系の
選択、生物毒性、女全性で問題のない樹脂モノマーの選
択、中性P H域を保持できるP H緩衝系の選択、十
分な機械的強度を有する架橋反応系の選択等を行った結
果完成したものである。
In the conventional method of performing a polymerization reaction by mixing hydrophilic low-molecular-weight monomers such as acrylamide and hydroxyethyl methacrylate with an aqueous suspension of microbial cells, the reaction temperature may exceed 40°C or There is a concern about biotoxicity due to residual low-molecular-weight monomers from the reaction. Furthermore, there are cases where the reaction conditions tend to be alkaline or acidic and deviate from the optimum PH range. In order to improve these problems, the present invention aims to select a reaction system that keeps the gel polymerization reaction temperature below 40°C, select a resin monomer that has no problems with biotoxicity and femininity, and maintain a neutral PH range. This was completed as a result of selection of a possible PH buffer system, selection of a crosslinking reaction system with sufficient mechanical strength, etc.

〔問題点を解決するための手段〕[Means for solving problems]

親水性ゲルの拐料として、不飽和ポリエステル、不飽和
アクリル樹脂、不飽和エポキシ、不飽和アクリル−ウレ
タン樹脂、不飽和ポリエステル−ウレタン樹脂、不飽和
ウレタン樹脂等か嵩えられる。その中でも、菌体ゲル用
樹脂として適当と考えられるのは、ポリエチレングリコ
ールモノメタアクリレート、多糖類のホルマリン架橋、
ペンタエソスリトール、ポリメタクリレート、等であろ
う。ゲル強度、反応温度、生物毒性の点から不飽和ポリ
エステル樹脂としてポリエチレングリコールモノメタア
クリレート(PgGMAと略称する)を選択した。架橋
剤として常法に従いN、 N″−メチレンビスアクリル
アミド(BISと略称する)を選択した。レドックス重
合開始系として、H80,−鉄(II)、過硫酸塩−亜
硫酸塩、クメンヒドロキシパーオキサイド−鉄(■)、
過酸化ベンゾイル−ジメチルアニリン等の系かあるか、
反応時間、反応温度の点よりラジカル重合開始剤に過硫
酸カリウム、重合促進剤としてジメチルアミノプロピオ
ニトリル(DMAPNと略称する)を選択し、微生物菌
体ゲル相体としての最適条件の決定を行った。
Useful materials for the hydrophilic gel include unsaturated polyester, unsaturated acrylic resin, unsaturated epoxy, unsaturated acrylic-urethane resin, unsaturated polyester-urethane resin, and unsaturated urethane resin. Among them, those considered suitable as resins for bacterial gel are polyethylene glycol monomethacrylate, formalin cross-linked polysaccharide,
Probably pentaesothritol, polymethacrylate, etc. Polyethylene glycol monomethacrylate (abbreviated as PgGMA) was selected as the unsaturated polyester resin from the viewpoints of gel strength, reaction temperature, and biotoxicity. As a crosslinking agent, N,N''-methylenebisacrylamide (abbreviated as BIS) was selected according to a conventional method.As a redox polymerization initiator system, H80, -iron(II), persulfate-sulfite, cumene hydroxyperoxide- Iron (■),
Is there a system such as benzoyl peroxide-dimethylaniline?
Potassium persulfate was selected as the radical polymerization initiator and dimethylaminopropionitrile (abbreviated as DMAPN) was selected as the polymerization accelerator in terms of reaction time and reaction temperature, and the optimal conditions for the microbial cell gel phase were determined. Ta.

第1図に初期温度と、ゲル開始時間、ピーク反応温度を
示す。
FIG. 1 shows the initial temperature, gel initiation time, and peak reaction temperature.

ポリアクリルアミドゲルの場合は、35℃で反応を開始
すると、ゲル中心点におけるピーク反応温度は50°C
以上に上昇するので、微生物菌体の活性を著しく劣化さ
せる心配かある。それに対してPBGM人ゲルの場合は
、35℃で反応を開始しても、ゲル中心のピーク反応温
度はプラス2℃はど上昇するにすぎず40℃以下でゲル
化反応を遂行できる。ゲル開始時間も1分以内であり実
際的である。
For polyacrylamide gels, if the reaction is started at 35°C, the peak reaction temperature at the center of the gel is 50°C.
Since the concentration increases above this level, there is a concern that the activity of microbial cells will be significantly degraded. On the other hand, in the case of PBGM human gel, even if the reaction is started at 35°C, the peak reaction temperature at the center of the gel increases by only +2°C, and the gelation reaction can be carried out at 40°C or lower. The gel initiation time is also within 1 minute, which is practical.

第2図、第3図に重合促進剤であるDMAPNの効果、
爪金開始剤である過硫酪カリウムに*8*Osの効果を
示す。反応条件等は図中に示すとおりである。ラジカル
重合開始に十分なラジカルを短時間に発生させることが
できるD M APN量、x*s*o*filは、全重
量比率で各々0.2%以上、0.1%以上であることが
必要である。
Figures 2 and 3 show the effects of DMAPN, a polymerization accelerator,
It shows an effect of *8*Os on potassium persulfate, which is a nail metal initiator. The reaction conditions etc. are as shown in the figure. The amount of D M APN, x * s * o * fil, which can generate sufficient radicals to initiate radical polymerization in a short time, is preferably 0.2% or more and 0.1% or more, respectively, in terms of total weight ratio. is necessary.

第4図に、I’EGMA撓脂愈とゲル圧縮強度を示す。FIG. 4 shows the I'EGMA elasticity and gel compressive strength.

13φ×15Lの円柱状に成形したサンプル片をテンシ
ロンで圧縮しゲルが破壊される荷重を求めたものである
。PBGMAゲルの性状は弾性に富むものである。まず
第一にポリエチレングリコールモノメタクリレートの分
子式%式%) に示されるように、平均エチレンオキサイド(go)付
加モル数が異るものが販売されている。m=2、m =
 4−5、m=7−9の三種かその代表的なものである
。第4図にみる様にEO付加モル数11=2のP B 
G M人ゲルは圧縮強度はたしかに高いが水和性が劣化
するので、本発明のゲルとしては使えない。)EOは付
加モル数か増えるにつれ架橋構造が粗になり水和性が向
上し、又十分使用しうるゲル圧縮強度が得られるのでm
は4以上が望ましい。PFiGMA樹脂量は、樹脂量比
率の高い方が圧縮強度に優れる反面、樹脂量比率が25
%を超すと乾燥−水和の過程でゲルが崩壊する危険性が
でて(る。
A sample piece molded into a cylindrical shape of 13φ×15L was compressed with Tensilon, and the load at which the gel was destroyed was determined. The properties of PBGMA gel are highly elastic. First of all, as shown in the molecular formula of polyethylene glycol monomethacrylate (% formula %), polyethylene glycol monomethacrylates with different average numbers of added moles of ethylene oxide (GO) are on sale. m=2, m=
4-5, m=7-9, or a representative one thereof. As shown in Figure 4, the number of moles of EO added is 11 = 2 P B
GM gel does have high compressive strength, but its hydration properties deteriorate, so it cannot be used as the gel of the present invention. ) As the number of moles added to EO increases, the crosslinked structure becomes coarser and the hydration property improves, and sufficient gel compressive strength can be obtained.
is preferably 4 or more. Regarding the amount of PFiGMA resin, the higher the resin amount ratio, the better the compressive strength, but on the other hand, when the resin amount ratio is 25
%, there is a risk that the gel will collapse during the drying-hydration process.

そこでおのずとPFGMA樹脂景比に、実用的な範囲が
あり、10〜30%の範囲で用いるべきである。第5図
に架橋剤ffi (B I S)比とゲル圧縮強度を示
す。実用的にはBIB比率は全重量比率で0.3 %か
ら1.5%か適正である。カラギナン、アルギン酸カル
シウムのゲル圧縮強度はlKy/cJ程度であるので、
PgGMAはそれ以上の強度を示す。
Therefore, there is naturally a practical range for the PFGMA resin ratio, and it should be used in a range of 10 to 30%. FIG. 5 shows the crosslinking agent ffi (BIS) ratio and gel compressive strength. Practically speaking, the appropriate BIB ratio is 0.3% to 1.5% in terms of total weight ratio. Since the gel compressive strength of carrageenan and calcium alginate is about lKy/cJ,
PgGMA shows higher strength.

第6図にPgGM人樹脂量とゲル膨潤特性を示す。ゲル
は乾燥状態から水に浸漬すると水を吸いこんで膨潤する
。この時吸水量の多い方が、ゲルの水和性、保持性、通
水性か良好であることを示し、微生物菌体の生存に都合
の良い環境を提供できる。樹脂量が高いと吸水率は低下
する傾向にあることが示され、ゲル材自重の4倍以上の
水を含有できる。P EGM人のゲル膨潤特性は良好で
アクリルアシドゲルと同程度であった。
Figure 6 shows the amount of PgGM resin and gel swelling properties. When a gel is soaked in water from a dry state, it absorbs water and swells. At this time, the larger the amount of water absorbed, the better the gel's hydration, retention, and water permeability, and can provide a favorable environment for the survival of microorganisms. It has been shown that when the amount of resin is high, the water absorption rate tends to decrease, and the gel material can contain more than four times its own weight of water. The gel swelling properties of the PEGM gel were good and comparable to those of the acrylic acid gel.

第7図、第8図に七ツマ−とポリマー(ゲル)と微生物
呼吸活性に与える影響、すなわち生物毒性について示し
た。用いた微生物は、下水処理浄化施設の活性汚泥であ
り、よ(水洗して、モノマー、ポリマーと図に示す混合
比で混合し空気を吹き込み曝気する。そのRfil毎の
酸素利用速度をモノマー、ポリマーを入れないときの活
性汚泥の酸素利用速度との比で示す。アクリルアミドモ
ノマーは明確に生物毒性を示し、P EGMAはモノマ
ー、ポリマー(ゲル)共に生物毒性は全く存在しない。
Fig. 7 and Fig. 8 show the influence of the seven-layer polymer and the polymer (gel) on microbial respiration activity, that is, the biotoxicity. The microorganisms used were activated sludge from a sewage treatment facility, washed with water, mixed with monomer and polymer at the mixing ratio shown in the figure, and aerated by blowing air. It is expressed as a ratio to the oxygen utilization rate of activated sludge when no sludge is added. Acrylamide monomer clearly shows biotoxicity, and PEGMA has no biotoxicity at all in both the monomer and polymer (gel).

さらに反応試薬P BGMA、B I S、DMAP 
NSK*5tOsを生理食塩水に混合した時のPHは9
〜10てあり、微生物菌体の生存には好ましい環境では
ない。
Furthermore, reaction reagents P BGMA, BIS, DMAP
When NSK*5tOs is mixed with physiological saline, the pH is 9.
-10, which is not a favorable environment for the survival of microbial cells.

そこで生理食塩水の代りに、1/15モルのリン酸緩衝
液と各ゲル剤を混合した時に、反応前と反応中のPHは
変化せずP H6,8であった。
Therefore, when each gel was mixed with 1/15 molar phosphate buffer instead of physiological saline, the pH before and during the reaction remained unchanged at pH 6.8.

中性域のPH5〜8を維持するにはPH緩衝液の添加が
必須である。
Addition of a pH buffer is essential to maintain a neutral pH range of 5 to 8.

〔実施例〕〔Example〕

実施例1゜ 16φのガラス試験管1に生理食塩水・8 m4PEG
MA@2g%B I S O” 12 g 、 KxS
sOs(2,5%溶液)  ・Q、8mt、DMA P
 N (5%溶液)・1mtを加え混合する。試験管2
に生理食塩水3mt、  アクリルアミド1.5g、B
IsO,12g、 Kt8*Os (2,5%溶液)Q
、8mt、DMAPN (5%溶液)1mtを加え混合
する。
Example 1 Physiological saline/8 m4 PEG in a 16φ glass test tube 1
MA@2g%BISO” 12g, KxS
sOs (2.5% solution) ・Q, 8mt, DMA P
Add 1 mt of N (5% solution) and mix. test tube 2
3 mt of physiological saline, 1.5 g of acrylamide, B
IsO, 12g, Kt8*Os (2.5% solution)Q
, 8 mt, and 1 mt of DMAPN (5% solution) are added and mixed.

試験管中央には熱電対を挿入して反応温度を追跡し、混
合から温度上昇開始までをゲル開始時間と称し、試験管
を温度コントロールしたウォーターバスに浸漬してウォ
ーターバスの温度を初期反応温度とする。その結果を表
1に示す。
A thermocouple is inserted into the center of the test tube to track the reaction temperature, and the period from mixing to the start of temperature rise is called the gel start time.The test tube is immersed in a temperature-controlled water bath and the temperature of the water bath is determined as the initial reaction temperature. shall be. The results are shown in Table 1.

表1 初期温度とゲル開始時間、ピーク反応温度実施例
2゜ P EGMAとして日本油脂(株)ブレンマーPR−9
Q、PH−350を用いた。カタログによると平均EO
付加モル数は各々lfi ! 2、m=7〜9である。
Table 1 Initial temperature, gel start time, peak reaction temperature Example 2゜P EGMA: NOF Bremmer PR-9
Q, PH-350 was used. According to the catalog, the average EO
The number of moles added is lfi! 2, m=7-9.

試験管1〜4にPEGMAPE−90とpg−350を
各々2gづつ、4gづつ入れ、生理食塩水8mt、  
BIS  O,12gづつ、0.24gづつ入れ、Kx
SsOs (2,5%溶液)1.QmtDMAPN (
59b溶液)l、Qmtを入れて混合しゲル化する。1
3φ×15Lの形状に成形してテンシロンで圧縮強度を
測定した結果を表2に示す。
Put 2 g and 4 g of PEGMAPE-90 and PG-350 in test tubes 1 to 4, respectively, and add 8 mt of physiological saline.
BIS O, 12g each, 0.24g each, Kx
SsOs (2.5% solution)1. QmtDMAPN (
59b solution) Add 1 and Qmt and mix to gel. 1
Table 2 shows the results of molding into a 3φ×15L shape and measuring the compressive strength using Tensilon.

表2  PH0M人樹脂量とゲル圧縮強度〔発明の効果
〕 本発明は上記の構成により下記の効果を奏するものであ
る。
Table 2 Amount of PH0M resin and gel compressive strength [Effects of the invention] The present invention achieves the following effects with the above configuration.

1)このゲル化反応は実用的には30分以内で終了する
ので、簡単に反応をおこなうことができる。
1) Since this gelation reaction is practically completed within 30 minutes, the reaction can be carried out easily.

2)反応温度は4Q’C以下で遂行することかでき、微
生物菌体に与えるダメージが少いことと、反応中の冷却
操作が不要である。
2) The reaction can be carried out at a temperature of 4Q'C or less, causing little damage to the microbial cells and requiring no cooling operation during the reaction.

3)標準的なゲル化条件で、ゲル圧縮強度は1h / 
c1以上が可能となり、これは他のゲル材と同等以上で
ある。
3) Under standard gelation conditions, gel compressive strength is 1h/
c1 or higher is possible, which is equivalent to or higher than other gel materials.

4)PH緩衝液の作用で反応中のPHを中性に保つこと
かでき、微生物菌体の活性を最適に維持できる。
4) The pH during the reaction can be kept neutral by the action of the PH buffer, and the activity of the microorganism can be optimally maintained.

5)  P B G M Aはモノマー、ポリマーとも
に生物毒性を示さないので、ポリアクリルアミドゲルに
比べて微生物番こ与える活性阻害は少い。
5) Since neither the monomer nor the polymer of PBGM A exhibits biotoxicity, it inhibits the activity of microorganisms to a lesser extent than polyacrylamide gel.

6)ゲルの水分吸水量は4g/gゲル以上で高吸水性で
あり、ポリアクリルアミドゲルと同程度であるので、よ
り微生物理境を提供できる。
6) Since the water absorption amount of the gel is 4 g/g gel or more, it is highly water absorbent and is comparable to that of polyacrylamide gel, so it can provide a better microbial environment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、初期温度とゲル開始時間、ピーク反応温度を
示す図、第2図は、重合促進剤の効果を示す図、第3図
は、重合開始剤の効果を示す図、第4図は、pgoN+
A[j脂量どゲル圧紐1強度を示す図、第5図は、BI
S架橋剤量とゲル圧縮強度を示す図、第6図は、樹脂量
とゲル膨潤特性を示す図、第7図は、七ツマ−と呼吸活
性を示す図、第8図は、ポリマーと呼吸活性を示す図で
ある。 1/TXIO(1/Ju1反/L−QJ’l)  I/
’にネn婁A漬ハL乙Y゛ル開妬庄」看しヒー7反爬五
度N1図 第2図 に2S208  (2,5瓢:Amt (mffi)!
台関姑酌σ灼粂 第3図 シツヒA ee R11(hr ) 第68 睡V\時藺(hr)       曝λ晴M(h「)(
!M−hI+oi5ff中1ili’l  −to’f
slER4%第7図    第8図
Figure 1 shows the initial temperature, gel initiation time, and peak reaction temperature. Figure 2 shows the effect of the polymerization accelerator. Figure 3 shows the effect of the polymerization initiator. Figure 4. is pgoN+
A [j Diagram showing the amount of fat and gel pressure cord 1 strength, Figure 5 is BI
Figure 6 shows the amount of S-crosslinking agent and gel compressive strength, Figure 6 shows the amount of resin and gel swelling properties, Figure 7 shows the relationship between the seven months and respiration activity, and Figure 8 shows the relationship between polymer and respiration. It is a figure showing activity. 1/TXIO (1/Ju1 anti/L-QJ'l) I/
``Nenn Rou A Pickled L Et Y゛ Lukai Sho'' Watch He 7 Anti-reply 5th N1 Figure 2 2S208 (2,5 gourd: Amt (mffi)!
68th Sleep V\Time (hr) Exposure λ Clear M (h'') (
! 1ili'l -to'f in M-hI+oi5ff
slER4%Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、樹脂主材として不飽和ポリエステル樹脂のポリエチ
レングリコールモノメタクリレートと、架橋剤としてN
,N′−メチレンビスアクリルアミドと、ラジカル重合
開始剤として過硫酸塩と、銃合促進剤としてジメチルア
ミノプロピオニトルと、PH緩衝剤と、微生物菌体を含
んだ水溶性懸濁液を40℃以下の低温で重合させ、微生
物菌体を固定化させることを特徴とする微生物菌体固定
化法。 2、ポリエチレングリコールモノメタクリレートの平均
エチレンオキサイド付加モル数mを4以上とし、全重量
比率で10%から30%を含むことを特徴とする特許請
求の範囲第1項記載の微生物菌体固定化法。 3、N,N′−メチレンビスアクリルアミドを全重量比
率で0.3%から1.5%を含むことを特徴とする特許
請求の範囲第1項記載の微生物菌体固定化法。 4、過硫酸塩としてK_2S_2O_■を、全重量比率
で0.1%以上を含むことを特徴とする特許請求の範囲
第1項記載の微生物菌体固定化法。 5、ジメチルアミノプロピオニトリルを、全重量比率で
0.2%以上を含むことを特徴とする特許請求の範囲第
1項記載の微生物菌体固定化法。 6、PH緩衝剤により、重合開始前、重合中の水溶性懸
濁液のPHを6から8の中性域に保つことを特徴とする
特許請求の範囲第1項記載の微生物菌体固定化法。
[Claims] 1. Polyethylene glycol monomethacrylate of unsaturated polyester resin as the main resin material and N as a crosslinking agent.
, N'-methylenebisacrylamide, persulfate as a radical polymerization initiator, dimethylaminopropionitrile as a polymerization accelerator, a PH buffer, and an aqueous suspension containing microorganism cells at 40°C. A microbial cell immobilization method characterized by polymerizing at a low temperature below to immobilize microbial cells. 2. The method for immobilizing microorganisms according to claim 1, characterized in that the average number m of added moles of ethylene oxide in polyethylene glycol monomethacrylate is 4 or more, and the total weight ratio is 10% to 30%. . 3. The method for immobilizing microorganisms according to claim 1, which contains 0.3% to 1.5% of the total weight of 3, N,N'-methylenebisacrylamide. 4. The method for immobilizing microorganisms according to claim 1, which contains K_2S_2O_■ as a persulfate in a total weight ratio of 0.1% or more. 5. The method for immobilizing microorganisms according to claim 1, which contains dimethylaminopropionitrile in a total weight ratio of 0.2% or more. 6. Immobilization of microorganisms according to claim 1, characterized in that the pH of the aqueous suspension is maintained in the neutral range of 6 to 8 before and during polymerization using a pH buffer. Law.
JP6806386A 1986-03-26 1986-03-26 Method for immobilizing mold of bacterium Pending JPS62224290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6806386A JPS62224290A (en) 1986-03-26 1986-03-26 Method for immobilizing mold of bacterium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6806386A JPS62224290A (en) 1986-03-26 1986-03-26 Method for immobilizing mold of bacterium

Publications (1)

Publication Number Publication Date
JPS62224290A true JPS62224290A (en) 1987-10-02

Family

ID=13362948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6806386A Pending JPS62224290A (en) 1986-03-26 1986-03-26 Method for immobilizing mold of bacterium

Country Status (1)

Country Link
JP (1) JPS62224290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453388B1 (en) * 2002-03-21 2004-10-15 (주)인수환경과학 The Seed culture delivery system for foul water and wastewater and their manufacturing method
US20110305767A1 (en) * 2008-10-13 2011-12-15 Cameron Alexander Polymer Particles Prepared From Polymerisable Alkylene Glycol (Meth) Acrylate Monomers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453388B1 (en) * 2002-03-21 2004-10-15 (주)인수환경과학 The Seed culture delivery system for foul water and wastewater and their manufacturing method
US20110305767A1 (en) * 2008-10-13 2011-12-15 Cameron Alexander Polymer Particles Prepared From Polymerisable Alkylene Glycol (Meth) Acrylate Monomers
US8940336B2 (en) * 2008-10-13 2015-01-27 University Of Nottingham Polymer particles prepared from polymerisable alkylene glycol (meth) acrylate monomers

Similar Documents

Publication Publication Date Title
US4791061A (en) Immobilization of microorganisms by entrapment
US6153416A (en) Immobilization of microbial cells and enzymes in calcium alginate-polyethylene glycol-polyethylene imide beads
CN106620832A (en) Transparent antibacterial hydrogel dressing as well as preparation method and application thereof
CN103524648A (en) Foaming polyvinyl formal microbial carrier and preparation method thereof
JPS6329997B2 (en)
JPS62224290A (en) Method for immobilizing mold of bacterium
CN112960766B (en) Aerobic biomembrane material, preparation method and application thereof in sewage treatment technology
JPH05130867A (en) Biocatalyst-immobilized gel
JPH0780282A (en) Polymeric hydrogel granular material, production thereof and immobilization of bacteria using the same
JPH10296284A (en) Carrier for immobilizing microbe and manufacture thereof
JPS63152980A (en) Immobilization of microbial cell
CN107988197A (en) Using plant fiber as Microorganism-embeddcarrier carrier of supporter and preparation method thereof
CN113564153A (en) Immobilized biocatalyst and preparation method and application thereof
JP3014262B2 (en) Biocatalyst immobilization carrier and immobilized biocatalyst
JPS60234582A (en) Immobilization of biological material
JP3428133B2 (en) Cell culture material, production and culture method
JPS61204089A (en) Treating agent for waste water
JPH02311500A (en) Production of immobilized low molecular protein a
TW199906B (en) Polyvinyl alcohol as fixed support of microorganism or enzyme and method of preparing thereof
JPH0141113B2 (en)
Wu et al. Biological phenol degradation in a countercurrent three-phase fluidized bed using a novel cell immobilization technique
JPH09194744A (en) Porous gel-like material
JP2001190274A (en) Method for producing granular formed product for immoibilizing enzyme or microorganism cell
JPH07228624A (en) Polyvinyl alcohol granular formed gel and its production
JPH03254892A (en) Method for preserving activated sludge-immobilizing carrier