JPH05130867A - Biocatalyst-immobilized gel - Google Patents

Biocatalyst-immobilized gel

Info

Publication number
JPH05130867A
JPH05130867A JP32528391A JP32528391A JPH05130867A JP H05130867 A JPH05130867 A JP H05130867A JP 32528391 A JP32528391 A JP 32528391A JP 32528391 A JP32528391 A JP 32528391A JP H05130867 A JPH05130867 A JP H05130867A
Authority
JP
Japan
Prior art keywords
gel
aerobic
anaerobic
immobilized
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32528391A
Other languages
Japanese (ja)
Other versions
JP3203026B2 (en
Inventor
Hiroaki Fujii
弘明 藤井
Toshihiro Hamada
敏裕 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP32528391A priority Critical patent/JP3203026B2/en
Publication of JPH05130867A publication Critical patent/JPH05130867A/en
Application granted granted Critical
Publication of JP3203026B2 publication Critical patent/JP3203026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To simultaneously perform an aerobic reaction and an anaerobic reaction for the simplification of water clarification, etc., by employing a biocatalyst-immobilized gel consisting mainly of polyvinyl alcohol in which aerobic bacteria are immobilized at the neighborhoods of the surface and in which anaerobic bacteria are immobilized at the neighborhoods of the center. CONSTITUTION:An aerobic reaction and an anaerobic reaction are simultaneously carried out in the presence of a biocatalyst-immobilized gel for the treatment of waste water, the clarification of culture water, etc. The biocatalyst- immobilized gel is produced by immobilizing aerobic bacteria in the neighborhoods of the surface of a gel and immobilizing anaerobic bacteria in the neighborhoods of the center. The gel comprises polyvinyl alcohol therein having a point having the shortest distance of >=2mm between the point and the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、好気性反応と嫌気性反
応の両方の生体触媒反応に有用なポリビニルアルコール
を主成分とする生体触媒固定化ゲルに関する。本発明の
ゲルは、たとえば、排水処理、観賞魚用水槽の浄化、養
殖水域の浄化など、水の浄化全般に利用できる。
TECHNICAL FIELD The present invention relates to a biocatalyst-immobilized gel containing polyvinyl alcohol as a main component, which is useful for biocatalytic reactions of both aerobic reaction and anaerobic reaction. The gel of the present invention can be used for general water purification, such as wastewater treatment, ornamental fish tank purification, and culture water purification.

【0002】[0002]

【従来の技術】近年、酵素、微生物などの生体触媒を固
定化して、その機能を効率よく利用する研究が行われ、
一部実用化されている。生体触媒を固定化する方法の一
つに、高分子素材を用いて生体触媒をそのまま包み込む
包括固定化法があり、この方法によく用いられる高分子
素材として、寒天、アルギン酸塩、カラギーナン、ポリ
アクリルアミド、ポリビニルアルコール、光硬化性樹脂
等がある。このうち、ポリビニルアルコール(以下PV
Aと略記することがある)含水ゲルは、生体触媒を包括
させることにより、優れた固定化担体として利用できる
ことが知られている。従来、PVAゲルは活性表面積を
大きくするために、直径4mm未満の球状や一辺が4m
m未満のサイコロ状のものが用いられてきた。
2. Description of the Related Art In recent years, studies have been carried out to immobilize biocatalysts such as enzymes and microorganisms and efficiently utilize their functions.
Some have been put to practical use. One of the methods for immobilizing the biocatalyst is the entrapping immobilization method in which the biocatalyst is wrapped as it is using a polymer material, and agar, alginate, carrageenan, polyacrylamide are commonly used polymer materials for this method. , Polyvinyl alcohol, and photo-curable resin. Of these, polyvinyl alcohol (hereinafter PV
It is known that hydrous gel (sometimes abbreviated as A) can be used as an excellent immobilization carrier by incorporating a biocatalyst. Conventionally, PVA gels have a spherical shape with a diameter of less than 4 mm or a side of 4 m in order to increase the active surface area.
Dice less than m have been used.

【0003】[0003]

【発明が解決しようとする課題】従来の直径4mm未満
の球状PVAゲルは、好気性反応に使用すると酸素がゲ
ルの中心部まで透過するため、同じゲル内で嫌気反応を
行うことは不可能であり、嫌気性反応を併用したい場合
には、別に反応槽を設けなければならない。たとえば、
排水処理における窒素除去において、アンモニア性窒素
の除去(硝化)には硝化菌を用いた好気性反応が必要
で、硝酸性窒素の除去(脱窒)には脱窒菌を用いた嫌気
性反応が必要であるため、装置のコンパクト化は難し
い。本発明は、以上の問題点を解決するものであり、従
来不可能であった好気性反応と嫌気性反応とを一つのリ
アクターで行うことが可能となるため、装置のコンパク
ト化に大きく貢献することができる。
In conventional spherical PVA gels having a diameter of less than 4 mm, when used in an aerobic reaction, oxygen permeates to the center of the gel, so that it is impossible to carry out an anaerobic reaction in the same gel. Yes, if an anaerobic reaction is to be used together, a separate reaction tank must be provided. For example,
In the removal of nitrogen in wastewater treatment, removal of ammonia nitrogen (nitrification) requires aerobic reaction using nitrifying bacteria, and removal of nitrate nitrogen (denitrification) requires anaerobic reaction using denitrifying bacteria. Therefore, it is difficult to make the device compact. INDUSTRIAL APPLICABILITY The present invention solves the above problems, and since it is possible to perform aerobic reaction and anaerobic reaction which were impossible in the past in one reactor, it greatly contributes to downsizing of the device. be able to.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、鋭意検討した結果、表面までの最短距離が2mm
以上である点をゲル内部に有し、表面近傍に好気性菌が
固定され、中心部近傍に嫌気性菌が固定されたポリビニ
ルアルコールを主成分とする生体触媒固定化ゲルを見出
し本発明を完成させるに至った。表面までの最短距離が
2mm以上、好ましくは2.5mm以上である点をゲル
内部に少なくとも1点有していれば、ゲルの中心部近傍
に嫌気性の領域が発現し、ゲルの表面近傍には好気性な
領域が発現し、その結果、好気性および嫌気性の両方の
性質を有する生体触媒固定化ゲルとなる。それに対し
て、ゲル内部の全ての点から表面までの最短距離が2m
m未満の場合にはゲル表面近傍が好気性環境であれば、
ゲルの中心部近傍にも酸素が透過し、その結果、全体が
好気性となる。ゲル表面までの最短距離が2mm以上で
ある点をゲル内部に有していれば、ゲルの形状は球状、
サイコロ状、繊維状、シート状、管状など特に制限はな
い。本発明に使用するPVAは平均重合度が1000以
上、好ましくは1700以上で、ケン化度は98.5モ
ル%以上、好ましくはケン化度99.85モル%以上の
完全ケン化PVAがPVAゲルの形成上、好ましい。ま
た本発明のPVAとしては、本発明の目的を阻害しない
範囲において、公知の種々の変性PVAを用いることが
できる。ゲルを成形する時のPVA水溶液の濃度は、P
VAを主成分とするゲル形成能の範囲から、1〜40重
量%が好ましく、PVA濃度が高いほど強固なゲルが得
られるが、必要なゲル強度が得られる範囲であれば原料
コスト面からはPVA濃度が低い方が有利である。また
ゲル成形時に、アルギン酸ナトリウムのような水溶性高
分子多糖類を用いてもよい。また、このPVA水溶液に
は、PVAのゲル化を阻害しない範囲で、微生物の培地
または固定化担体の強度を向上させるための補強剤、生
成ゲルの比重を調整するための充填材等を添加してもよ
い。
[Means for Solving the Problems] In order to solve the above problems, as a result of extensive studies, the shortest distance to the surface is 2 mm.
Completed the present invention to find a biocatalyst-immobilized gel containing polyvinyl alcohol as a main component, which has the above points inside the gel, aerobic bacteria are fixed near the surface, and anaerobic bacteria are fixed near the center. Came to let me. If the gel has at least one point where the shortest distance to the surface is 2 mm or more, preferably 2.5 mm or more, an anaerobic region appears near the center of the gel, and the gel is near the surface of the gel. Expresses an aerobic region, resulting in a biocatalyst-immobilized gel having both aerobic and anaerobic properties. On the other hand, the shortest distance from all points inside the gel to the surface is 2m.
If it is less than m, if the vicinity of the gel surface is an aerobic environment,
Oxygen also permeates near the center of the gel, and as a result, the whole becomes aerobic. If the gel has a point where the shortest distance to the gel surface is 2 mm or more, the shape of the gel is spherical,
There is no particular limitation such as dice, fiber, sheet, and tube. The PVA used in the present invention has an average degree of polymerization of 1000 or more, preferably 1700 or more, and a saponification degree of 98.5 mol% or more, preferably a saponification degree of 99.85 mol% or more. It is preferable for the formation of Further, as the PVA of the present invention, various known modified PVA can be used as long as the object of the present invention is not impaired. The concentration of the PVA aqueous solution when molding the gel is P
From the range of gel forming ability containing VA as a main component, 1 to 40% by weight is preferable, and the higher the PVA concentration is, the stronger the gel can be obtained. Lower PVA concentrations are advantageous. A water-soluble polymer polysaccharide such as sodium alginate may be used at the time of gel formation. Further, to the aqueous solution of PVA, a reinforcing agent for improving the strength of the culture medium of the microorganism or the immobilized carrier, a filler for adjusting the specific gravity of the produced gel, etc. are added within a range that does not inhibit the gelation of PVA. May be.

【0005】ゲルの成形方法としては、種々の方法が考
えられているが、以下の2つの方法が挙げられる。PV
A水溶液を−5℃以下、好ましくは−10℃以下に凍結
し、少なくとも1時間以上、好ましくは10時間以上保
持後、解凍する。凍結および解凍の操作を少なくとも1
回以上、好ましくは2回以上繰り返す。PVA水溶液を
PVAの離液作用のある物質を含む水溶液、たとえば硫
酸ナトリウム水溶液に接触させる。硫酸ナトリウム水溶
液の濃度は100mg/リットル(以下、mg/lと略
記する)以上が好ましく、飽和水溶液であることがさら
により好ましい。浸漬時間は10分以上、好ましくは3
0分以上が好ましい。本発明のゲルを用いて、好気性反
応および嫌気性反応をより効率的に行うためには、あら
かじめ微生物を固定したゲルを用いることが好ましい。
固定される微生物としては、好気性菌でも嫌気性菌でも
よい。好気性菌をあらかじめ固定した場合には、中心部
近傍が嫌気性となるため、後で中心部近傍に嫌気性菌が
増殖してくる。嫌気性菌をあらかじめ固定した場合に
は、表面近傍が好気性となるため、後で表面近傍に好気
性菌が増殖してくる。いずれの場合にも、最終的には表
面近傍に好気性菌が固定され、中心部近傍に嫌気性菌が
固定化された構造になる。このようにして得られたPV
Aを主成分とするゲルは、一つのリアクター内で好気性
反応と嫌気性反応との2つ反応を同時に行うことが可能
となる。
Various methods have been considered as the method of molding the gel, and the following two methods are mentioned. PV
The aqueous solution A is frozen at −5 ° C. or lower, preferably −10 ° C. or lower, kept for at least 1 hour or longer, preferably 10 hours or longer, and then thawed. At least one freezing and thawing operation
Repeat more than once, preferably twice or more. The aqueous PVA solution is brought into contact with an aqueous solution containing a substance having a syneresis action of PVA, for example, an aqueous sodium sulfate solution. The concentration of the sodium sulfate aqueous solution is preferably 100 mg / liter (hereinafter abbreviated as mg / l) or more, and more preferably a saturated aqueous solution. Immersion time is 10 minutes or more, preferably 3
0 minutes or more is preferable. In order to carry out the aerobic reaction and anaerobic reaction more efficiently using the gel of the present invention, it is preferable to use a gel on which microorganisms have been immobilized in advance.
The microorganism to be fixed may be an aerobic bacterium or an anaerobic bacterium. When the aerobic bacteria are fixed in advance, the vicinity of the central part becomes anaerobic, so that the anaerobic bacteria later grow near the central part. When anaerobic bacteria are fixed in advance, the vicinity of the surface becomes aerobic, so that the aerobic bacteria later grow near the surface. In either case, finally, the structure is such that aerobic bacteria are fixed near the surface and anaerobic bacteria are fixed near the center. PV obtained in this way
The gel containing A as a main component can simultaneously perform two reactions, an aerobic reaction and an anaerobic reaction, in one reactor.

【0006】[0006]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例により限定されるもので
はない。 実施例1 (株)クラレ製のPVA(平均重合度1740、ケン化
度99.85モル%)を40℃の温水で約1時間洗浄
後、PVA濃度16重量%になるようにPVAに水を加
えて全量を400gにし、pH6に調整した。これをオ
ートクレーブで120℃、30分処理し、PVAを溶解
した後、室温まで放冷した。このPVA水溶液に4重量
%のアルギン酸ナトリウム水溶液200gを加えて混合
し、さらに(株)クラレ岡山工場(岡山県岡山市海岸通
り1丁目2番1号)の排水処理槽より採取し、濃縮操作
を施して得られた活性汚泥[MLSS 80000(m
g/l)]を200g加え、充分に攪拌した。この混合
液を内径4mmφのビニル管1本を使用したローラーポ
ンプで1ミリリットル/分で送液し、スターラーで攪拌
した0.5モル/リットルの塩化カルシウム(CaCl
↓2)水溶液に、表面30cmの高さより滴下した。滴
下した液滴はCaCl↓2水溶液中で直ちに球状化して
沈降した。球状化したPVAを主成分とするゲルをCa
Cl↓2水溶液と分離し、蒸留水で軽く洗浄した後、−
20℃の冷凍庫で24時間凍結せた後、室温で解凍させ
た。さらにこの凍結、解凍操作を2回繰り返した。これ
により、不透明な褐色の柔軟性に富んだ球状のゲルが得
られた。このゲルは球状に成形され、粘着性もない。粒
径は5〜5.5mmφであった。上記の方法により得ら
れた菌が固定されたPVAを主成分とするゲルを(株)
クラレ岡山工場の活性汚泥曝気槽に10日間浸漬し、ゲ
ル中の菌体の培養を行った。培養後のゲル500gと
(株)クラレ岡山工場の排水未処理水をTOC(Tot
al Organic Carbon)値100(mg
/l)、アンモニア性窒素濃度を50(mg/l)に調
整した排水液5リットルとを試験曝気槽に入れ曝気し
た。図1にTOC、アンモニア性窒素濃度、亜硝酸・硝
酸性窒素濃度を示す。時間の経過とともにTOC、アン
モニア性窒素濃度が減少していくことから、好気性菌が
働いていることがわかる。また亜硝酸・硝酸性窒素濃度
が初期に上昇し、後に減少していることから、アンモニ
ア性窒素の酸化により発生した、亜硝酸・硝酸性窒素が
嫌気性菌により脱窒されたことがわかる。実験後のゲル
の断面を観察したところ、表面から約1.5mmのまで
の部分には好気性微生物群が存在し、中心部には嫌気性
微生物群が存在することが判明した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 PVA (average polymerization degree: 1740, saponification degree: 99.85 mol%) manufactured by Kuraray Co., Ltd. was washed with warm water at 40 ° C. for about 1 hour, and then water was added to PVA so that the PVA concentration became 16% by weight. In addition, the total amount was adjusted to 400 g and the pH was adjusted to 6. This was treated in an autoclave at 120 ° C. for 30 minutes to dissolve PVA and then allowed to cool to room temperature. To this PVA aqueous solution, 200 g of a 4% by weight sodium alginate aqueous solution was added and mixed, and then collected from the wastewater treatment tank of the Kuraray Okayama Plant (1-2-1, Kaigandori, Okayama City, Okayama Prefecture) and concentrated. Activated sludge obtained by applying [MLSS 80000 (m
g / l)] was added, and the mixture was thoroughly stirred. This mixed solution was fed at a rate of 1 ml / min by a roller pump using one vinyl tube having an inner diameter of 4 mmφ and stirred with a stirrer to give 0.5 mol / liter of calcium chloride (CaCl 2).
↓ 2) The solution was dropped into the aqueous solution from a height of 30 cm on the surface. The dropped liquid droplets immediately spheroidized and settled in the CaCl ↓ 2 aqueous solution. Spheroidized PVA-based gel is Ca
Separated from Cl ↓ 2 aqueous solution, lightly washed with distilled water,
After freezing in a freezer at 20 ° C. for 24 hours, it was thawed at room temperature. Further, this freezing and thawing operation was repeated twice. This gave an opaque brown flexible spherical gel. This gel is formed into a spherical shape and is not sticky. The particle size was 5 to 5.5 mmφ. A gel containing PVA, on which the bacterium is immobilized, obtained by the above method as a main component,
The cells in the gel were cultured by immersing them in an activated sludge aeration tank at Kuraray Okayama Plant for 10 days. 500 g of the gel after culturing and the untreated water discharged from the Kuraray Okayama Plant are TOC (Tot
al Organic Carbon) value 100 (mg
/ L) and 5 liters of drainage liquid with the ammonia nitrogen concentration adjusted to 50 (mg / l) were placed in a test aeration tank for aeration. Figure 1 shows TOC, ammonia nitrogen concentration, and nitrite / nitrate nitrogen concentration. As the TOC and ammonia nitrogen concentrations decrease with the passage of time, it can be seen that aerobic bacteria are working. Further, since the nitrite / nitrate nitrogen concentration was initially increased and then decreased, it can be seen that the nitrite / nitrate nitrogen generated by the oxidation of ammonia nitrogen was denitrified by the anaerobic bacterium. After observing the cross section of the gel after the experiment, it was found that aerobic microorganisms were present in the area up to about 1.5 mm from the surface and anaerobic microorganisms were present in the center.

【0007】比較例1 活性汚泥を加えたPVAおよびアルギン酸ナトリウム水
溶液を内径1mmφの注射針から1ミリリットル/分
で、CaCl↓2水溶液に滴下した以外は実施例1と同
様にして、PVAを主成分とする球状のゲルを得た。ゲ
ルは粘着性もなく、粒径は2.5〜3mmφであった。
得られた菌が固定されたPVAゲルを(株)クラレ岡山
工場の活性汚泥曝気槽に10日間浸漬し、ゲル中の菌体
の培養を行った。培養後のゲル500gと(株)クラレ
岡山工場の排水未処理水をTOC(Total Org
anic Carbon)値100(mg/l)、アン
モニア性窒素濃度を50(mg/l)に調整した排水液
5リットルとを試験曝気槽に入れ曝気した。図2にTO
C、アンモニア性窒素濃度、亜硝酸・硝酸性窒素濃度を
示す。時間の経過とともにTOC、アンモニア性窒素濃
度が減少していくことから、好気性菌がはたらいている
ことがわかる。一方、亜硝酸・硝酸性窒素濃度が上昇し
続けることから、嫌気性菌が働かず、脱窒が進まなかっ
たことを示している。実験後のゲルの断面を観察したと
ころ、ゲルの中心部まで好気性微生物群が存在すること
が判明した。
Comparative Example 1 PVA was used as a main component in the same manner as in Example 1 except that PVA added with activated sludge and an aqueous solution of sodium alginate were dropped into a CaCl ↓ 2 aqueous solution at a rate of 1 ml / min from an injection needle having an inner diameter of 1 mmφ. A spherical gel was obtained. The gel was not tacky and had a particle size of 2.5-3 mmφ.
The obtained PVA gel on which the bacteria were fixed was immersed in an activated sludge aeration tank of Kuraray Okayama Plant for 10 days to culture the cells in the gel. 500 g of the gel after culturing and the untreated water discharged from the Kuraray Okayama Plant are combined with TOC (Total Org).
An aic carbon value of 100 (mg / l) and 5 liters of drainage liquid having an ammoniacal nitrogen concentration adjusted to 50 (mg / l) were placed in a test aeration tank for aeration. Figure 2 TO
C, ammonia nitrogen concentration, nitrous acid / nitrate nitrogen concentration are shown. Since TOC and ammonia nitrogen concentration decrease with the passage of time, it can be seen that aerobic bacteria are working. On the other hand, since the nitrite and nitrate nitrogen concentrations continue to rise, it indicates that anaerobic bacteria did not work and denitrification did not proceed. After observing the cross section of the gel after the experiment, it was found that aerobic microorganisms were present up to the center of the gel.

【0008】[0008]

【発明の効果】本発明のPVAを主成分とするゲルは、
表面近傍に好気性菌が固定され、中心部近傍に嫌気性菌
が固定された構造であることから、ひとつのリアククタ
ーを用いるだけで、嫌気性反応と好気性反応との両方の
生体触媒反応を同時に行うことができ、生体触媒による
反応の実用化が広範囲に促進される。
The gel containing PVA as the main component of the present invention is
Due to the structure in which aerobic bacteria are fixed near the surface and anaerobic bacteria are fixed near the center, it is possible to perform biocatalytic reactions of both anaerobic reaction and aerobic reaction by using only one reactor. It can be carried out at the same time, and the practical application of the reaction by the biocatalyst is promoted in a wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるTOC(○)、アンモニア性
窒素濃度(□)、亜硝酸・硝酸性窒素濃度(△)を示
す。
FIG. 1 shows TOC (◯), ammoniacal nitrogen concentration (□), and nitrous acid / nitrate nitrogen concentration (Δ) in Example 1.

【図2】比較例1におけるTOC(○)、アンモニア性
窒素濃度(□)、亜硝酸・硝酸性窒素濃度(△)を示
す。
FIG. 2 shows TOC (◯), ammoniacal nitrogen concentration (□), and nitrous acid / nitrate nitrogen concentration (Δ) in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/30 B 7158−4D 3/34 101 D 7158−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C02F 3/30 B 7158-4D 3/34 101 D 7158-4D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面までの最短距離が2mm以上である
点をゲル内部に有し、表面近傍に好気性菌が固定され、
中心部近傍に嫌気性菌が固定されたポリビニルアルコー
ルを主成分とする生体触媒固定化ゲル。
1. A gel having a point that the shortest distance to the surface is 2 mm or more, and aerobic bacteria are fixed near the surface,
A biocatalyst-immobilized gel whose main component is polyvinyl alcohol in which anaerobic bacteria are immobilized near the center.
【請求項2】 表面までの最短距離が2mm以上である
点をゲル内部に有するポリビニルアルコールを主成分と
するゲルを用いて、好気性反応と嫌気性反応とを同時に
行うことを特徴とする生体触媒による反応方法。
2. A living body characterized by performing an aerobic reaction and an anaerobic reaction at the same time by using a gel whose main component is polyvinyl alcohol having a point having a shortest distance to the surface of 2 mm or more inside the gel. Reaction method by catalyst.
JP32528391A 1991-11-12 1991-11-12 Biocatalyst immobilized gel Expired - Lifetime JP3203026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32528391A JP3203026B2 (en) 1991-11-12 1991-11-12 Biocatalyst immobilized gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32528391A JP3203026B2 (en) 1991-11-12 1991-11-12 Biocatalyst immobilized gel

Publications (2)

Publication Number Publication Date
JPH05130867A true JPH05130867A (en) 1993-05-28
JP3203026B2 JP3203026B2 (en) 2001-08-27

Family

ID=18175088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32528391A Expired - Lifetime JP3203026B2 (en) 1991-11-12 1991-11-12 Biocatalyst immobilized gel

Country Status (1)

Country Link
JP (1) JP3203026B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041216A1 (en) * 1996-05-01 1997-11-06 Kanebo Limited Microorganism carrier and process for production thereof
EP0861808A2 (en) * 1997-02-28 1998-09-02 Kuraray Co., Ltd. Waste water treatment apparatus
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2009208024A (en) * 2008-03-05 2009-09-17 Nippon Kensetsu Gijutsu Kk Water purification apparatus
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
US7794590B2 (en) * 2006-06-28 2010-09-14 Hitachi Plant Technologies, Ltd. Entrapping immobilization pellets for purifying breeding water, process and apparatus for purifying breeding water, and aquarium set
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041216A1 (en) * 1996-05-01 1997-11-06 Kanebo Limited Microorganism carrier and process for production thereof
EP0861808A2 (en) * 1997-02-28 1998-09-02 Kuraray Co., Ltd. Waste water treatment apparatus
EP0861808A3 (en) * 1997-02-28 2001-06-20 Kuraray Co., Ltd. Waste water treatment apparatus
EP1375435A2 (en) * 1997-02-28 2004-01-02 Kuraray Co., Ltd. Waste water treatment apparatus
EP1375435A3 (en) * 1997-02-28 2004-03-03 Kuraray Co., Ltd. Waste water treatment apparatus
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP4613474B2 (en) * 2003-01-28 2011-01-19 栗田工業株式会社 Method for treating ammonia-containing water
US7794590B2 (en) * 2006-06-28 2010-09-14 Hitachi Plant Technologies, Ltd. Entrapping immobilization pellets for purifying breeding water, process and apparatus for purifying breeding water, and aquarium set
JP2009208024A (en) * 2008-03-05 2009-09-17 Nippon Kensetsu Gijutsu Kk Water purification apparatus
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent

Also Published As

Publication number Publication date
JP3203026B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US4791061A (en) Immobilization of microorganisms by entrapment
CN105861479A (en) Method for co-immobilizing anaerobic ammoxidation bacteria-short-cut nitrobacteria and application thereof
US5290693A (en) Immobilization of microorganisms or enzymes in polyvinyl alcohol beads
JP3965006B2 (en) Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
JP3203026B2 (en) Biocatalyst immobilized gel
Lee et al. Removal of nitrogen in wastewater by polyvinyl alcohol (PVA)-immobilization of effective microorganisms
JPS6329997B2 (en)
JP2008068233A (en) Nitrogen elimination measure and nitrogen removing apparatus
JP4788645B2 (en) Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus
JP3686215B2 (en) Water treatment carrier, production method thereof, and nitrification denitrification method using the same
JPH09124731A (en) Acetalized polyvinyl alcohol hydrogel
JPH0137987B2 (en)
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
JP2003235554A (en) Microorganism-immobilized carrier and method for producing the same
JPS63202382A (en) Immobilized microorganism group
JP3109933B2 (en) Catalysts for deodorization and wastewater treatment
JP2882710B2 (en) Core-sheath fibrous gel and method for producing the same
JPS62166889A (en) Immobilized microorganism, production thereof and treatment of water using said immobilized microorganism
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPH09124876A (en) Acetalized polyvinyl alcohol-based hydrous gel
JP2665821B2 (en) Immobilization method of ammonia oxidizing bacteria with composite carrier
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPH07313970A (en) Method for simultaneously removing ammonia and phosphorus from water
JPS6324438B2 (en)
JPS6324678B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11