JPS62224286A - Method for producing enzyme by gene recombination mold and device therefor - Google Patents

Method for producing enzyme by gene recombination mold and device therefor

Info

Publication number
JPS62224286A
JPS62224286A JP61067907A JP6790786A JPS62224286A JP S62224286 A JPS62224286 A JP S62224286A JP 61067907 A JP61067907 A JP 61067907A JP 6790786 A JP6790786 A JP 6790786A JP S62224286 A JPS62224286 A JP S62224286A
Authority
JP
Japan
Prior art keywords
enzyme
culture
tank
crp
corepressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067907A
Other languages
Japanese (ja)
Other versions
JPH0775536B2 (en
Inventor
Takeshi Kobayashi
猛 小林
Shinji Iijima
信司 飯島
Masayuki Taniguchi
正之 谷口
Shunji Yasuda
安田 俊二
Yoshihisa Kato
加藤 能久
Takashi Ogawa
孝 小川
Shuji Kawai
川合 修次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Kao Corp
Original Assignee
Kao Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Toshiba Ceramics Co Ltd filed Critical Kao Corp
Priority to JP61067907A priority Critical patent/JPH0775536B2/en
Priority to GB8707130A priority patent/GB2188324B/en
Priority to AU70659/87A priority patent/AU600710B2/en
Priority to DE19873744928 priority patent/DE3744928C2/en
Priority to DE19873709959 priority patent/DE3709959A1/en
Publication of JPS62224286A publication Critical patent/JPS62224286A/en
Priority to GB8929030A priority patent/GB2225789B/en
Publication of JPH0775536B2 publication Critical patent/JPH0775536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/14Bioreactors or fermenters specially adapted for specific uses for producing enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/71Expression systems using regulatory sequences derived from the trp-operon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Abstract

PURPOSE:To produce a large amount of the titled enzyme by device control, by cultivating a specific host mold in a medium containing a co-repressor (CRP) while suppressing enzyme formation, removing CRP from the culture solution and carrying out culture in a medium containing no CRP. CONSTITUTION:A host mold (e.g. Escherichia coli C600) transduced with an enzyme gene and an adjusting gene to form an aporepressor is cultivated in a medium containing a need amino acid, glucose and CRP (e.g. tryptophan in 100-200mug/ml concentration in a culture tank 1 at pH about 7 at about 37 deg.C for about 5hr to give a culture solution 12. Then the culture solution is sent through a piping 4, a pump 5 and a flowmeter 8 to a ceramic filter 11 to remove CRP and a prepared filtrate 12 is put in a filtrate tank 15. On the other hand, a mold-containing concentrated solution is circulated through a ball valve 16 and an outlet piping 17 to the culture tank 1. Then a medium containing no CRP is fed from a medium feed tank 26 to the tank 1 to produce an enzyme (e.g. beta-galactosidase).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遺伝子組み換え菌による酵素生産方法及びその
方法に用いられる酵素生産装置に関し、特に酵素を大量
に生産するために用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an enzyme production method using genetically modified bacteria and an enzyme production apparatus used in the method, and particularly to one used for producing enzymes in large quantities.

〔従来の技術〕[Conventional technology]

近年、遺伝子組み換え菌を用いた有用物質の生産が注目
されている。しかし、これら有用物質の生産は実験段階
に留まっているものが多く、大量生産可滝な段階には達
していない。
In recent years, the production of useful substances using genetically modified bacteria has attracted attention. However, the production of these useful substances remains in the experimental stage in many cases and has not yet reached the stage where mass production is possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記事情を考慮してなされたものであり、酵素
を大量に生産することができる遺伝子組み換え菌による
酵素生産方法及びこの方法に使用される酵素生産装置を
提供しようとするものである。
The present invention has been made in consideration of the above circumstances, and aims to provide an enzyme production method using genetically modified bacteria that can produce enzymes in large quantities, and an enzyme production device used in this method.

〔問題点を解決するための手段〕[Means for solving problems]

本願第1の発明の直伝子組み換え菌による酵素生産方法
は、酵素遺伝子及びアポリプレッサーを生成する調節遺
伝子を導入した宿主菌を、コリプレッサーを含む培地を
用いて酵素生成を抑制した状態で培養した後、培養液か
ら前記コリプレッサーを除去するとともに、コリブレン
サーを含まない培地を用いて培養し、酵素を生産させる
ことを特徴とするものである。
The enzyme production method using a directly genetically recombinant bacterium of the first invention of the present application involves culturing a host bacterium into which an enzyme gene and a regulatory gene for producing apolipressor have been introduced in a state in which enzyme production is suppressed using a medium containing a corepressor. After that, the corepressor is removed from the culture solution, and the culture is performed using a medium that does not contain the corepressor to produce the enzyme.

また、本願第2の発明の酵素生産装置は、酵素遺伝子及
びアポリプレッサーを生成するm!遺伝子を導入した宿
主菌を、コリプレッサーを含む培地を用いて培養する培
養槽と、該培養槽内の培養液を通過させて前記コリプレ
ッサーを除去する筒状のフィルターと、培養液を培養槽
からフィルターを通過ごせて循環させる循環系と、前記
培養槽にコリプレッサーを含まない培地を供給する培地
供給槽とを具備したことを特徴とするものである。
Moreover, the enzyme production device of the second invention of the present application generates an enzyme gene and an apolipressor. A culture tank for culturing host bacteria into which a gene has been introduced using a medium containing a corepressor; a cylindrical filter for removing the corepressor by passing the culture solution in the culture tank; The invention is characterized by comprising a circulation system that circulates the medium through a filter, and a medium supply tank that supplies a corepressor-free medium to the culture tank.

〔作用〕[Effect]

酵素遺伝子及びアポリプレッサーを生成する調節遺伝子
を導入した宿主菌では、4A節遣仏子でアポリプレッサ
ーが生成される。本発明方法では初期には、この宿主菌
をコリプレッサーを含む培地を用いて培養するので、調
節遺伝子で生成されるアポリプレッサーがコリプレッサ
ーと結合してリプレッサーとなり、このリプレッサーが
酵素遺伝子のオペレータ部位に結合して転写を抑制する
In host bacteria into which the enzyme gene and the regulatory gene that produces apolipressor are introduced, apolipressor is produced in the 4A setting. In the method of the present invention, the host fungus is initially cultured using a medium containing a corepressor, so apolipressor produced by the regulatory gene combines with the corepressor to become a repressor, and this repressor acts as a repressor for the enzyme gene. Binds to operator sites and represses transcription.

このため、ffj素の生産が抑制された状態で菌体が増
殖し、菌体数そのものは増加する。その後、培養液から
コリプレッサーを除去するとともに、コリプレッサーを
含まない培養液を用いて培養すると、宿主菌により酵素
が生産される。このように菌体数を増加させた後に酵素
を生成させるので、酵素の大量生産が可を駐となる。
Therefore, the bacterial cells proliferate while the production of ffj element is suppressed, and the bacterial cell number itself increases. Thereafter, the corepressor is removed from the culture solution and culture is performed using a culture solution that does not contain the corepressor, so that the enzyme is produced by the host bacteria. Since enzymes are produced after increasing the number of bacterial cells in this way, mass production of enzymes becomes possible.

また、本発明の酵素生産装置は、培養槽、培養液からコ
リプレッサーを除去する手段となる筒状のフィルター及
び培養液の循環系ならびにコリプレッサーを含まない培
地を供給する培地供給槽を設けたものである。筒状のフ
ィルターではクロスフローロ過によりコリプレッサーが
迅速に除去されるので、h記の酵素生産方法を容易に適
用することができ、酵素生産の制御及び大量生産が可能
になる。
Furthermore, the enzyme production apparatus of the present invention is provided with a culture tank, a cylindrical filter serving as a means for removing corepressors from the culture solution, a circulation system for the culture solution, and a medium supply tank for supplying a medium containing no corepressor. It is something. Since the corepressor is quickly removed by cross-flow filtration in a cylindrical filter, the enzyme production method described in section h can be easily applied, and enzyme production can be controlled and mass-produced.

〔実施例〕〔Example〕

以下、本発明をβ−ガラクトシダーゼの生産に適用した
実施例を図面を参照して説明する。
Examples in which the present invention is applied to the production of β-galactosidase will be described below with reference to the drawings.

まず、遺伝子組み換え技術により、第3図に示すように
、トリプトファンプロモータtrpを含むプラスミドp
oc”r2に、β−ガラクトシダーゼ遺伝子lac Z
、β−ガラクトシドパーミアーゼ遺伝子1ac Y、ガ
ラクトシドトランスアセチラーゼ遺伝子Iac Aを導
入したプラスミドpMCT98を調製した。黒い矢印で
示す部位trpにはプロモータP、オペレータ0、アテ
ニュエータAtが存在する。
First, by genetic recombination technology, a plasmid p containing the tryptophan promoter trp was created, as shown in Figure 3.
β-galactosidase gene lac Z in oc”r2
, β-galactoside permease gene lac Y, and galactoside transacetylase gene Iac A were introduced into plasmid pMCT98. Promoter P, operator 0, and attenuator At are present at the site trp indicated by the black arrow.

次に、pMC79BとアポリプL/−/サーtrp R
をクローン化したプラスミドpRLKl 3 (m4図
図示)とを金属イオンの共存下で、大腸菌C600内に
移植して形質転換した。
Next, pMC79B and apolipL/-/trpR
The cloned plasmid pRLKl 3 (m4 diagram) was transplanted into Escherichia coli C600 for transformation in the presence of metal ions.

この形質転換された大腸菌C600では、コリプレッサ
ーであるトリプトファン このトリプトファンがプラスミドpRLK 1 3の1
τpR部位で生成されるアポリプレッサーと結合してリ
プレッサーを生成し、このリプレッサーがプラスミドP
MCT98のtrp部位のオペレータに結合して転写が
抑制される.逆に、トリプトファンが存在しないと転写
が開始される.下記表に上記のようにして得られた大腸
菌C600を培養したときのトリプトファン濃度とβ−
ガラクトシダーゼの比活性との関係を示す.下記表から
明らかなように、トリプトファン濃度が高いほど、比活
性が低くなっている。
In this transformed E. coli C600, tryptophan, which is a corepressor, is present in plasmid pRLK13.
It combines with the apolypressor produced at the τpR site to produce a repressor, and this repressor
It binds to the trp site operator of MCT98 and suppresses transcription. Conversely, transcription begins in the absence of tryptophan. The table below shows the tryptophan concentration and β-
The relationship with the specific activity of galactosidase is shown. As is clear from the table below, the higher the tryptophan concentration, the lower the specific activity.

1呵  − この大腸菌を用いて、第1図に概略構成を示すPIIS
R生産装置によりβ−ガラクトシダーゼの生産を行なっ
た。まず、第1図図示の酵素生産装置について説明する
。第1図において、培養槽l中には上記のようにして得
られた遺伝子組み換え大腸菌C600の培養液2が収容
される。この培養液2は恒温槽3から送られる恒温水に
よって一定温度に維持される。クロスフロー口過を行な
う場合、この培養液2は配管4、ポンプ5及びポールバ
ルブ6を介装した配管7.流量計8ならびに入口配管9
を通ってフィルターケース10内に設けられたセラミッ
クフィルター11内を′m過する。
1. - Using this E. coli, PIIS, the schematic structure of which is shown in Figure 1, was created.
β-galactosidase was produced using the R production apparatus. First, the enzyme production apparatus shown in FIG. 1 will be explained. In FIG. 1, a culture solution 2 of genetically recombinant E. coli C600 obtained as described above is contained in a culture tank 1. This culture solution 2 is maintained at a constant temperature by constant temperature water sent from a constant temperature bath 3. When performing cross-flow oral filtration, this culture solution 2 is passed through a pipe 7, which is equipped with a pipe 4, a pump 5, and a Pall valve 6. Flowmeter 8 and inlet piping 9
It passes through the ceramic filter 11 provided in the filter case 10.

このセラミックフィルター11を透過した口過液12は
電磁弁13を介装した口過液配管14を通って口過液槽
15に収容される。一方、菌体を含むclii液はポー
ルバルブ16を介装した出口配管17を通って培養槽l
に循環される。なお、配管4と配管7との間にはポンプ
5と並列して、ポールバルブ18を介装したバイパス配
管19が接続されている。また、入口配管9及び出口配
管17にはそれぞれ圧力計20.21が設けられている
。また1口過液配管14には、電磁弁22を介装した逆
洗用のガス供給配管23が接続されている。更に、培養
槽1には液面計24が設けられており、この液面計24
と連動するポンプ25により新しい培養液が口液間に合
わせて培地供給槽26から培養槽1へ供給される。
The oral fluid 12 that has passed through the ceramic filter 11 passes through the oral fluid piping 14 having an electromagnetic valve 13 interposed therebetween, and is stored in the oral fluid tank 15 . On the other hand, the Clii liquid containing bacterial cells passes through the outlet pipe 17 with the Pall valve 16 interposed in the culture tank.
is circulated. Note that a bypass pipe 19 having a pole valve 18 interposed therebetween is connected in parallel with the pump 5 between the pipe 4 and the pipe 7. Moreover, pressure gauges 20 and 21 are provided in the inlet pipe 9 and the outlet pipe 17, respectively. Further, a gas supply pipe 23 for backwashing in which a solenoid valve 22 is interposed is connected to the one-port effluent pipe 14 . Furthermore, the culture tank 1 is provided with a liquid level gauge 24.
New culture solution is supplied from the culture medium supply tank 26 to the culture tank 1 by the pump 25 which is interlocked with the oral fluid.

前記セラミックフィルター11としては、第2図に示す
ものを用いた。このフィルター31は、全R750mm
で、6角柱形状のアルミナ製フィルタ一本体32の両端
にセラミックスシール33を取付け、これらの長手方向
に沿って直径4■の通過孔34を19個設けたものであ
り、有効口過面積は0.18m”である。なお、前記フ
ィルタ一本体32は通過孔34の膚囲で気孔径が徐々に
大きくなるような多層構造を有するもの(セラベールセ
ラミックフィルター:東芝セラミックス社製商品名)で
ある、また、各フィルターの通過孔に而するアルミナの
気孔径は0.2gmである。
The ceramic filter 11 shown in FIG. 2 was used. This filter 31 has a total R750mm
Ceramic seals 33 are attached to both ends of a hexagonal prism-shaped alumina filter body 32, and 19 passage holes 34 with a diameter of 4 mm are provided along their longitudinal direction, and the effective opening area is 0. The filter main body 32 has a multilayer structure in which the pore diameter gradually increases around the passage hole 34 (Cerabel Ceramic Filter: a trade name manufactured by Toshiba Ceramics Co., Ltd.). Also, the pore diameter of the alumina in the passage holes of each filter was 0.2 gm.

L記酵素生産装置により、以下のようにしてβ−ガラク
トシダーゼを生産した。
β-galactosidase was produced using the L enzyme production apparatus in the following manner.

まず、要求アミノ酸、炭素源となるグルコース及び濃度
100〜200μg/mlのトリプトファンを添加した
流加培養用培地を用い、37℃においてpH7で瀉加培
養を5時間行なった。
First, using a fed-batch culture medium to which required amino acids, glucose as a carbon source, and tryptophan at a concentration of 100 to 200 μg/ml were added, the culture was carried out at 37° C. and pH 7 for 5 hours.

次に、培地供給槽26からトリプトファンを含まなl、
X以外は上記と同一組成の流加培養用培地を供給しなが
ら、培養槽l内の培養液2をポンプ6によりフィルター
11内を通過させて培養液からトリプトファンを除去し
、菌体を含む濃縮液は培養槽1へ循環させた。
Next, l containing tryptophan from the medium supply tank 26,
While supplying a fed-batch culture medium with the same composition as above except for The solution was circulated to culture tank 1.

このときの培養時間と、トリプトファン濃度、菌体濁度
、β−ガラクトシダーゼの全活性及び比活性との関係を
第5図に示す、なお、第5図では口過開始時を破線で表
示する。また、第6図に口液量とトリプトファン濃度と
の関係を、第7図に培養時間と口過波束との関係をそれ
ぞれ示す。
The relationship between the culture time, tryptophan concentration, bacterial cell turbidity, total activity and specific activity of β-galactosidase at this time is shown in FIG. 5. In FIG. 5, the time at which oral passage begins is indicated by a broken line. Furthermore, FIG. 6 shows the relationship between oral fluid volume and tryptophan concentration, and FIG. 7 shows the relationship between culture time and oral wave flux.

第5図から明らかなように、口過開始後、培養液中のト
リプトファン濃度は急激に減少している0口過開始直後
のトリプトファン濃度の減少の様子は第6図に示すよう
なものであり、迅速にトリプトファンを除去できること
がわかる。
As is clear from Fig. 5, the tryptophan concentration in the culture solution decreases rapidly after the start of sips.The decrease in tryptophan concentration immediately after the start of sips is as shown in Fig. 6. It can be seen that tryptophan can be removed quickly.

また、第5図の菌体濁度の曲線は、口過開始直後を除い
ては、菌体が徐々に増殖していることを示している。た
だし、口過開始前の方が口過開始後よりも菌体の増加率
が大きくなっている。これは、口過開始前は酵素が生成
されず、菌体の増殖だけが行なわれるが、口過開始後は
トリプトファンが減少するので菌体が酵素を生成すると
ともに増炉しているものと考えられる。このことは、第
5図のβ−ガラクトシダーゼの全活性及び比活性の曲線
が、口過開始前は非常に低い値であるが、口過開始後は
急激に増加していることからもわかる。このように、酵
素生成を制御することができ、酵素の大量生産も可壱に
なる。
Moreover, the curve of bacterial cell turbidity in FIG. 5 shows that the bacterial cells are gradually proliferating except immediately after the beginning of oral passage. However, the rate of increase in bacterial cells was greater before the start of oral congestion than after the initiation of oral congestion. This is thought to be due to the fact that before the start of filtration, enzymes are not produced and only bacterial cells proliferate, but after the start of filtration, tryptophan decreases, so the bacteria are producing enzymes and refurbishing. It will be done. This can be seen from the fact that the curves of the total activity and specific activity of β-galactosidase shown in FIG. 5 have very low values before the start of oral laxation, but rapidly increase after the initiation of oral laxation. In this way, enzyme production can be controlled and mass production of enzymes becomes possible.

また、第7図に示すように、口^流束は時間とともに徐
々に減少するが、逆洗間隔及び逆洗圧力を調整すること
により、口過波束をある程度回復できることがわかる。
Moreover, as shown in FIG. 7, although the mouth flux gradually decreases with time, it is understood that the mouth flux can be recovered to some extent by adjusting the backwash interval and backwash pressure.

なお、L記実施例ではクロスフロー口過を行なうだめの
フCルターとして第2図に示すような19個の通過孔を
有するアルミナ製セラミックフィルターを用いたが、フ
ィルターは孔径のそろったものであれば材質は金属製や
合成樹脂製等何でもよく、また通過孔が1個あるいは複
数個でもよい。
In Example L, an alumina ceramic filter having 19 passage holes as shown in Fig. 2 was used as a filter for cross-flow filtration, but the filter had uniform pore diameters. If so, it may be made of any material such as metal or synthetic resin, and may have one or more passage holes.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、酵素の生産を制御す
ることができ、しかも酵素の大量生産も可能になる等W
J著な効果を奏するものである。
As detailed above, according to the present invention, enzyme production can be controlled, and mass production of enzymes is also possible.
It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における酵素生産装置の概略構
成図、第2図は同装置に用いられるフィルターを一8′
R破断して示す斜視図、第3図及び第4図はそれぞれ本
発明の実施例において大腸菌に移植されたプラスミドの
説明図、第5図は本発明の実施例で得られた培養時間と
、トリプトファン濃度、菌体濁度、酵素の全活性及び酵
素の比活性との関係を示す特性図、:56図は本発明の
実施例で得られた口液礒とトリプトファン濃度との関係
を示す特性図、第7図は本発明の実施例で得られた18
五時間と口過流束との関係を示す特性図である。 1・・・培養槽、2・・・培養液、3・・・恒温槽、4
,7・・・配管、5・・・ポンプ、6.16.18・・
・ポールバルブ、8・・・流1計、9・・・入口配管、
10・・・フィルターケース、11・・・セラミックフ
ィルター、12・・・口過液、13.22・・・電磁弁
、14・・・口過液配管、15・・・口過液槽、17・
・・出口配管、19・・・バイパス配管、20.21・
・・圧力計、23・・・ガス供給配管、24・・・液面
計、25・・・ポンプ、26・・・培地供給槽、31・
・・セラミックフィルター、32・・・フィルタ一本体
、33・・・セラミックスシール、34・・・通過孔。 出願人代理人 弁理士 鈴江 武彦 H:HindII+ R:Eco RT 7t3FEJ     第4図 4歩内fl(hr ) フ 5 口
Figure 1 is a schematic configuration diagram of an enzyme production apparatus in an embodiment of the present invention, and Figure 2 shows a filter used in the apparatus.
3 and 4 are respectively explanatory diagrams of the plasmids transplanted into E. coli in the examples of the present invention, and FIG. 5 is the culture time obtained in the examples of the present invention, A characteristic diagram showing the relationship between tryptophan concentration, bacterial cell turbidity, total enzyme activity, and enzyme specific activity: Figure 56 is a characteristic diagram showing the relationship between oral fluid itching obtained in the example of the present invention and tryptophan concentration. Figure 7 shows the 18
FIG. 5 is a characteristic diagram showing the relationship between five hours and oral flux. 1...Culture tank, 2...Culture solution, 3...Thermostat, 4
, 7... Piping, 5... Pump, 6.16.18...
・Pole valve, 8...flow 1 meter, 9...inlet piping,
DESCRIPTION OF SYMBOLS 10... Filter case, 11... Ceramic filter, 12... Mouth filtration liquid, 13.22... Solenoid valve, 14... Mouth filtration liquid piping, 15... Mouth filtration tank, 17・
...Outlet piping, 19...Bypass piping, 20.21.
... Pressure gauge, 23 ... Gas supply piping, 24 ... Liquid level gauge, 25 ... Pump, 26 ... Culture medium supply tank, 31 ...
... Ceramic filter, 32... Filter body, 33... Ceramic seal, 34... Passing hole. Applicant's agent Patent attorney Takehiko Suzue H: HindII+ R: Eco RT 7t3FEJ Figure 4 4 steps fl (hr) F 5 mouths

Claims (2)

【特許請求の範囲】[Claims] (1)酵素遺伝子及びアポリプレッサーを生成する調節
遺伝子を導入した宿主菌を、コリプレッサーを含む培地
を用いて酵素生成を抑制した状態で培養した後、培養液
から前記コリプレッサーを除去するとともに、コリプレ
ッサーを含まない培地を用いて培養し、酵素を生産させ
ることを特徴とする遺伝子組み換え菌による酵素生産方
法。
(1) After culturing a host bacterium into which an enzyme gene and a regulatory gene for producing apolipressor have been introduced in a state in which enzyme production is suppressed using a medium containing a corepressor, the corepressor is removed from the culture solution, and A method for producing an enzyme using a genetically modified bacterium, which is characterized by producing the enzyme by culturing it in a medium that does not contain a corepressor.
(2)酵素遺伝子及びアポリプレッサーを生成する調節
遺伝子を導入した宿主菌を、コリプレッサーを含む培地
を用いて培養する培養槽と、該培養槽内の培養液を通過
させて前記コリプレッサーを除去する筒状のフィルター
と、培養液を前記培養槽からフィルターを通過させて循
環させる循環系と、前記培養槽にコリプレッサーを含ま
ない培地を供給する培地供給槽とを具備したことを特徴
とする酵素生産装置。
(2) A culture tank in which a host bacterium into which an enzyme gene and a regulatory gene that produces apolipressor has been introduced is cultured using a medium containing a corepressor, and a culture solution in the culture tank is passed through to remove the corepressor. A cylindrical filter, a circulation system that circulates the culture solution from the culture tank through the filter, and a medium supply tank that supplies a corepressor-free medium to the culture tank. Enzyme production equipment.
JP61067907A 1986-03-26 1986-03-26 Enzyme production equipment using genetically modified bacteria Expired - Lifetime JPH0775536B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61067907A JPH0775536B2 (en) 1986-03-26 1986-03-26 Enzyme production equipment using genetically modified bacteria
GB8707130A GB2188324B (en) 1986-03-26 1987-03-25 Process for enzyme production with bacterium harboring recombinant plasmids.
AU70659/87A AU600710B2 (en) 1986-03-26 1987-03-26 Process and apparatus for enzyme production with the bacterium harboring recombinant plasmids
DE19873744928 DE3744928C2 (en) 1986-03-26 1987-03-26 Enzyme prodn. using bacterium contg. recombinant plasmids - using a host contg. enzyme genes and a control gene forming an apo-repressor
DE19873709959 DE3709959A1 (en) 1986-03-26 1987-03-26 METHOD AND DEVICE FOR PRODUCING ENZYMS WITH A RECOMBINANT PLASMIDE-CONTAINING BACTERIUM
GB8929030A GB2225789B (en) 1986-03-26 1989-12-22 Culture apparatus for enzyme production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067907A JPH0775536B2 (en) 1986-03-26 1986-03-26 Enzyme production equipment using genetically modified bacteria

Publications (2)

Publication Number Publication Date
JPS62224286A true JPS62224286A (en) 1987-10-02
JPH0775536B2 JPH0775536B2 (en) 1995-08-16

Family

ID=13358439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067907A Expired - Lifetime JPH0775536B2 (en) 1986-03-26 1986-03-26 Enzyme production equipment using genetically modified bacteria

Country Status (4)

Country Link
JP (1) JPH0775536B2 (en)
AU (1) AU600710B2 (en)
DE (1) DE3709959A1 (en)
GB (2) GB2188324B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863617A (en) * 1987-12-04 1989-09-05 Toshiba Ceramics Co., Ltd. Process and apparatus for separating solid-liquid compositions
JP2015530110A (en) * 2012-09-27 2015-10-15 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Tangential flow perfusion system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO305845B1 (en) 1997-12-09 1999-08-02 Kongsberg Offshore As Anchoring mechanism for a guide post
CN106497765B (en) * 2016-11-24 2019-02-19 涡阳县华夏气体有限公司 A kind of refined filtration equipment of industrial enzyme preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141796A (en) * 1982-02-18 1983-08-23 Kyowa Hakko Kogyo Co Ltd Preparation of peptide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA811368B (en) * 1980-03-24 1982-04-28 Genentech Inc Bacterial polypedtide expression employing tryptophan promoter-operator
CA1338664C (en) * 1985-04-10 1996-10-22 Cetus Oncology Corporation Recombinant hosts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141796A (en) * 1982-02-18 1983-08-23 Kyowa Hakko Kogyo Co Ltd Preparation of peptide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863617A (en) * 1987-12-04 1989-09-05 Toshiba Ceramics Co., Ltd. Process and apparatus for separating solid-liquid compositions
JP2015530110A (en) * 2012-09-27 2015-10-15 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Tangential flow perfusion system

Also Published As

Publication number Publication date
DE3709959C2 (en) 1991-04-25
AU600710B2 (en) 1990-08-23
JPH0775536B2 (en) 1995-08-16
GB2188324A (en) 1987-09-30
DE3709959A1 (en) 1987-10-08
GB2188324B (en) 1990-12-05
GB8929030D0 (en) 1990-02-28
GB2225789A (en) 1990-06-13
GB2225789B (en) 1990-09-12
GB8707130D0 (en) 1987-04-29
AU7065987A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
Shimizu et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment
JP3674705B2 (en) Method for determining the occurrence of instability of dissolved oxygen in bacterial cell culture and fermenter used in the method
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
JPS62500356A (en) Hollow fiber culture device and operating method with improved nutrient perfusion and product concentration
Matsumoto et al. Cross-flow filtration of yeast by microporous ceramic membrane with backwashing
EP0196061B1 (en) Method of controlling culture and apparatus therefor
CA2675183C (en) Apparatus and methods for osmotically shocking cells
JP5989742B2 (en) Method for controlling pH of liquid composition and target ion level
JPH022336A (en) Continuous equipment of cell dispersion, culture and mass recovery
EP1907543A1 (en) Production of recombinant products using capillary membranes
JPS62224286A (en) Method for producing enzyme by gene recombination mold and device therefor
CN206418113U (en) A kind of biological Membrance cuiture analogue reactor of water supply line
JPS6287086A (en) Cultivation of genetic recombinant cell
JP2003510042A (en) Cell culture method, membrane module, use of membrane module and reaction system for cell culture
US4948736A (en) Continuous microorganism cultivating apparatus
JPS61192280A (en) Apparatus for continuous cultivation of microorganism
JPS62138184A (en) Apparatus for continuous culture of microorganism
JPS60259179A (en) Cell culture tank and cell culture method
JP2521102B2 (en) ▲ Ro ▼ Production method of useful gene product by overculture
JPS63237780A (en) Filtration of bacillus subtilis
JPH02200176A (en) Cell culture method and system therefor
JPH0787774B2 (en) Bioreactor for adhesion-dependent cells
JPS60137276A (en) Continuous brewing of vinegar
JPS61227779A (en) Perfusion culture process
WO2021198281A1 (en) Methods for producing plasmid dna