JPS62223828A - Optical disk and its production - Google Patents

Optical disk and its production

Info

Publication number
JPS62223828A
JPS62223828A JP61065842A JP6584286A JPS62223828A JP S62223828 A JPS62223828 A JP S62223828A JP 61065842 A JP61065842 A JP 61065842A JP 6584286 A JP6584286 A JP 6584286A JP S62223828 A JPS62223828 A JP S62223828A
Authority
JP
Japan
Prior art keywords
glass substrate
photosensitive glass
substrate
optical
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065842A
Other languages
Japanese (ja)
Inventor
Masao Inoue
正夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61065842A priority Critical patent/JPS62223828A/en
Publication of JPS62223828A publication Critical patent/JPS62223828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical disk having high-density guide grooves which are extremely stable by providing a heat resistant substrate, a guide substrate which is disposed on the main plane of the heat resistant substrate and has optical guides and a recording layer which is disposed on the guide substrate. CONSTITUTION:The essential component of the photosensitive glass substrate 1 is silicate glass and is added with a slight amt. of metal such as Au, Ag or Cu and reducing agent such as CeO2 or Sb2O3 ad additives (metallic ions and sensitizer). The part irradiated with UV rays is, therefore, colored to have permanence. The optical disk is, thereupon, made usable in place of guide grooves by using the difference in reflectivity between the colored part and the uncolored part. The optical guides (black part and white part) are thereby easily formed at a high density while the high reliability is maintained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は光デスクに係り、特、−その案内溝に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) TECHNICAL FIELD The present invention relates to an optical disk, and more particularly to a guide groove thereof.

(従来の技術) 一般に光デスクは高密度記録媒体であり、磁気デスクに
比べて2乃至3桁の記録密度を有する。
(Prior Art) Generally, an optical disk is a high-density recording medium, and has a recording density two to three orders of magnitude higher than that of a magnetic disk.

この様に光デスクが高記録密度である理由は、約800
nmのレーザ光を約1声φに焦点をしぼり、非接触で1
〜ラツキングサーボをかけることにより。
The reason why optical disks have such a high recording density is that approximately 800
Focus the laser beam of nm to about 1 tone φ and generate 1 without contact.
~By applying a rattukking servo.

トラック(track)密度が高密度化されることにあ
る。
The goal is to increase track density.

この光デスクの一般的基本構成は、基板上に案内溝を形
成し、この案内溝上に記録膜を形成後、保獲膜および反
射膜を形成することよりなる。
The general basic structure of this optical disk consists of forming a guide groove on a substrate, forming a recording film on the guide groove, and then forming a retention film and a reflective film.

ところで、一般に案内溝を形成する基板としては、射出
成形性が良好なアクリル樹脂等からなる基板が用いられ
る。
Incidentally, as a substrate for forming the guide groove, a substrate made of acrylic resin or the like having good injection moldability is generally used.

しかしながら、この基板は光学特性である複屈折が30
乃至40nmであり、本来所望する20nm以下よりも
大である。
However, this substrate has an optical property of birefringence of 30
The thickness is from 40 nm to 40 nm, which is larger than the originally desired value of 20 nm or less.

この原因は射出成形時に加わる熱による熱ストレスにあ
る。このように複屈折率が大きいと解像度が劣化する。
The cause of this is thermal stress due to heat applied during injection molding. When the birefringence is large as described above, resolution deteriorates.

また、この様な基板はその材質上吸水率(0,3%前後
)、膨張係数が天笠製造工程上また記録膜形成上問題が
大きい。
In addition, such a substrate has a water absorption rate (approximately 0.3%) and an expansion coefficient due to its material, which poses serious problems in terms of the Amagasa manufacturing process and recording film formation.

そこで、この問題を解決するため、ガラス基板を用いた
光デスクがあるが、案内溝をどのように形成するかが問
題となる。通常この案内溝を形成する方法は、ホトポリ
マー(Photo Polymer)方式(以下2P方
式と称す)とホト・エングレービイングφプロセス(P
hoto Engravir+g Process)方
式(以下PEP方式と称す)とがある。
To solve this problem, there is an optical desk using a glass substrate, but the problem is how to form the guide grooves. Generally, the methods for forming this guide groove include the photo polymer method (hereinafter referred to as the 2P method) and the photo engraving φ process (P
There is a PEP method (hereinafter referred to as PEP method).

次に2P方式を説明する。すなわち、スタンパ−に光感
光性樹脂例えばアクリルのモノマーを塗布し、被転写基
板例えばプラスチックやガラス基板へ圧着し、これら(
プラスチックやガラス基板)を介して、紫外線を照射す
る。この紫外線照射により、アクリルのモノマーは、光
化学反応によりポリマーとなり硬化する。七つ後、スタ
ンパ−をアクリルのポリマーから剥離することにより、
案内溝付基板が形成できる。しかしながら、2P方式に
おいては量産性に問題がある。その上、アクリルのモノ
マーからポリマーに変化しない未反応物が案内溝上に残
留することにより、案内溝の本来の機能が働かない問題
がある。
Next, the 2P method will be explained. That is, a photosensitive resin such as an acrylic monomer is coated on a stamper, and the stamper is pressed onto a substrate to be transferred such as a plastic or glass substrate.
Ultraviolet rays are irradiated through the plastic or glass substrate. By this ultraviolet irradiation, the acrylic monomer becomes a polymer through a photochemical reaction and is cured. After seven steps, by peeling the stamper from the acrylic polymer,
A substrate with guide grooves can be formed. However, the 2P method has problems with mass production. Furthermore, there is a problem in that unreacted materials that do not change from acrylic monomers to polymers remain on the guide grooves, preventing the guide grooves from functioning as intended.

次にPEP方式について説明する。ガラス基板等へレジ
ストを塗布し、前加熱(Pre Bake) L/、そ
の後マスクを用いて直接接触法(Contact)、近
接接触法(Proximity)、反射投影法(Pro
jectionMirros A]、1nes)のいず
れかを用いて露光し、現像する。その後、後加熱(Po
st Bake) L/、エツチング(ウェットでもド
ライでも可)を行なう。この後、レジストを剥離すると
グループ付基板が作成できる。
Next, the PEP method will be explained. A resist is applied to a glass substrate, etc., and then pre-heated (Pre Bake), followed by direct contact method (Contact), proximity contact method (Proximity), and reflection projection method (Pro) using a mask.
The film is exposed to light using one of the following methods: Mirros A], 1nes) and developed. After that, post-heating (Po
ST Bake) L/, perform etching (wet or dry is possible). After this, by peeling off the resist, a substrate with groups can be created.

しかしながら、直接接触法を用いた露光においては、1
.6μsピツチのパターンは可能であるが、レジストに
よるマスク汚れが発生し、この汚れたマスクは使用がで
きないため、マスクの繰返し使用は極めて困難である。
However, in exposure using the direct contact method, 1
.. Although a pattern with a pitch of 6 μs is possible, it is extremely difficult to use the mask repeatedly because the resist stains the mask and the dirty mask cannot be used.

また、近接接触法あるいは反射投影法では、せいぜい3
AII11ピツチのパターンを作成することが限度であ
る。したがって、この2つの方法は、記録密度上難点が
あるばかりでなく、全数検査を必要とする等の難点があ
る。
In addition, in the close contact method or reflection projection method, at most 3
The limit is to create a pattern with AII pitch of 11. Therefore, these two methods not only have drawbacks in terms of recording density, but also have drawbacks such as requiring 100% inspection.

したがって、PEP方式で案内溝を形成することは、工
程数が増える上、所望のパターンを量産的に安定して得
ることは不可能である。
Therefore, forming guide grooves using the PEP method increases the number of steps, and it is impossible to stably obtain a desired pattern in mass production.

(発明が解決しようとする問題点) 従来方式では、複屈折が小さく吸収率が小さくかつ高密
度な案内溝を形成することが困難である。
(Problems to be Solved by the Invention) In the conventional method, it is difficult to form guide grooves with low birefringence, low absorption, and high density.

そこで本発明では、極めて安定した高密度な案内溝を有
する光デスクおよ−びその製造方法を提供することを目
的とする。
Therefore, an object of the present invention is to provide an optical disk having extremely stable and high-density guide grooves, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の光デスクは、上述の問題点を鑑みてなされたも
のであり、その基本構成は、耐熱性基体と、この耐熱性
基体の一主面上に配置されかつ光案内ガイドを備えた感
光性ガラス基体と、この感光性ガラス基体上に配置され
た記録層とを少なくとも具備することを特徴とする。
(Means for Solving the Problems) The optical desk of the present invention has been made in view of the above-mentioned problems, and its basic configuration includes a heat-resistant base and a main surface of the heat-resistant base. It is characterized in that it comprises at least a photosensitive glass substrate arranged and provided with a light guiding guide, and a recording layer arranged on the photosensitive glass substrate.

また、本発明の光デスクの製造方法は、耐熱性基体の一
主面上に感光性ガラス基体を配置する第1の工程と、こ
の感光性ガラス基体の一主面上に光案内ガイドを形成す
る第2の工程と、この感光性ガラス基体の一主面上に記
録層を配置する第3の工程とを少なくとも備えたことを
特徴としている。
Further, the method for manufacturing an optical desk of the present invention includes a first step of arranging a photosensitive glass substrate on one principal surface of a heat-resistant substrate, and forming a light guide on one principal surface of the photosensitive glass substrate. The method is characterized by comprising at least a second step of arranging a recording layer on one main surface of the photosensitive glass substrate.

(作用) 本発明の光デスクは次の作用を用いて本発明の目的であ
る高密度な案内溝の作成を達成している。
(Function) The optical disk of the present invention achieves the creation of high-density guide grooves, which is the object of the present invention, by using the following function.

すなわち、本発明の光デスクの感光性ガラス基体は、一
般に金属イオンを増感剤と共に加え溶解した珪酸塩ガラ
スである。金属イオンおよび増感剤として、微量のAu
、Ag、またはCuの貴金属とCaO□の様な還元剤を
加えることにより、紫外線等の照射により感光し、加熱
すると感光ガラス基板は着色する。
That is, the photosensitive glass substrate of the optical disk of the present invention is generally a silicate glass in which metal ions are added and dissolved together with a sensitizer. Trace amounts of Au as metal ions and sensitizers
By adding a noble metal such as , Ag, or Cu and a reducing agent such as CaO□, the photosensitive glass substrate is sensitized by irradiation with ultraviolet rays or the like and colored when heated.

したがって、感光ガラス基板面にマスクを当てて、露光
すれば、そのパターンが感光ガラスμ内に再生される。
Therefore, by applying a mask to the surface of the photosensitive glass substrate and exposing it to light, the pattern is reproduced in the photosensitive glass μ.

また、この露光により着色した部分は永久性を有してい
る。そこで着色した部分と着色しなかった部分との反射
率の差を用いて、これを案内溝の代りすなわち光案内ガ
イドとして使うことができる。また、露光しなかった部
分に比べて露光した部分は弗酸系溶液に良く溶けるため
Furthermore, the portion colored by this exposure is permanent. Therefore, by using the difference in reflectance between the colored portion and the uncolored portion, this can be used in place of the guide groove, that is, as a light guiding guide. Also, the exposed areas are more soluble in hydrofluoric acid solutions than the unexposed areas.

この酸に浸して露光現像部分を溶かすことによって、所
望の案内溝を作成することもできる。
Desired guide grooves can also be created by dipping in this acid to dissolve the exposed and developed portions.

(実施例) 以下、本発明の光デスクの一実施例について第1図を参
照して説明する。
(Example) Hereinafter, an example of the optical desk of the present invention will be described with reference to FIG.

第1図において、外径が130e+φ、内径が15nm
φ、厚さが1.2anの化学強化ガラス基板■の片面に
感光性ガラス■1500人をマグネトロンスパッターで
付着させる。この後、1.6/jflIピツチのら線状
パターンのハード(Hard)を、このスパッターによ
り形成された感光性ガラス0面に密着させ、超高圧水銀
灯を用いて紫外線露光する。しかる後に、このガラス基
板■を600℃に加熱する。これにより、感光性ガラス
■に紫外線露光された部分は着色(第1図中黒い部分で
示す)され、また紫外線露光されなかった部分は無着色
(第1図中、白い部分で示す)となる。
In Figure 1, the outer diameter is 130e+φ and the inner diameter is 15nm.
1,500 sheets of photosensitive glass (2) were attached to one side of a chemically strengthened glass substrate (2) with a diameter of 1.2 nm and a thickness of 1.2 by magnetron sputtering. Thereafter, a hard film having a spiral pattern of 1.6/jflI pitch is brought into close contact with the surface of the photosensitive glass formed by this sputtering, and exposed to ultraviolet light using an ultra-high pressure mercury lamp. Thereafter, this glass substrate (2) is heated to 600°C. As a result, the parts of the photosensitive glass ■ that were exposed to ultraviolet light become colored (shown as black parts in Figure 1), and the parts that were not exposed to UV light become uncolored (shown as white parts in Figure 1). .

その後、このガラス基板■をスパッタリング装置へ搬入
し、装置内から排気後、感光性ガラス■面に5L3N4
を1000人、 TbCoを500人、5L3Nnを1
000人。
After that, this glass substrate (■) was carried into a sputtering device, and after exhausting the inside of the device, 5L3N4 was applied to the surface of the photosensitive glass (■).
1000 people, 500 people TbCo, 1 person 5L3Nn
000 people.

AQを1000人順次マグネトロンスパッターし、記録
膜(3)を形成する。
AQ was sequentially magnetron sputtered by 1000 people to form a recording film (3).

上述の様にして、光デスクを完成させる。この様にする
ことにより、(作用)の項で述べた如く、この感光性ガ
ラス基板■は、主成分が珪酸塩ガラスで、添加物(金属
イオンおよび増感剤)として微量のAu、 Ag、また
はCuの金属と、 CeO,またはsb、 o3 の様
な還元剤が加わっている。このため、紫外線照射された
部分は着色し永久性を有することとなる。そこで、第1
図に示す光デスクは、着色した部分としなかった部分と
の反射率の差を用いて、案内溝の代りとして使用ができ
ることとなる。このため、従来の光デスクに比較すると
、光案内ガイド(第1図中黒い部分と白い部分を示す)
(ト)上に、この記録膜■を保晃するために、ガラス基
板等で保護するカバーを形成しても良い。また、その際
、ガラス基板間には、金属部材等で密封しても良い。
Complete the optical desk as described above. By doing this, as mentioned in the (effect) section, this photosensitive glass substrate (2) consists mainly of silicate glass, with trace amounts of Au, Ag, and additives (metal ions and sensitizers). Alternatively, Cu metal and a reducing agent such as CeO, SB, or O3 are added. Therefore, the part irradiated with ultraviolet rays is colored and becomes permanent. Therefore, the first
The optical disk shown in the figure can be used in place of a guide groove by using the difference in reflectance between colored and uncolored parts. For this reason, compared to a conventional optical desk, the light guide (black and white parts shown in Figure 1)
(G) In order to protect this recording film (2), a protective cover may be formed with a glass substrate or the like. Further, in this case, the space between the glass substrates may be sealed with a metal member or the like.

次に、第2図を参照して本発明の光デスクの他の実施例
を説明する。
Next, another embodiment of the optical desk of the present invention will be described with reference to FIG.

第2図において、外径が130mmφ、内径が15n+
mφ、厚さが1.2anの化学強化ガラス基板(1)の
片面に感光性ガラス■1500人をマグネ1〜ロンスパ
ツターで付着させる。この後、1.6pピツチのら線状
パターンのハード(Hard)マスクを、このスパッタ
ーにより形成された感光性ガラス■面に密着させ。
In Figure 2, the outer diameter is 130mmφ and the inner diameter is 15n+.
1,500 pieces of photosensitive glass (1) was attached to one side of a chemically strengthened glass substrate (1) having mφ and a thickness of 1.2 ann using a magnet 1-ron sputter. Thereafter, a hard mask with a spiral pattern of 1.6p pitch was brought into close contact with the surface of the photosensitive glass formed by this sputtering.

超高圧水銀灯を用いて紫外線露光する。しかる後に、こ
のガラス基板(1)を600℃に加熱する。
Expose to ultraviolet light using an ultra-high pressure mercury lamp. Thereafter, this glass substrate (1) is heated to 600°C.

これにより、紫外線で露光されなかった部分は、露光し
た部分に比べて、弗酸系溶液に良く溶けるため、この酸
に浸して露光現像部分を溶かすことによって、所望の案
内ガイドとしてのグループを形成する。具体的には、 
HF−NH4F溶液を感光性ガラ30面上にスプレーし
、0.1μmの深さのグループが形成される。
As a result, the parts that have not been exposed to ultraviolet light are more soluble in the hydrofluoric acid solution than the exposed parts, so by soaking them in this acid and dissolving the exposed and developed parts, a group can be formed as a desired guide. do. in particular,
The HF-NH4F solution is sprayed onto the surface of the photosensitive glass 30 to form groups with a depth of 0.1 μm.

その後5このガラス基板■をスパッタリング装置へ搬入
し、装置内から排気後、感光性ガラス2面にSi3N4
を1000人、 Tb−Fe−Coを400人、 51
3N4  を1000人、 AQを1000人順次マグ
ネトロンスパッターし、記録膜■を形成する。
After that, 5 this glass substrate (■) was carried into a sputtering device, and after exhausting the inside of the device, Si3N4 was applied to two sides of the photosensitive glass.
1000 people, Tb-Fe-Co 400 people, 51
1000 3N4 and 1000 AQ were sequentially magnetron sputtered to form a recording film (2).

次に、再び第1図を参照して本発明の光デスクの他の実
施例を説明する。
Next, referring again to FIG. 1, another embodiment of the optical desk of the present invention will be described.

第1図において、外径が130mnφ、内径が15mm
φ、厚さ1.2mmのガラス基板■の片面に感光性ガラ
ス■を500人の厚さに真空蒸着法を用いて耐着形成す
る6その後に、2.07mのピッチの同心円状のパター
ンのハード・マスク(t(ard Mask)を感光性
ガラス(2)面に例えば約10tiJI+の空隙を設け
て近接密着させ、高圧水銀灯を用いて紫外線照射させる
In Figure 1, the outer diameter is 130mmφ and the inner diameter is 15mm.
φ, 1.2 mm thick glass substrate ■ is coated with photosensitive glass ■ on one side to a thickness of 500 mm using vacuum evaporation method 6 After that, a concentric pattern with a pitch of 2.07 m is formed. A hard mask (t(ard mask)) is brought into close contact with the surface of the photosensitive glass (2) with a gap of, for example, about 10tiJI+, and is irradiated with ultraviolet rays using a high-pressure mercury lamp.

しかる後に550℃で加熱する。このようにすると。Thereafter, it is heated at 550°C. If you do it like this.

紫外線照射が行なわれた部分と行なわれなかった部分と
のレーザ光(約8000人)の反射率の差すなわち着色
の有無の反射率の差により、トラックまたはフォーママ
ットを検出することは、第1図に示す実施例と同等に容
易である。
The first step is to detect a track or format based on the difference in the reflectance of the laser beam (approximately 8,000 people) between the area where ultraviolet rays were irradiated and the area where it was not. It is as simple as the embodiment shown in the figure.

この後の方法は、第2図に示す他の実施例と同じである
The subsequent method is the same as the other embodiment shown in FIG.

次に、本発明の光デスクの他の実施例を、第1図を参照
して説明する。
Next, another embodiment of the optical desk of the present invention will be described with reference to FIG.

第1図において、外径が130■φ、内径が15mwn
φ、厚さが1.2画のガラス基板■の片面に感光性ガラ
ス■を5000人の厚さにマグネトロンスパッターで耐
着させる。その後、2.0μsピツチのら線状パターン
のハードマスク(Hard Mask)をこの感光性ガ
ラス2面に密着させ、高圧水銀灯により、紫外線を照射
後、約550℃に加熱し、紫外線を照射が行なわれた部
分と行なわれなかった部分とのレーザ光(約8000人
)の反射率の差すなわち着色の有無の反射率の差により
、トラックまたはフォーママットを検出することが容易
となる。
In Figure 1, the outer diameter is 130■φ and the inner diameter is 15mwn.
Photosensitive glass (■) is adhered to one side of a glass substrate (■) with a diameter of 1.2 strokes and a thickness of 1.2 by magnetron sputtering to a thickness of 5000 mm. After that, a hard mask with a 2.0 μs pitch spiral pattern was brought into close contact with the two sides of the photosensitive glass, and after being irradiated with ultraviolet rays using a high-pressure mercury lamp, the glass was heated to approximately 550°C and irradiated with ultraviolet rays. The difference in the reflectance of the laser beam (approximately 8,000 people) between the portion where the coloring was performed and the portion where the coloring was not performed, that is, the difference in the reflectance between the presence and absence of coloring, makes it easy to detect the track or format.

しかる後、スパッタ装置にこのガラス基板■を搬入して
、この感光ガラス0面にArとCH4との混合ガス雰囲
気中でTeをスパッターし、TeCを1000人附着後
2AQを1000人積層マサる。これにより、DRAW
(Direct Read After Write)
型光デスクが作成できる。
Thereafter, this glass substrate (1) is carried into a sputtering apparatus, and Te is sputtered on the 0th surface of this photosensitive glass in a mixed gas atmosphere of Ar and CH4, and 1000 people of TeC are deposited, followed by lamination and massaging of 2AQ by 1000 people. This allows DRAW
(Direct Read After Write)
You can create a mold light desk.

なお、実施例においては紫外線感光性ガラスを用いたが
、本発明の光デスクはこれに限らずX線感光性ガラス等
でも良い。また、感光性ガラスの厚さは、通常λ/4n
(n:屈折率、λ:波長)であれば所望の目的を有する
。このλ/4nは通常100Å以上である。さらに、紫
外線等の露光加熱現像した感光性ガラスにおいて、着色
した部分とそうでない部分との反射率の差を利用する場
合、あまりこの感光性ガラスが茫いと光出力差がとれず
、また極度に厚いと真空着膜法では時間を要する関係上
、 10000人 より大きい厚さけ不要である。また
1 0000人 より厚い感光性ガラスの場合は、紫外
線によるまわりこみが発生し、良好なパターンが得にく
くなる欠点をも有する。したがって感光性ガラスの厚さ
は、実質的に100人乃至10000人の範囲にあれば
良い。また、この感光性ガラスの厚さは実質的に500
人乃至3000人の範囲にあれば、その特性は一段と良
い。
Although ultraviolet-sensitive glass was used in the embodiment, the optical desk of the present invention is not limited to this, and may be made of X-ray-sensitive glass or the like. In addition, the thickness of photosensitive glass is usually λ/4n
(n: refractive index, λ: wavelength) has the desired purpose. This λ/4n is usually 100 Å or more. Furthermore, when utilizing the difference in reflectance between colored and non-colored parts of photosensitive glass that has been exposed to ultraviolet light and developed, it is difficult to maintain the difference in light output as the photosensitive glass is dazzling. If the thickness is too thick, the vacuum deposition method will take time, so there is no need for a thickness greater than 10,000. Furthermore, in the case of photosensitive glass thicker than 10,000 wafers, it has the disadvantage that ultraviolet light wraps around the glass, making it difficult to obtain a good pattern. Therefore, the thickness of the photosensitive glass may be substantially in the range of 100 to 10,000. Moreover, the thickness of this photosensitive glass is substantially 500 mm.
If it is in the range of 3,000 people to 3,000 people, its characteristics are even better.

〔発明の効果〕 上述の構成をとることにより、本発明の光デスクおよび
その製造方法では、極めて密度の高いピッチのパターン
で光案内ガイドを、従来の方法よりも簡易に作成できる
効果がある。
[Effects of the Invention] By employing the above-described configuration, the optical desk and the manufacturing method thereof of the present invention have the effect that a light guiding guide can be created with an extremely dense pitch pattern more easily than the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光デスクの一実施例を示す簡略図、第
2図は本発明の光デスクの他の実施例を示す簡略図であ
る。 ■・・・ガラス基板 ■・・・感光性ガラス ■・・・記録膜 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第  l 図 第  2 図 手続補正書(自制 昭和 672.九  日
FIG. 1 is a simplified diagram showing one embodiment of the optical desk of the present invention, and FIG. 2 is a simplified diagram showing another embodiment of the optical desk of the present invention. ■...Glass substrate■...Photosensitive glass■...Recording film Agent Patent attorney Norio Chika Ken Yudo Ogo Norio No. l Figure 2 Procedural amendment (self-restraint Showa 672.9 days)

Claims (8)

【特許請求の範囲】[Claims] (1)耐熱性基体と、 この耐熱性基体の一主面上に配置されかつ光案内ガイド
を備えた感光性ガラス基体と、 この感光性ガラス基体上に配置された、記録層とを少な
くとも具備したことを特徴とする光デスク。
(1) Comprising at least a heat-resistant substrate, a photosensitive glass substrate disposed on one main surface of the heat-resistant substrate and provided with a light guide, and a recording layer disposed on the photosensitive glass substrate. A light desk that is characterized by:
(2)前記耐熱性基体は、ガラスからなることを特徴と
する特許請求の範囲第1項記載の光デスク。
(2) The optical desk according to claim 1, wherein the heat-resistant substrate is made of glass.
(3)前記感光性ガラス基体は、主成分が珪酸塩ガラス
からなり、かつ添加物として金属イオンまたは増感剤の
少なくとも一方が附加されたことを特徴とする特許請求
の範囲第1項記載の光デスク。
(3) The photosensitive glass substrate is characterized in that the main component thereof is silicate glass, and that at least one of metal ions and a sensitizer is added as an additive. light desk.
(4)前記感光性ガラス基体の厚さは、実質的に100
Å乃至10000Åの範囲にあることを特徴とする特許
請求の範囲第1項記載の光デスク。
(4) The thickness of the photosensitive glass substrate is substantially 100 mm.
The optical desk according to claim 1, characterized in that the optical disk has a thickness in the range of Å to 10,000 Å.
(5)前記感光性ガラス基体の厚さは、特に500Å乃
至3000Åの範囲にあることを特徴とする特許請求の
範囲第4項記載の光デスク。
(5) An optical desk according to claim 4, characterized in that the thickness of the photosensitive glass substrate is particularly in the range of 500 Å to 3000 Å.
(6)耐熱性基体の一主面上に感光性ガラス基体を配置
する第1の工程と、 この感光性ガラス基体の一主面上に光案内ガイドを形成
する第2の工程と、 この感光性ガラス基体の一主面上に記録層を配置する第
3の工程とを少なくとも備えたことを特徴とする光デス
クの製造方法。
(6) a first step of arranging a photosensitive glass substrate on one principal surface of the heat-resistant substrate; a second step of forming a light guide on one principal surface of the photosensitive glass substrate; 1. A method for manufacturing an optical disk, comprising at least a third step of arranging a recording layer on one principal surface of a transparent glass substrate.
(7)前記第2の工程は、前記感光性ガラス基体の一主
面上に所定のパターンが形成されたマスクを介して露光
し、その後前記感光性ガラス基体の一主面を加熱し露光
部分を着色することにより光案内ガイドを形成する工程
であることを特徴とする特許請求の範囲第6項記載の光
デスクの製造方法。
(7) In the second step, one principal surface of the photosensitive glass substrate is exposed to light through a mask in which a predetermined pattern is formed, and then one principal surface of the photosensitive glass substrate is heated to expose the exposed portion. 7. The method of manufacturing an optical desk according to claim 6, characterized in that the step is to form a light guide by coloring.
(8)前記第2の工程は、前記感光性ガラス基体の一主
面上に所定のパターンが形成されたマスクを介して露光
し、その後エッチング技術により光案内ガイドを形成す
る工程であることを特徴とする特許請求の範囲第6項記
載の光デスクの製造方法。
(8) The second step is a step of exposing one principal surface of the photosensitive glass substrate to light through a mask in which a predetermined pattern is formed, and then forming a light guide using an etching technique. A method for manufacturing an optical desk according to claim 6.
JP61065842A 1986-03-26 1986-03-26 Optical disk and its production Pending JPS62223828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065842A JPS62223828A (en) 1986-03-26 1986-03-26 Optical disk and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065842A JPS62223828A (en) 1986-03-26 1986-03-26 Optical disk and its production

Publications (1)

Publication Number Publication Date
JPS62223828A true JPS62223828A (en) 1987-10-01

Family

ID=13298668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065842A Pending JPS62223828A (en) 1986-03-26 1986-03-26 Optical disk and its production

Country Status (1)

Country Link
JP (1) JPS62223828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224950A (en) * 1988-03-04 1989-09-07 Fuji Xerox Co Ltd Manufacture of optical recording medium
US4979975A (en) * 1989-08-07 1990-12-25 Corning Incorporated Fast response photosensitive opal glasses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224950A (en) * 1988-03-04 1989-09-07 Fuji Xerox Co Ltd Manufacture of optical recording medium
US4979975A (en) * 1989-08-07 1990-12-25 Corning Incorporated Fast response photosensitive opal glasses

Similar Documents

Publication Publication Date Title
US4735878A (en) Optically read recording medium and method for making same
US4629668A (en) Optically read recording medium and method for making same
JPS6356830A (en) Production of optical disk with guide groove
JPS62223828A (en) Optical disk and its production
JPS6034171B2 (en) Video disk master using optical recording method
JP2708847B2 (en) Optical disk stamper and method of manufacturing the same
GB2080560A (en) Optical information record members
JPH06201906A (en) Light reflector, encoder and its production
EP0712531B1 (en) Recording master, and optically-readable data carrier derived therefrom
JPH05303776A (en) Magnetic optical disk and its production
JP3479413B2 (en) Method for manufacturing optical disk master, optical disk master, optical disk stamper, and method for manufacturing optical disk stamper
JPH05182259A (en) Stamper for optical disk and its manufacture
JPS61273760A (en) Manufacture of photomagnetic disk
JP3555249B2 (en) Blank master for optical disk, method of manufacturing stamper for optical disk, method of manufacturing optical disk
JPH0359493B2 (en)
JPH0359492B2 (en)
JPH0944900A (en) Optical disk and its production
JPS63230889A (en) Production of substrate
JPH0264942A (en) Production of glass master disk
JPH08235647A (en) Stamper for optical disk and its manufacture as well as manufacture of master disk for optical disk
JPH05101445A (en) Substrate for optical disk and production of the same
JPH07105080B2 (en) Method of manufacturing optical memory device
JPS61190732A (en) Optical recording medium
JPH04113885A (en) Optical information recording medium
JPS6266443A (en) Photomask for optical memory element