JPS62223505A - Boiler-load distribution controller - Google Patents

Boiler-load distribution controller

Info

Publication number
JPS62223505A
JPS62223505A JP6591586A JP6591586A JPS62223505A JP S62223505 A JPS62223505 A JP S62223505A JP 6591586 A JP6591586 A JP 6591586A JP 6591586 A JP6591586 A JP 6591586A JP S62223505 A JPS62223505 A JP S62223505A
Authority
JP
Japan
Prior art keywords
flow rate
steam flow
boiler
signal
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6591586A
Other languages
Japanese (ja)
Other versions
JPH0781684B2 (en
Inventor
広井 和男
白居 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61065915A priority Critical patent/JPH0781684B2/en
Publication of JPS62223505A publication Critical patent/JPS62223505A/en
Publication of JPH0781684B2 publication Critical patent/JPH0781684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、並列運転される複数のボイラの燃焼制御に利
用されるボイラ負荷配分シリ御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to an improvement of a boiler load distribution series control device used for combustion control of a plurality of boilers operated in parallel.

(従来の技術) 一般に、工場等で使用されるボイラシステムは複数のボ
イラが並列運転されており、蒸気の消費量に対応して良
好な効率が得られるようにボイラの大きさ等にしたがっ
て負荷配分比率を設定し、各ボイラはこの負荷配分比率
に基いて運転制御されるものとなっている。
(Conventional technology) Generally, boiler systems used in factories, etc. have multiple boilers operated in parallel, and the load is adjusted according to the size of the boiler in order to obtain good efficiency according to the amount of steam consumed. A distribution ratio is set, and the operation of each boiler is controlled based on this load distribution ratio.

第3図は並列運転される複数(n)台のボイラ11〜1
nに対する従来のボイラ負荷配分制御装置の構成を示す
系統図である。この装置は、各ボイラ11〜1nにそれ
ぞれ設けられた蒸気流量検出器21〜2nにより各ボイ
ラ11〜1nの発生蒸気流量を検出し、これら蒸気流量
検出器21〜2nの検出信号を第1の加算器3にて加算
した後、総蒸気流量信号として第2の加算器4に入力す
る。
Figure 3 shows a plurality (n) of boilers 11 to 1 operated in parallel.
FIG. 2 is a system diagram showing the configuration of a conventional boiler load distribution control device for n. This device detects the generated steam flow rate of each boiler 11-1n by steam flow rate detectors 21-2n provided in each boiler 11-1n, and converts the detection signals of these steam flow rate detectors 21-2n into a first After being added by the adder 3, the signals are input to the second adder 4 as a total steam flow rate signal.

一方、各ボイラ11〜1nが接続される共通の蒸気溜に
おける代表点の蒸気圧力を蒸気圧力検出器5により検出
し、検出信号を蒸気圧力調節手段6のフィードバック信
号として入力する。そして、所望の蒸気圧力設定値と比
較して実際の蒸気圧力が所望の蒸気圧力と一致するよう
に調節演算し、この蒸気圧力調節手段の出力信号を前記
第2の加算器4に導いて前記総蒸気流吊信号に加算する
On the other hand, a steam pressure detector 5 detects the steam pressure at a representative point in a common steam reservoir to which the boilers 11 to 1n are connected, and the detected signal is input as a feedback signal to the steam pressure regulating means 6. Then, the actual steam pressure is compared with the desired steam pressure setting value, and an adjustment operation is performed so that the actual steam pressure matches the desired steam pressure, and the output signal of this steam pressure adjusting means is guided to the second adder 4, and Add to total steam flow signal.

次いで、この第2の加算器4の出力信号を良好な効率が
得られるように負荷配分係数αl〜αnが設定される係
数手段71〜7nに導き、上記負荷配分係数α1〜αn
を乗じて各ボイラ11〜1nへの発生蒸気流量指令信号
を得、この指令信号を各ボイラ11〜1nに導いて燃焼
量を制御することにより、各ボイラ11〜1nの発生蒸
気流量を調節するものとなっている。
Next, the output signal of the second adder 4 is guided to the coefficient means 71 to 7n in which load distribution coefficients αl to αn are set so as to obtain good efficiency, and the load distribution coefficients α1 to αn are
The generated steam flow rate command signal to each boiler 11 to 1n is obtained by multiplying by It has become a thing.

しかるに、上述した従来の負荷配分制御装置においては
、並列運転している各ボイラ11〜1nの動特性や効率
の相違によって発生蒸気流量指令値に対しズレを生じる
ことがあり、負荷変化に対して正確に追従するのは困難
であった。すなわち、応答が早いボイラは発生蒸気流量
指令値に対して多くの蒸気を発生し、応答の遅いボイラ
は指令値に対して少ない蒸気を発生した状態で平衡する
However, in the conventional load distribution control device described above, a deviation may occur from the generated steam flow rate command value due to differences in the dynamic characteristics and efficiency of the boilers 11 to 1n operating in parallel, and the It was difficult to follow accurately. In other words, a boiler with a quick response generates a large amount of steam in response to the command value of the generated steam flow rate, and a boiler with a slow response generates a small amount of steam in response to the command value in equilibrium.

このため、たとえ効率が最高となるように発生蒸気流m
指令値を出力しても、この指令値に対するズレ分だけ効
率は低下していた。また、応答の早いボイラに対して発
生蒸気流m指令値が100%近傍の場合は、定格100
%を越えてオーバーロードを招くおそれがあった。
For this reason, even if the efficiency is maximized, the generated steam flow m
Even if a command value was output, efficiency was reduced by the amount of deviation from the command value. In addition, if the generated steam flow m command value is close to 100% for a boiler with a quick response, the rated 100%
There was a risk that it would exceed % and cause an overload.

一方、最近では第4図に示す如く各係数手段71〜7n
の出力をそれぞれ蒸気流量調節手段81〜8nのフィー
ドバック信号として入力し、前記蒸気流m検出器21〜
2nの検出出力と比較して調節演算し、その出力を発生
蒸気流量指令信号として各ボイラ11〜1nに導くこと
により各ボイラの蒸気発生量を調節する負荷配分制御装
置が提案されている。
On the other hand, recently, as shown in FIG.
are inputted as feedback signals to the steam flow rate adjusting means 81 to 8n, respectively, and the steam flow m detectors 21 to
A load distribution control device has been proposed which adjusts the amount of steam generated by each boiler by comparing it with the detected output of 2n and performing adjustment calculations, and guiding the output to each boiler 11 to 1n as a generated steam flow rate command signal.

しかるに、この装置においては、係数手段71〜7nの
出力を常に実発生蒸気邑に基いて調節しているので、ボ
イラ11〜1nの応答の遅れによる制御の行き過ぎ等に
より指令値は振動してしまい不安定となる。したがって
、前述した従来装置における問題点を何等解決するもの
ではなかった。
However, in this device, the outputs of the coefficient means 71 to 7n are always adjusted based on the actually generated steam, so the command value may oscillate due to excessive control due to a delay in the response of the boilers 11 to 1n. Becomes unstable. Therefore, it does not solve any of the problems in the conventional apparatus described above.

(発明が解決しようとする問題点) 本発明はこのような事情に基いてなされたものであり、
各ボイラに対する発生蒸気流量指令値にしたがって当該
ボイラを正確に追従制御でき、オーバーロードを招くお
それがなく、安全で高効率運転が可能なボイラ負荷配分
制御装置を提供することを目的とする。
(Problems to be solved by the invention) The present invention has been made based on the above circumstances,
It is an object of the present invention to provide a boiler load distribution control device that can accurately follow and control each boiler in accordance with a generated steam flow rate command value for each boiler, and that can perform safe and highly efficient operation without causing a risk of overload.

[発明の構成] (問題点を解決するための手段) 本発明は、上記問題点を解決し目的を達成するために、
並列運転される複数のボイラのそれぞれの実発生蒸気流
量を加算して得られるレベル信号と前記各ボイラにおけ
る代表点の蒸気圧力を所定値となるように制御する蒸気
圧力調節出力信号とを加算手段により加算合成し、この
加算手段の出力信号に所望の負荷配分係数を乗じること
により各ボイラの発生蒸気流m指令信号を算出すると共
に、この算出された発生蒸気流m指令信号を蒸気流m¥
J!4面手段の目標信号とし当該ボイラの実発生蒸気流
量信号をプロセス変数として調節演算を実行して蒸気流
量調節信号を出力し、この蒸気流量調節信号に基いて前
記発生蒸気流m指令信号を補正し、この補正された信号
に基いて当該ボイラの発生蒸気流量を追従制御するよう
にしたものである。
[Structure of the invention] (Means for solving the problems) In order to solve the above problems and achieve the purpose, the present invention has the following features:
Adding means for adding a level signal obtained by adding the actual steam flow rates of each of the plurality of boilers operated in parallel and a steam pressure adjustment output signal for controlling the steam pressure at a representative point in each of the boilers to a predetermined value. By multiplying the output signal of this adding means by a desired load distribution coefficient, the generated steam flow m command signal of each boiler is calculated, and this calculated generated steam flow m command signal is converted into the steam flow m\
J! A control operation is performed using the actual generated steam flow rate signal of the boiler as a process variable as the target signal of the four-sided means to output a steam flow rate adjustment signal, and based on this steam flow rate adjustment signal, the generated steam flow m command signal is corrected. Based on this corrected signal, the flow rate of steam generated by the boiler is controlled accordingly.

(作用) このような手段を講じたことにより、当該ボイラの発生
蒸気流量指令信号と実際の発生蒸気流開信号との間にl
Ia差が生じた場合には、速ヤかにこの偏差分が補正さ
れ、安定した追従制御がなされる。
(Function) By taking such measures, there is a gap between the generated steam flow rate command signal of the boiler and the actual generated steam flow opening signal.
If a difference in Ia occurs, this deviation is promptly corrected, and stable follow-up control is performed.

(実施例) 第1図は本発明を複数(n)台のボイラ11〜1nが並
列運転されるボイラシステムに適用した一実施例の構成
を示す系統図である。本実施例では、第3図に対して、
各係数手段71〜7nの出力信号すなわち各ボイラへの
発生蒸気流量指令信号を目標信号とし、当該ボイラ11
〜1nに設けられた蒸気流量検出器21〜2nの検出信
号すなわち実発生蒸気流量信号をフィードバック信号と
して入力し、PID制御によって比較調節演算を行なう
蒸気流量調節手段111〜11nと、前記各蒸気流量指
令信号をそれぞれ入力すると共に当該蒸気流量調節手段
111〜11nからの出力信号を入力し、蒸気流量指令
信号に対して当該蒸気流量調節手段111〜11nから
の出力信号を加算することにより、実発生蒸気流量信号
が蒸気流量指令信号と一致するように補正する補正手段
121〜12nとを付加したものであり、これら以外は
第3図と同様であるので、同一部分には同一符号を付し
て詳しい説明は省略する。なお、蒸気流量調節手段はボ
イラの特性に応じて不連続で′動作するものであり、す
なわち、発生蒸気流量指令信号は間欠的に補正されるも
のとなっている。
(Embodiment) FIG. 1 is a system diagram showing the configuration of an embodiment in which the present invention is applied to a boiler system in which a plurality (n) of boilers 11 to 1n are operated in parallel. In this embodiment, with respect to FIG. 3,
The output signal of each coefficient means 71 to 7n, that is, the generated steam flow rate command signal to each boiler is set as a target signal, and the boiler 11
Steam flow rate adjustment means 111 to 11n which input the detection signals of the steam flow rate detectors 21 to 2n provided at the steam flow rate detectors 21 to 2n provided at the steam flow rate detectors 21 to 2n, that is, the actual generated steam flow rate signals, as feedback signals and perform comparison adjustment calculations by PID control; By inputting the command signals and inputting the output signals from the steam flow rate adjustment means 111 to 11n, and adding the output signals from the steam flow rate adjustment means 111 to 11n to the steam flow rate command signal, the actual generation It has addition of correction means 121 to 12n for correcting the steam flow rate signal to match the steam flow rate command signal, and the other parts are the same as those in FIG. 3, so the same parts are given the same reference numerals. Detailed explanation will be omitted. Note that the steam flow rate adjusting means operates discontinuously depending on the characteristics of the boiler, that is, the generated steam flow rate command signal is intermittently corrected.

次に、本装置の動作について説明する。各ボイラ11〜
1nにて発生した蒸気流量は、それぞれの蒸気流量検出
器21〜2nにて検出され、これら蒸気流量検出器21
〜2nの出力信号すなわち実発生蒸気流量信号は第1の
加算器3にて加算合成された後、第2の加算器4に入力
される。また、前記各ボイラ11〜1nに対する代表点
蒸気圧力を検出する蒸気圧力検出器5の検出信号をフィ
ードバック信号とし、所望の蒸気圧力設定値と比較して
実際の蒸気圧力が所望の蒸気圧力と一致するように調節
演算する蒸気圧力調節手段の出力信号も上記第2の加算
手段4に入力され、この蒸気圧力調節信号と総蒸気流世
信号とが加算される。その後、この第2の加算器4の出
力信号はそれぞれのボイラ11〜1nに対応する係数手
段71〜7nに入力され、負荷配分係数α1〜αnが乗
じられて発生蒸気流量指令信号となり、蒸気流量調節手
段111〜11nおよび補正手段121〜12nに入力
される。上記流量調節手段111〜11nにおいては、
例えば一定時間毎に上記発生蒸気流量指令信号を目標信
号とし、当該蒸気流量検出器21〜2nから出力される
実発生蒸気流量信号をフィードバック信号として比例調
節演算が行なわれ、その出力信号は前記補正手段121
〜12nに入力される。そして、この補正手段121〜
12nにてそれぞれの発生蒸気流量指令信号に加算され
、各発生蒸気流量指令信号と実発生蒸気流量信号とが一
致するように補正される。
Next, the operation of this device will be explained. Each boiler 11~
The steam flow rate generated at 1n is detected by each of the steam flow rate detectors 21 to 2n, and these steam flow rate detectors 21
The output signals of ~2n, that is, the actual generated steam flow rate signals are added and synthesized by the first adder 3 and then input to the second adder 4. In addition, the detection signal of the steam pressure detector 5 that detects the representative point steam pressure for each of the boilers 11 to 1n is used as a feedback signal, and the actual steam pressure is compared with the desired steam pressure setting value so that the actual steam pressure matches the desired steam pressure. The output signal of the steam pressure adjustment means that performs adjustment calculations is also input to the second addition means 4, and this steam pressure adjustment signal and the total steam current signal are added. Thereafter, the output signal of the second adder 4 is input to the coefficient means 71 to 7n corresponding to each of the boilers 11 to 1n, and multiplied by the load distribution coefficients α1 to αn to become a generated steam flow rate command signal, which becomes a steam flow rate command signal. It is input to adjustment means 111-11n and correction means 121-12n. In the flow rate adjusting means 111 to 11n,
For example, proportional adjustment calculation is performed at regular intervals using the generated steam flow rate command signal as a target signal and the actual generated steam flow rate signal outputted from the steam flow rate detectors 21 to 2n as a feedback signal, and the output signal is used as the correction signal. Means 121
~12n. And this correction means 121~
12n, it is added to each generated steam flow rate command signal and corrected so that each generated steam flow rate command signal and the actual generated steam flow rate signal match.

その後、これら補正された発生蒸気流量指令信号はそれ
ぞれのボイラ11〜1nに導入され、この指令信号に基
いて各ボイラ11〜1nの燃焼間が制allされて蒸気
発生量が調節される。
Thereafter, these corrected generated steam flow rate command signals are introduced into each of the boilers 11 to 1n, and based on these command signals, the combustion period of each of the boilers 11 to 1n is controlled to adjust the amount of steam generated.

このように、本実施例においては、係数手段71〜7n
にて算出された発生蒸気流量指令信号に対して実発生蒸
気伍によるフィードバック制御を行ない、適時発生蒸気
流量指令値と実際の蒸気発生量とが等しくなるように補
正している。したがって、各ボイラ11〜1nの動特性
や効率の相違によって発生蒸気流旧指令値と実発生蒸気
流伍との間にズレが生じてもこのズレは速やかに補正さ
れ、各ボイラ11〜1nは指令値に対して振動すること
なく安定に追従制御される。その結果、各係数手段71
〜7nの負荷配分係数α!〜αルを最良な効率が得られ
るように設定することにより、高効率運転が可能となる
。また、応答の遅いボイラを蒸気発生流量指令値が10
0%近傍で運転させても、オーバーロードするおそれは
なく安全である。
In this way, in this embodiment, the coefficient means 71 to 7n
The generated steam flow rate command signal calculated in is subjected to feedback control based on the actual generated steam level, and is corrected so that the timely generated steam flow rate command value is equal to the actual steam generated amount. Therefore, even if a discrepancy occurs between the old steam flow command value and the actual steam flow rate due to differences in the dynamic characteristics and efficiency of each boiler 11 to 1n, this discrepancy is quickly corrected, and each boiler 11 to 1n Stable control is performed to follow the command value without vibration. As a result, each coefficient means 71
Load distribution coefficient α of ~7n! By setting α to obtain the best efficiency, high efficiency operation is possible. In addition, if the steam generation flow rate command value is 10 for a boiler with a slow response.
Even if it is operated at around 0%, there is no risk of overload and it is safe.

なお、本発明は前記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば、前記実施例ではPID制皿によって比較調節演
算を行なう蒸気流量調節手段を用いて補正器を算出する
場合を示したが、第2図に示す如く比例制御演尊手段2
11〜21nにより発生蒸気流量指令信号と実発生蒸気
流量信号との偏差を求め、この嘔差出力をタイマ221
〜22nにより間欠的に接続制御されるリレー231〜
23nを介して出力し、速度/位置変換型の積分要素M
VSを加算して補正伍として補正手段121〜12nに
与えるようにしてもよい。また、上記タイマ221〜2
2nの代りに、偏差出力のレベル変化量をレベル変化量
算出手段241〜24nにて算出し、このレベル変化量
が大きいときリレー231〜23nを駆動させるように
してもよく、さらに、このレベル変化量による制御とタ
イマ22′j〜22nによる制御とを組合わせるように
してもよい。また、前記実施例では不連続に動作する蒸
気流量調節手段111〜11nを用いて間欠的に補正す
る場合を示したが、連続的に補正するようにしてもよい
。ただし、この場合は各ボイラ11〜1nの応答遅れ等
により制御が不安定なものとなるおそれはある。このほ
か本発明の要旨を逸脱しない範囲で種々変形実施可能で
あるのは勿論である。
For example, in the above embodiment, a case was shown in which the corrector is calculated using a steam flow rate adjusting means that performs a comparative adjustment calculation using a PID control plate, but as shown in FIG.
11 to 21n, the deviation between the generated steam flow rate command signal and the actual generated steam flow rate signal is determined, and this difference output is sent to the timer 221.
Relay 231 whose connection is controlled intermittently by ~22n
23n, velocity/position conversion type integral element M
It is also possible to add VS and give it to the correction means 121 to 12n as the correction value. In addition, the above-mentioned timers 221 to 2
2n, the level change amount of the deviation output may be calculated by the level change amount calculation means 241 to 24n, and when this level change amount is large, the relays 231 to 23n may be driven. The control based on the amount and the control using the timers 22'j to 22n may be combined. Further, in the embodiment described above, a case has been shown in which the steam flow rate adjustment means 111 to 11n that operate discontinuously are used to perform the correction intermittently, but the correction may be performed continuously. However, in this case, there is a possibility that the control may become unstable due to a delay in the response of each boiler 11 to 1n. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

[発明の効果コ 以上詳述したように、本発明によれば、各ボイラに対す
る発生蒸気流量指令値にしたがって当該ボイラを正確に
追従制器でき、オーバーロードを招くおそれがなく、安
全で高効率運転が可能なボイラ負荷配分制御装置を提供
できる。
[Effects of the Invention] As detailed above, according to the present invention, each boiler can be accurately tracked and controlled in accordance with the generated steam flow rate command value for each boiler, and there is no risk of overloading, resulting in a safe and highly efficient system. A boiler load distribution control device that can be operated can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す系統図、第2図
は本発明の変形例の主要部を示す系統図、M3図および
第4図は従来装置を示す系統図である。 11〜1n・・・ボイラ、21〜2n・・・蒸気流苗検
出器、3,4・・・第1.第2の加算手段、5・・・蒸
気圧力検出器、6・・・蒸気圧力1!JWJ手段、71
〜7n・・・係数手段、111〜lln・・・蒸気流量
調節手段、121〜12n・・・補正手段、211〜2
1n・・・比出願人代理人 弁理士 鈴江武彦 第1図 第2図 11       1n 第3図 第4図
FIG. 1 is a system diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a system diagram showing main parts of a modified example of the invention, and FIGS. M3 and 4 are system diagrams showing a conventional device. 11-1n... Boiler, 21-2n... Steam flow seedling detector, 3, 4... 1st. Second adding means, 5... Steam pressure detector, 6... Steam pressure 1! JWJ means, 71
~7n...Coefficient means, 111~lln...Steam flow rate adjustment means, 121~12n...Correction means, 211~2
1n...Representative of Philippine applicant Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 11 1n Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)並列運転される複数のボイラのそれぞれの発生蒸
気流量を所定の負荷配分値に基いて制御するボイラ負荷
配分制御装置において、前記各ボイラのそれぞれの実発
生蒸気流量を加算して得られるレベル信号と前記各ボイ
ラにおける代表点の蒸気圧力を所定値となるように制御
する蒸気圧力調節出力信号とを加算合成する加算手段と
、この加算手段の出力信号に所望の負荷配分係数を乗じ
ることにより各ボイラの発生蒸気流量指令信号を算出す
る算出手段と、この算出手段により算出された発生蒸気
流量指令信号を目標信号とし当該ボイラの実発生蒸気流
量信号をプロセス変数として調節演算を実行し蒸気流量
調節信号を出力する蒸気流量調節手段と、この蒸気流量
調節手段の出力信号に基いて前記算出手段により算出さ
れた発生蒸気流量指令信号を補正する補正手段とを具備
し、この補正手段の出力信号に基いて当該ボイラの発生
蒸気流量を追従制御するようにしたことを特徴とするボ
イラ負荷配分制御装置。
(1) In a boiler load distribution control device that controls the steam flow rate of each of a plurality of boilers operated in parallel based on a predetermined load distribution value, the steam flow rate is obtained by adding up the actual steam flow rate of each of the boilers. Adding means for adding and synthesizing the level signal and a steam pressure adjustment output signal for controlling the steam pressure at a representative point in each boiler to a predetermined value; and multiplying the output signal of the adding means by a desired load distribution coefficient. a calculation means for calculating the generated steam flow rate command signal for each boiler; and a calculation means for calculating the generated steam flow rate command signal for each boiler by using the generated steam flow rate command signal calculated by the calculation means as a target signal and the actual generated steam flow rate signal of the boiler as a process variable to perform an adjustment calculation to calculate the steam flow rate. A steam flow rate adjustment means for outputting a flow rate adjustment signal, and a correction means for correcting the generated steam flow rate command signal calculated by the calculation means based on the output signal of the steam flow rate adjustment means, and the output of the correction means A boiler load distribution control device characterized in that the flow rate of steam generated in the boiler is controlled in accordance with a signal.
(2)前記蒸気流量調節手段は、間欠的に調節演算を実
行するものであることを特徴とする特許請求の範囲第(
1)項記載のボイラ負荷配分制御装置。
(2) The steam flow rate adjusting means executes adjustment calculation intermittently,
1) The boiler load distribution control device described in item 1).
JP61065915A 1986-03-26 1986-03-26 Boiler load distribution control device Expired - Lifetime JPH0781684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065915A JPH0781684B2 (en) 1986-03-26 1986-03-26 Boiler load distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065915A JPH0781684B2 (en) 1986-03-26 1986-03-26 Boiler load distribution control device

Publications (2)

Publication Number Publication Date
JPS62223505A true JPS62223505A (en) 1987-10-01
JPH0781684B2 JPH0781684B2 (en) 1995-09-06

Family

ID=13300744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065915A Expired - Lifetime JPH0781684B2 (en) 1986-03-26 1986-03-26 Boiler load distribution control device

Country Status (1)

Country Link
JP (1) JPH0781684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234359A (en) * 2005-02-28 2006-09-07 Miura Co Ltd Boiler control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576201A (en) * 1980-06-16 1982-01-13 Nippon Kokan Kk Stabilizing device of steam generation rate ofwaste heat boiler of city garbage incinerator
JPS58217102A (en) * 1982-06-10 1983-12-17 株式会社東芝 Controller for distribution of boiler load
JPS602107U (en) * 1983-06-16 1985-01-09 三菱重工業株式会社 Boiler fuel control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576201A (en) * 1980-06-16 1982-01-13 Nippon Kokan Kk Stabilizing device of steam generation rate ofwaste heat boiler of city garbage incinerator
JPS58217102A (en) * 1982-06-10 1983-12-17 株式会社東芝 Controller for distribution of boiler load
JPS602107U (en) * 1983-06-16 1985-01-09 三菱重工業株式会社 Boiler fuel control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234359A (en) * 2005-02-28 2006-09-07 Miura Co Ltd Boiler control method
JP4529731B2 (en) * 2005-02-28 2010-08-25 三浦工業株式会社 Boiler control method

Also Published As

Publication number Publication date
JPH0781684B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
CN101604148B (en) Thermoelectric generator unit coordination control method and coordination control system
US4151589A (en) Decoupled cascade control system
JPS62223505A (en) Boiler-load distribution controller
JPS5847601B2 (en) Boiler steam temperature control method
JPS5892002A (en) Pid control system
JPS6133362Y2 (en)
JPS5593906A (en) Controller for turbine regulating valve in pressure change operation
JP2509682B2 (en) Pressure plant pressure control equipment
JP2549711B2 (en) Process control equipment
JP3716443B2 (en) Auxiliary steam pressure controller for soot blower
JPS60176104A (en) Process controller
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPS6391403A (en) Method of controlling boiler
JPS59188701A (en) Boiler master controlling device
JPH0326998A (en) Reactor feed water controller for boiling water reactor
JPS639638B2 (en)
CN116839005A (en) Thermal power unit control method and system in machine-following furnace mode
SU387129A1 (en) THERMAL REGULATION REGULATION SYSTEM
JP4622063B2 (en) Generator control device and generator control method
SU989667A2 (en) Device for limiting transfer of active power in intersystem communication
JPS5914241B2 (en) Evaporator control device
JP2642414B2 (en) Process control equipment
JPH02206801A (en) Process controller
JPS6149683B2 (en)
JPS6240602B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term