JPS62222893A - Optical information recording medium and its manufacture - Google Patents

Optical information recording medium and its manufacture

Info

Publication number
JPS62222893A
JPS62222893A JP61069113A JP6911386A JPS62222893A JP S62222893 A JPS62222893 A JP S62222893A JP 61069113 A JP61069113 A JP 61069113A JP 6911386 A JP6911386 A JP 6911386A JP S62222893 A JPS62222893 A JP S62222893A
Authority
JP
Japan
Prior art keywords
thin film
phthalocyanine compound
recording medium
optical information
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61069113A
Other languages
Japanese (ja)
Inventor
Masakazu Isurugi
石動 正和
Kazumasa Hashimoto
和昌 橋本
Kenji Matsumoto
松本 賢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Publication of JPS62222893A publication Critical patent/JPS62222893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To impart high film hardness and excellent solvent resistance and to enhance the sensitivity to pulse laser beam, by forming a recording layer from a polymer membrane containing 70wt% or more of a phthalocyanine compound. CONSTITUTION:The recording layer of a recording medium is formed of a polymer membrane containing 70% of more, pref. 85% or more of a phthalocyanine compound, pref., a metal phthalocyanine compound. As the phthalocyanine compound, for example, a compound represented by general formula (I) (wherein M is a divalent metal, for example, Pb, Cu and Ni etc., a tetravalent metal oxide such as VO, trivalent or tetravalent metal halide such as CrF, X is a hydrogen atom or a halogen atom and may be different or same) is designated. It is necessary to set high frequency output to 200-2,000mW/cm<2> from such a vewpoint that a desired film thickness is obtained when a polymer membrane is formed and absorption in a semiconductive laser wavelength region is enhanced. Further, it is necessary to set the internal pressure of a reaction container to 1X10<-4>-8X10<-2>Torr from such an aspect that the properties (powdery or film like article) of the polymer of the phthalocyanine compound are controlled to a film form.

Description

【発明の詳細な説明】 [産業−にの利用分野] 本発明は光学的情報記録媒体およびその製法に関する。[Detailed description of the invention] [Field of industrial use] The present invention relates to an optical information recording medium and a method for manufacturing the same.

さらに詳しくは、レーザにより情報の記録、再生を行な
う光学的情報記録媒体およびその製法に関する。
More specifically, the present invention relates to an optical information recording medium for recording and reproducing information using a laser, and a method for manufacturing the same.

[従来の技術] 従来、レーザにより情報を記録する記録媒体として、レ
ーザ照射部がレーザからのエネルギーを吸収して局部的
に加熱され、溶融、蒸発などの状態変化を起こし、これ
を信号ピットとじて情報を記録するものが知られている
。いわゆる、ヒートモード光記録材料と呼ばれるもので
ある。
[Prior Art] Conventionally, as a recording medium that records information using a laser, the laser irradiation part absorbs energy from the laser and is locally heated, causing state changes such as melting and evaporation, which are then formed into signal pits. There are known devices that record information. This is what is called a heat mode optical recording material.

この種の記録材料として、Teをはじめとするカルコゲ
ナイド系薄膜あるいは金属薄膜が知られているが、記録
部と非記録部との反射光強度差が充分でないためビット
エラーが増大することなどをはじめとして、毒性のある
ものが多いこと、酸化に対する安定性が乏しいこと、薄
膜作製技術−1−の問題があることなどの面で、まだま
だ多くの問題がある。
As this type of recording material, chalcogenide thin films such as Te or metal thin films are known, but they suffer from problems such as an increase in bit errors because the difference in reflected light intensity between recorded and non-recorded areas is insufficient. However, there are still many problems in that many of them are toxic, they have poor stability against oxidation, and there are problems with thin film production technology-1.

これらの無機系薄膜における問題を解決するために、有
機系薄膜を使用したものが種々検討されている。すなわ
ち、有機系材料のもつ優れた熱的性質(低融点、低分解
温度、低熱伝導率など)によって高感度化を達成すると
ともに、製造コストの低減をはかろうとするものである
In order to solve these problems with inorganic thin films, various methods using organic thin films have been studied. That is, the objective is to achieve high sensitivity and reduce manufacturing costs by utilizing the excellent thermal properties (low melting point, low decomposition temperature, low thermal conductivity, etc.) of organic materials.

具体的には、たとえばスクワリウム系色素(D、J、G
ravoteljn et、al、、5PIIシ420
 、327(+983)など)、アズレン誘導体(特開
昭58−21.4182号公報など)、インダンスレン
誘導体(特開昭58−224448号公報など)、シア
ニン系色素などを用いたものや、色素を光吸収剤として
熱可塑性ポリマー中に分散させたもの(James W
Specifically, for example, squalium pigments (D, J, G
ravoteljn et, al,, 5PIIshi420
, 327 (+983), etc.), azulene derivatives (JP-A-58-21.4182, etc.), indanthrene derivatives (JP-A-58-224448, etc.), cyanine dyes, etc. A dye dispersed in a thermoplastic polymer as a light absorber (James W.
.

Whocler et、al、、5PIE 420.3
9(1983)など)などが知られている。
Whocler et, al., 5PIE 420.3
9 (1983), etc.) are known.

一方、最近、半導体レーザの発展が著しく、小形で安価
なことから、半導体レーザが各種記録装置の光源として
使用されてきている。これら半導体レーザの発振波長と
しては、比較的長波長側のものが一般に使用されており
、現在、記録再生装置の光源に使用されている半導体レ
ーザとしては、780〜830nmあたりの発振波長を
もつものが多い。
On the other hand, semiconductor lasers have recently made remarkable progress, and because they are small and inexpensive, semiconductor lasers have been used as light sources for various recording devices. The oscillation wavelengths of these semiconductor lasers are generally on the relatively long wavelength side, and currently, semiconductor lasers used as light sources for recording and reproducing devices have oscillation wavelengths in the range of 780 to 830 nm. There are many.

このような半導体レーザによって感度よく記録を行なう
ためには、発振波長に対応した吸収特性を存する記録層
が必要である。
In order to perform sensitive recording with such a semiconductor laser, a recording layer is required that has absorption characteristics corresponding to the oscillation wavelength.

しかしながら、一般に金属薄膜やカルコゲナイド系薄膜
を用いた記録層では、この領域における反射率が高く、
また通常の有機色素を用いた記録層では、この領域に吸
収がない。それゆ−4= え、この領域に吸収を有するシアニン系色素や有機金属
錯体(たとえばフタロシアニン化合物など)を記録層と
して使用するための試みがなされている。
However, in general, recording layers using metal thin films or chalcogenide thin films have high reflectance in this region.
Further, in a recording layer using a normal organic dye, there is no absorption in this region. Therefore, attempts have been made to use cyanine dyes and organometallic complexes (for example, phthalocyanine compounds) that have absorption in this region as recording layers.

しかしながら、シアニン系色素や有機金属錯体を記録層
として使用するばあいには、その優れた熱的性質により
感度を向」二せしめうるが、以下のような多くの問題が
ある。
However, when a cyanine dye or an organometallic complex is used as a recording layer, sensitivity can be improved due to its excellent thermal properties, but there are many problems as described below.

(1)半導体レーザ光を効率よく吸収する色素類や有機
金属錯体類の使用では、その構造を有さなければならな
いという制約を受け、780〜830n[11に大きな
吸収をもつフタロシアニン化合物などは比較的数が少な
く、えられに<<、感度向」二の妨げとなっている。ま
た非常に高価であり、コストアップにつながる。
(1) The use of dyes and organometallic complexes that efficiently absorb semiconductor laser light is constrained by the fact that they must have the same structure. The number of targets is small, which is a hindrance to selection and sensitivity. It is also very expensive, leading to increased costs.

(2)一般に有機系薄膜は、膜の機械的強度が弱く、キ
ズなどがつきやすく、取扱いがやっかいであり、この欠
点を防ぐために保護層などを設けるばあいでも、有機物
(たとえばポリマーなど)をコーティングするのに溶剤
を用いるスピンコ−ターなどの方法では、記録層自体の
耐溶剤性が乏しいので、このような方法の適用は釧(シ
い。
(2) In general, organic thin films have weak mechanical strength, are easily scratched, and are troublesome to handle. Even if a protective layer is provided to prevent this drawback, organic substances (such as polymers) cannot be used. Methods such as a spin coater that use a solvent for coating are difficult to apply because the recording layer itself has poor solvent resistance.

下地に光吸収層、上層に有機物の状態変化層(ピット記
録層)を設けるような2層型の記録層においても同様の
ことがいえる。
The same can be said of a two-layer type recording layer in which a light absorption layer is provided as an underlayer and a state change layer (pit recording layer) of an organic substance is provided as an upper layer.

(3)光、とくに半導体レーザ光の波長域において記録
部と非記録部との反射光強度差が充分でなく、無機系薄
膜を用いたばあいの問題を克服するにはいたっていない
。この反射光強度の差は、直接的には信号「1」、「0
」の区分に影響するため、充分でないばあいにはビット
エラーが増大し、また間接的には使用しつる再生周波数
の許容範囲がせまくなる。
(3) In the wavelength range of light, especially semiconductor laser light, the difference in intensity of reflected light between recorded and non-recorded areas is not sufficient, and the problem of using an inorganic thin film has not been overcome. This difference in reflected light intensity is directly equivalent to the signal "1" and "0".
If it is not sufficient, bit errors will increase, and indirectly, the permissible range of reproduction frequencies to be used will become narrower.

なお、記録部と非記録部との反射光強度の差が充分でな
い理由として、従来の技術では記録部、非記録部を ■形状的な変化で区分する方法 ■結晶質←非結晶質の相変化で区分する方法を用いてき
たことがあげられる。■のばあいには反射光強度は10
〜20%程度の変化であり、■のばあいには材料を吟味
すると30%程度になることもあるが、通71シはそれ
以下である。
The reason why the difference in the intensity of reflected light between the recording area and the non-recording area is not sufficient is that in the conventional technology, the recording area and the non-recording area are separated by ■ method of dividing by shape change ■ crystalline ← amorphous phase. One example is the use of a method of classification based on changes. In the case of ■, the reflected light intensity is 10
The change is about ~20%, and in the case of ■, it can be about 30% if you carefully examine the materials, but it is less than that for the case of 71.

「発明が解決しようとする問題点」 本発明は、有機系材料のもつ優れた熱的性質を充分に発
揮させ、なおかつ先に述べた種々の問題((1)〜(3
)の問題)を解決するためになされたものである。
"Problems to be Solved by the Invention" The present invention fully utilizes the excellent thermal properties of organic materials, and also solves the various problems mentioned above ((1) to (3).
) problem).

[問題点を解決するための手段] 本発明は、レーザにより記録、再生を行なう情報記録媒
体において、フタロシアニン化合物を70%(重量%、
同様)以」−含有する重合薄膜を記録層とする光学的情
報記録媒体、該光学的情報記録媒体を製造する際に、昇
華せしめたフタロシアニン化合物を含むガスを高周波出
力200〜2000IIIWlcI112、放電時圧力
 lXl0−4〜8X 10’ Torrの範囲でプラ
ズマ重合せしめて記録層となる重合薄膜を形成する光学
的情報記録媒体の製法、および該光学的情報記録媒体を
製造する際に、フタロシアニン化合物を含む薄膜を形成
せしめたのち、放電時電圧]、X]0−4〜8X 1O
−2Torrの範囲で高周波111力200〜2000
IIIW/ cJでプラズマ重合せしめて記録層となる
重合薄膜を形成する光学的情報記録媒体の製法に関する
[Means for Solving the Problems] The present invention provides an information recording medium that performs recording and reproduction using a laser, in which 70% (by weight) of a phthalocyanine compound is used.
- An optical information recording medium having a polymeric thin film as a recording layer, in which a gas containing a sublimated phthalocyanine compound is used at a high frequency output of 200 to 2000 IIIWlcI112, and a pressure during discharge when producing the optical information recording medium. A method for manufacturing an optical information recording medium in which a polymerized thin film to be a recording layer is formed by plasma polymerization in the range of 1X10-4 to 8X10' Torr, and a thin film containing a phthalocyanine compound when manufacturing the optical information recording medium. After forming, the discharge voltage], X]0-4~8X 1O
High frequency 111 power in the range of -2 Torr 200-2000
The present invention relates to a method for producing an optical information recording medium in which a polymerized thin film serving as a recording layer is formed by plasma polymerization at IIIW/cJ.

[実施例コ 本発明の記録媒体は、AρGaAs5lnGaPなどの
半導体レーザや他のレーザにより記録再生が行なわれる
。また該記録媒体の記録層は、フタロシアニン化合物、
好ましくは金属フタロシアニン化合物を70%以上、好
ましくは85%以上含有する重合薄膜から形成されてい
る。
[Embodiment] Recording and reproduction are performed on the recording medium of the present invention using a semiconductor laser such as AρGaAs5lnGaP or other laser. Further, the recording layer of the recording medium contains a phthalocyanine compound,
It is preferably formed from a polymeric thin film containing 70% or more, preferably 85% or more of a metal phthalocyanine compound.

前記フタロシアニン化合物としては、たとえば一般式(
■): [以下余白] (式中、Hは、たとえばPb、 Cu、 Niなどの■
価の金属、vOなどの■価の金属酸化物またはCrFな
どの■価もしくは■価の金属のハロゲン化物、Xは水素
原子またはハロゲン原子であり、それぞれのXが異なっ
ていてもよく、同一であってもよい)で表わされる化合
物があげられる。
As the phthalocyanine compound, for example, the general formula (
■): [Left below blank space] (In the formula, H represents ■ such as Pb, Cu, Ni,
valent metal, oxide of a valent metal such as vO, or halide of a valent or valent metal such as CrF, where X is a hydrogen atom or a halogen atom, and each X may be different or the same. Examples include compounds represented by

一般式(I)で示される化合物(M−Pc(X)+6)
の具体例としては、たとえば Cu−Pc(If)+6、Cu−Pc(C# )n (
J()    (n−1〜1B)、6−n Co−Pc(H)+6、N1−Pc(H)+6、Mg−
Pc(H)+6、CrCI−Pc(H)+g 1.Pb
−Pc(H)+6、Mn−Pc(H)+6、Zn−Pc
(II)+6、CrP−Pc(II)+6、V−Pc(
lI)+s、VO−Pc (II) +6、 VC(!
−Pc(It)+6、Cr−Pc(It)+6、M C
I−Pc(II)+6、M CAI −Pc(CJ )
n (II)     (n−1〜1B)6−n 1nc&1−Pc(II)+6、In−Pc(CI)n
 (II)     (n−1〜1B)  、6−n Ga−Pc(II)+s 、5n−Pc(It)+6、
Pr−Pc(II)+6 、Ga−Pc(C1) )n
 (It)   (n−1〜16) 、Ti−Pc(I
I)+6な6−n どかあげられる。
Compound represented by general formula (I) (M-Pc(X)+6)
As a specific example, for example, Cu-Pc(If)+6, Cu-Pc(C#)n (
J() (n-1 to 1B), 6-n Co-Pc(H)+6, N1-Pc(H)+6, Mg-
Pc(H)+6, CrCI-Pc(H)+g 1. Pb
-Pc(H)+6, Mn-Pc(H)+6, Zn-Pc
(II)+6, CrP-Pc(II)+6, V-Pc(
lI) +s, VO-Pc (II) +6, VC(!
-Pc(It)+6, Cr-Pc(It)+6, M C
I-Pc(II)+6, MCAI-Pc(CJ)
n (II) (n-1~1B)6-n 1nc&1-Pc(II)+6, In-Pc(CI)n
(II) (n-1~1B), 6-n Ga-Pc(II)+s, 5n-Pc(It)+6,
Pr-Pc(II)+6, Ga-Pc(C1))n
(It) (n-1 to 16), Ti-Pc(I
I) +6 6-n I can raise it somewhere.

前記フタロシアニン化合物は、一般に熱的、化学的に安
定で、耐候性などの長期安定性にも優れている。また、
一般に熱昇華性を有しているため取扱いやすい。
The phthalocyanine compounds are generally thermally and chemically stable and have excellent long-term stability such as weather resistance. Also,
It is generally easy to handle because it has thermal sublimation properties.

本発明においては、一般式mで示される化合物のHがp
b、 vo、Cuまたは旧、とくにpbまたはCuであ
るフタロシアニン化合物であることが好ましく、これら
のフタロシアニン化合物を用いるばあいには、のぢにの
べるプラズマ重合の際にほとんど分解がおこらず、また
粉状物や半導体レーザの波長域に吸収のない薄膜ができ
ることも少なくない。さらにMが前記のように金属を含
むものであるばあいには、レーザの照射により形成され
る記録部が金属分の多い組成となりやすく、レーザの照
射されない非記録部との反射光強度の差が大きくなりや
ずいという特徴か生じる。
In the present invention, H of the compound represented by general formula m is p
Preferred are phthalocyanine compounds such as b, vo, Cu or former, especially pb or Cu. When these phthalocyanine compounds are used, almost no decomposition occurs during the subsequent plasma polymerization, and powder It is not uncommon for thin films to be formed that do not absorb in the wavelength range of semiconductor lasers or semiconductor lasers. Furthermore, if M contains a metal as described above, the recorded area formed by laser irradiation tends to have a composition with a high metal content, and the difference in reflected light intensity from the non-recorded area that is not irradiated with the laser is large. A characteristic called nariyazui arises.

フタロシアニン化合物の前記重合薄膜にしめる割合が7
0%未病になると、本発明の効果である記録部と非記録
部との反射光強度の差が充分えられなくなり、好ましく
ない。
The proportion of the phthalocyanine compound in the polymerized thin film is 7.
If the disease becomes 0%, the difference in reflected light intensity between the recorded area and the non-recorded area, which is the effect of the present invention, cannot be obtained sufficiently, which is not preferable.

フタロシアニン化合物以外の重合薄膜形成成分としては
、たとえばメタン、エタン、プロパン、ブタンなどの飽
和炭化水素系ガス、エチレン、プロピレンなどの不飽和
炭化水素系ガスなどや、それらから形成される重合物な
どがあげられる。
Examples of polymerized thin film forming components other than phthalocyanine compounds include saturated hydrocarbon gases such as methane, ethane, propane, and butane, unsaturated hydrocarbon gases such as ethylene and propylene, and polymers formed from them. can give.

重合薄膜の厚さとしては100〜1.0000人が好ま
しく1,500〜5000人がさらに好ましい。
The thickness of the polymerized thin film is preferably 100 to 1,0000, more preferably 1,500 to 5,000.

つぎに本発明の製法について説明する。Next, the manufacturing method of the present invention will be explained.

フタロシアニン化合物を含む薄膜は、真空蒸着法、イオ
ンブレーティング法、スパッタリング法、イオンクラス
タービーム法などの方法によっでも形成しうるが、これ
らの方法のみでは高度に架橋したあるいはからみあいの
多い重合薄膜はえられにくく、これらの方法とプラズマ
重合法などとを組合わせて重合薄膜を形成すると、記録
時のレーザ照射に対する感度が高く、再生時の記録部と
非記録部との反射光強度の差が大きく、かつ必要な物理
的強度かえられやすいなどの特徴を有する重合薄膜かえ
られ、好ましい。
Thin films containing phthalocyanine compounds can also be formed by methods such as vacuum evaporation, ion blasting, sputtering, and ion cluster beam methods, but these methods alone cannot produce highly crosslinked or entangled polymeric thin films. However, when these methods are combined with plasma polymerization to form a polymerized thin film, the sensitivity to laser irradiation during recording is high, and the difference in reflected light intensity between recorded and non-recorded areas during playback is reduced. It is preferable to use a polymeric thin film having characteristics such as being large and easy to change the necessary physical strength.

真空蒸着法などの方法とプラズマ重合法などとの組合わ
せ方としては、まず真空蒸着法などの方法により薄膜を
形成したのち、プラズマ重合法を適用し、該薄膜を重合
薄膜にしてもよく、また真空蒸着法などの方法で薄膜を
形成する際に同時にプラズマ重合法などの方法を適用し
、一度に重合薄膜を形成せしめてもよい。
As a method of combining a method such as a vacuum evaporation method with a plasma polymerization method, etc., a thin film may be first formed by a method such as a vacuum evaporation method, and then a plasma polymerization method may be applied to make the thin film into a polymerized thin film. Further, when forming a thin film by a method such as a vacuum evaporation method, a method such as a plasma polymerization method may be applied at the same time to form a polymerized thin film at one time.

たとえば抵抗加熱法によりlXl0−5〜1x10’ 
Torr程度の真空状態下で昇華せしめられた」−記の
ごときフタロシアニン化合物の1種以上および重合薄膜
中のフタロシアニン化合物含量が所定の範囲になるよう
に要すれば併用されるメタン、エタン、プロパン、ブタ
ンなどの飽和炭化水素系ガス、エチレン、プロピレンな
どの不飽和炭化水素系ガス、ハロゲン系ガス、さらには
希釈剤あるいはキャリア剤の目的で使用されるアルゴン
などの不活性ガスなどが、高周波出力200〜2000
mW/ cJ 、好ましくハ400〜1oo。
For example, by the resistance heating method, lXl0-5~1x10'
One or more of the phthalocyanine compounds listed below and methane, ethane, propane, etc., which are used in combination if necessary so that the phthalocyanine compound content in the polymerized thin film falls within a predetermined range. Saturated hydrocarbon gases such as butane, unsaturated hydrocarbon gases such as ethylene and propylene, halogen gases, and inert gases such as argon used as diluents or carrier agents, etc. ~2000
mW/cJ, preferably 400~1oo.

IIIW/aI、さらに好ましくは600〜LOOOm
W/ cd、放電時圧力IX 10’ 〜8X 1.0
−2Torr、好ましくはIX 1.0’ 〜lJx 
1O−2Torr、さらに好ましくは5X 10’ 〜
5X 1O−2Torrの範囲でプラズマ重合せしめら
れ、好ましくは膜厚500−100’00人程度の重合
薄膜が、ガラス、ポリカーボネート、ポリメチルメタク
リレート、アルミニウムなどの材質からなる基板上に形
成される。
IIIW/aI, more preferably 600 to LOOOm
W/ cd, pressure during discharge IX 10' ~ 8X 1.0
-2 Torr, preferably IX 1.0' to lJx
1O-2Torr, more preferably 5X 10'~
Plasma polymerization is performed in the range of 5.times.10.about.2 Torr, and a polymerized thin film, preferably about 500 to 100,000 mm thick, is formed on a substrate made of a material such as glass, polycarbonate, polymethyl methacrylate, or aluminum.

このばあい、高周波出力を200〜2000mW/ c
rlにすることが、重合薄膜作製時に所望の膜厚をうる
ことや、半導体レーザの波長域における吸収を高くする
などの点から必要であり、さらに反応容器内圧力をIX
 10−4〜8X 10’ Torrにすることか、フ
タロシアニン化合物の重合物の性状(粉状物、膜状物な
ど)を膜状に制御するなどの点から必要である。
In this case, the high frequency output should be 200 to 2000 mW/c.
It is necessary to set the pressure in the reaction vessel to I
It is necessary to set the pressure to 10-4 to 8X 10' Torr, or to control the properties of the polymerized product of the phthalocyanine compound (powder, film, etc.) into a film.

前記高周波出力が200〜2000mW/c♂の範囲を
はずれると、えられる重合薄膜の膜厚が充分でなくなっ
たり、はなはだしいときには全く重合薄膜かえられなく
なったり、半導体レーザなどの波長域における吸収が不
充分になったりし、反応容器内圧力がLX 10’ 〜
8X 1O−2Torrの範囲をはずれると、半導体レ
ーザなどの波長域に吸収のない重合薄膜や粉状物しかえ
られなくなったりする。
If the high frequency output is outside the range of 200 to 2000 mW/c♂, the resulting polymeric thin film may not be thick enough, or in extreme cases may not be able to be replaced at all, or the absorption in the wavelength range of semiconductor lasers, etc. may be insufficient. and the pressure inside the reaction vessel is LX 10' ~
If it is outside the range of 8X 1O-2 Torr, only polymeric thin films or powder materials that do not absorb in the wavelength range of semiconductor lasers etc. can be obtained.

本発明においては、前記圧力の範囲内である限り、不活
性ガスは導入しなくても重合薄膜を形成しうる。
In the present invention, a polymeric thin film can be formed without introducing an inert gas as long as the pressure is within the above range.

また所定の減圧下、タンタルボードまたはルツボなどに
入れたフタロシアニン化合物を400〜500℃に加熱
し、昇華させるなどして基板上に蒸着薄膜を形成させ、
そののち、前記のごとき所定の条件下でプラズマ重合法
などにより重合薄膜にしてもよい。この際、ただ1種の
フタロシアニン化合物を用いてもよく、2種以」−のフ
タロシアニン化合物を併用してもよい。またフタロシア
ニン化合物以外の化合物、たとえばスクワリウム系色素
などを共存せしめるようにしてもよい。
Further, under a predetermined reduced pressure, a phthalocyanine compound placed in a tantalum board or crucible is heated to 400 to 500°C and sublimated to form a vapor-deposited thin film on the substrate.
Thereafter, it may be formed into a polymerized thin film by plasma polymerization or the like under the above-mentioned predetermined conditions. At this time, only one type of phthalocyanine compound may be used, or two or more types of phthalocyanine compounds may be used in combination. Further, a compound other than the phthalocyanine compound, such as a squalium pigment, may be allowed to coexist.

なお、このばあいにもプラズマ重合などにより形成され
るフタロシアニン化合物の重合薄膜は、重合時の圧力、
放電パワーなどによって異なる性状のものができる。
In this case as well, the polymerized thin film of the phthalocyanine compound formed by plasma polymerization etc. is
Different properties can be produced depending on the discharge power, etc.

このようにしてえられるフタロシアニン化合物の重合薄
膜は、単に真空蒸着法などで形成した蒸着薄膜などとほ
ぼ同じλmaxをもつ吸収スペクトルを示すが、表面の
硬度および耐溶剤性は、重合しているため大きく向上す
る。
The polymerized thin film of the phthalocyanine compound obtained in this way exhibits an absorption spectrum with almost the same λmax as a vapor-deposited thin film simply formed by a vacuum evaporation method, but the surface hardness and solvent resistance are lower due to the polymerization. Greatly improved.

第1図は同種のフタロシアニン化合物を用いた単なる蒸
着薄膜とプラズマ重合法による重合薄膜との吸収スペク
トルの具体例を示すグラフである。
FIG. 1 is a graph showing a specific example of the absorption spectra of a simple vapor-deposited thin film using the same type of phthalocyanine compound and a polymerized thin film formed by plasma polymerization.

このようにして形成された重合薄膜が半導体レーザ光な
どに対して高感度を有し、光学的情報記録媒体の記録層
として働く。
The polymer thin film thus formed has high sensitivity to semiconductor laser light and the like, and functions as a recording layer of an optical information recording medium.

次にえられた重合薄膜への記録条件および記録後の特徴
について述べる。
Next, the recording conditions for the obtained polymeric thin film and the characteristics after recording will be described.

記録にはGa# As、 1nGaPなどの半導体レー
ザを用いるのが一般的である。
For recording, a semiconductor laser such as Ga#As or 1nGaP is generally used.

重合薄膜に光学系により直径0.6〜1.2側のスポッ
トに絞った出力1〜30mW程度のレーザパルスを、照
射時間50n see 〜50m sec程度照射する
The polymerized thin film is irradiated with a laser pulse having an output of about 1 to 30 mW focused on a spot with a diameter of 0.6 to 1.2 mm using an optical system for an irradiation time of about 50 ns to 50 m sec.

そののちレーザ照射部(記録部)に対し1〜5II1w
程度の低出力レーザ光を照射し、反射光強度を調べる。
After that, apply 1 to 5II1w to the laser irradiation part (recording part).
irradiate it with a low-power laser beam and examine the reflected light intensity.

同じく非記録部について同様の操作を行なう。Similarly, the same operation is performed for the non-recording portion.

本発明の記録媒体を用いると、これまで報告された傾向
、すなわち記録部の反射光強度が非記録部の値と比較し
て低下する傾向とは逆に増大し、さらに驚くべきことに
レーザ照射条件によっては記録部と非記録部との反射光
強度変化率ニ 反射光強度変化率= 記録部反射光強度−非記録部反射光強度非記録部反射光
強度 が100%以」−にもなりうるという事実が、本発明者
らによって見出されている。このような大きな反射光強
度の変化はこれまで報告されたことがなく、全く新しい
機構に基づくものと考えられる。この原因をしらべるた
めレーザ光照射部を中心に走査型電子顕微鏡などで観察
したところ、レーザ光照射部に遊離した金属の存在が見
出されている。すなわち、本発明の記録媒体を用いて記
録すると、記録部が金属を多く含有する組成となり、非
記録部がもとの重合薄膜のままの有機金属を主体とする
組成となり、両者の反射光強度が著しく異なるという、
従来のものとは全くことなる新しい有機金属系光学的情
報記録媒体となることが判明してきている。
When the recording medium of the present invention is used, contrary to the previously reported tendency that the reflected light intensity of the recorded area decreases compared to the value of the non-recorded area, the intensity of reflected light increases, and surprisingly, Depending on the conditions, the rate of change in the reflected light intensity between the recorded area and the non-recorded area may be as follows: Reflected light intensity in the recorded area - Reflected light intensity in the non-recorded area Reflected light intensity in the non-recorded area may be 100% or more. It has been discovered by the present inventors that this is possible. Such a large change in reflected light intensity has never been reported and is thought to be based on a completely new mechanism. In order to investigate the cause of this, the laser beam irradiated area was observed using a scanning electron microscope, and the presence of free metal was found in the laser beam irradiated area. In other words, when recording is performed using the recording medium of the present invention, the recording area has a composition containing a large amount of metal, and the non-recording area has a composition mainly composed of organic metals, which is the same as the original polymeric thin film, and the reflected light intensity of both is reduced. are significantly different,
It has become clear that this method is a new organometallic optical information recording medium that is completely different from conventional ones.

このようにしてえられる本発明におけるフタロシアニン
化合物のプラズマ重合薄膜は、通常の単なる蒸着薄膜で
は半導体レーザの波長域における吸収が少なく、半導体
レーザによる記録ピットの形成が不可能なフタロシアニ
ン化合物でも、重合により記録ピットの形成が「+J能
になり、かつ記録後の記録部と非記録部との反射光強度
が著しく異なり、再生が容易であるという特徴を有する
ものである。それゆえ、多種のフタロシアニン化合物を
利用することができ、価格の低下をはかりうる。また本
発明における重合薄膜は、重合により膜硬度が著しく高
くなりキズなどがつきにくいため、光学的情報記録媒体
の製造時における取扱いが有機色素蒸着薄膜やフタロシ
アニン蒸着薄膜に比べて容易である。
The plasma-polymerized thin film of a phthalocyanine compound according to the present invention obtained in this manner can be used even with a phthalocyanine compound, which has little absorption in the wavelength range of a semiconductor laser in a normal simple vapor-deposited thin film, and for which recording pits cannot be formed by a semiconductor laser. It has the characteristics that the formation of recording pits becomes "+J", and the reflected light intensity between the recorded area and the non-recorded area after recording is significantly different, and reproduction is easy. Therefore, various phthalocyanine compounds are used. In addition, the polymerized thin film of the present invention has significantly increased film hardness due to polymerization and is less likely to be scratched. This is easier than vapor-deposited thin films or phthalocyanine vapor-deposited thin films.

さらに該重合薄膜は耐溶剤性に優れ、記録層上に保護層
あるいは有機物の状態変化層(ピット記録層)をスピン
コーターなどで設けるばあいにも、記録層の耐溶剤性が
良好であるので、製造」二有利であるという特徴を有す
るものである。
Furthermore, the polymeric thin film has excellent solvent resistance, and even when a protective layer or an organic state change layer (pit recording layer) is provided on the recording layer using a spin coater, the recording layer has good solvent resistance. It has two advantageous characteristics: , production.

つぎに本発明の記録媒体を実施例に基づき説明する。Next, the recording medium of the present invention will be explained based on examples.

実施例1および比較例1 鉛フタロシアニン(Pb−Pc(If) +6 )をタ
ンタルボードにのせ、ロータリーポンプにて0.04T
orrの減圧にし、400〜500 ’Cで加熱昇華さ
せ、高周波出力200III11/c[112でプラズ
マ重合せしめて、洗浄したガラス基板−にに約3000
人の膜厚になるように鉛フタロシアニン重合薄膜を形成
させた。
Example 1 and Comparative Example 1 Lead phthalocyanine (Pb-Pc(If) +6) was placed on a tantalum board and heated to 0.04T using a rotary pump.
The glass substrate was heated to sublimation at 400 to 500'C, plasma-polymerized at a high frequency output of 200III11/c[112, and cleaned.
A lead phthalocyanine polymer thin film was formed to have the thickness of a human film.

比較のために、高周波を印加しないほがは同様にして、
約3000人の膜厚になるように鉛フタロシアニン蒸着
薄膜を形成させた。
For comparison, do the same thing without applying high frequency,
A lead phthalocyanine vapor-deposited thin film was formed to a thickness of approximately 3,000 mm.

えられた鉛フタロシアニン重合薄膜は、がっ色透明であ
ったか、吸収スペクトルは単なる蒸着薄膜と同様なλm
axのピークを示した。結果を第1図に示す。
The resulting lead phthalocyanine polymerized thin film was amber and transparent, and its absorption spectrum was similar to that of a simple vapor-deposited thin film.
The peak of ax was shown. The results are shown in Figure 1.

また、膜硬度および膜の耐溶剤性を下記方法に従って測
定したところ、前記重合薄膜のばあい、エンピッ硬度で
911.3日間溶剤に浸漬したのぢも全く変化は見られ
なかったが、単なる蒸着薄膜のばあい、エンピッ硬度で
513. 溶剤1: e浸漬すると1〜2時間で完全に
溶解・分散した。
In addition, when the film hardness and solvent resistance of the film were measured according to the following method, in the case of the polymerized thin film, no change was observed at all even after immersing it in a solvent for 911.3 days, but it was found that the film had a hardness of 911.3 days. In the case of a thin film, the hardness is 513. Solvent 1: When immersed in e, it was completely dissolved and dispersed in 1 to 2 hours.

結果を第1表に示す。The results are shown in Table 1.

さらに、えられた鉛フタロンアニン重合薄膜に、光学系
によりビーム径をIJlmに絞ったM GaAS半導体
レーザ光(λ−780nI!1)を膜上におけるレーザ
パワー7mWで50μsecのパルス中で膜に照射し、
走査型電子顕微鏡で表面観察を行なったところ、1廁大
のピットが形成されていることが確認された。
Furthermore, the obtained lead phthalon anine polymer thin film was irradiated with M GaAS semiconductor laser light (λ-780nI!1) whose beam diameter was narrowed down to IJlm by an optical system in a 50μsec pulse with a laser power of 7mW. ,
When the surface was observed using a scanning electron microscope, it was confirmed that pits with a size of 1 mu were formed.

しかし、鉛フタロシアニン蒸着薄膜に前記と同様に半導
体レーザ光を照射しても、ピットは形成されなかった。
However, even when the lead phthalocyanine vapor-deposited thin film was irradiated with semiconductor laser light in the same manner as described above, no pits were formed.

(膜硬度) JIS K 5401に準じて行ない、荷重50gでキ
ズがつく最高のエンピッ硬度を測定。
(Membrane hardness) Measured according to JIS K 5401 to measure the maximum hardness at which scratches occur under a load of 50g.

(耐溶剤性) キノリンを溶剤として、多量の溶剤に試験片を浸漬して
室温において放置したのちの状態を観察。
(Solvent resistance) Using quinoline as a solvent, the test piece was immersed in a large amount of solvent, left at room temperature, and then observed.

実施例2および比較例2 銅フタロシアニン(Cu−Pc(H) +s )を実施
例1と同じ条件でプラズマ重合せしめ、洗浄したガラス
基板」−に膜厚約3000人の銅フタロシアニン重合薄
膜を形成させた。
Example 2 and Comparative Example 2 Copper phthalocyanine (Cu-Pc(H) +s) was plasma-polymerized under the same conditions as in Example 1, and a copper phthalocyanine polymer thin film with a thickness of about 3000 was formed on a cleaned glass substrate. Ta.

比較のために、高周波を印加しないほがは同様にして、
約3000人の膜厚になるように銅フタロシアニン蒸着
薄膜を形成させた。
For comparison, do the same thing without applying high frequency,
A thin film of copper phthalocyanine was deposited to a thickness of approximately 3,000 mm.

えられた銅フタロシアニン重合薄膜の吸収スペクトルは
、単なる蒸着薄膜と同じλmaxを示した。結果を第1
図に示す。
The absorption spectrum of the obtained copper phthalocyanine polymerized thin film showed the same λmax as a simple vapor-deposited thin film. Results first
As shown in the figure.

また、実施例1と同様にして測定した膜硬度および膜の
耐溶剤性は、重合薄膜のばあい、エンピッ硬度で11.
3日間溶剤に浸漬したのちも全く変化は見られなかった
が、単なる蒸着薄膜のばあい、エンピッ硬度で6B、溶
剤に浸漬すると1〜2時間で完全に溶解・分散した。結
果を第1表に示す。
Further, the film hardness and solvent resistance of the film measured in the same manner as in Example 1 were 11.
No change was observed after being immersed in the solvent for 3 days, but in the case of a mere vapor-deposited thin film, the hardness was 6B and it was completely dissolved and dispersed within 1 to 2 hours when immersed in the solvent. The results are shown in Table 1.

さらに、えられた銅フタロシアニン重合薄膜に、光学系
によりビーム径を1胴に絞ったMGaAs半導体レーザ
光(λ−780nm)を膜上にλ=780nm)を膜上
におけるレーザパワー7mWで5μSeeのパルス11
1で膜に照射し、走査型電子顕微鏡で表面観察を行なっ
たところ、1珊大のピットが形成されていることが確認
された。
Furthermore, an MGaAs semiconductor laser beam (λ-780 nm) whose beam diameter was narrowed down to one cylinder by an optical system was applied to the obtained copper phthalocyanine polymer thin film on the film with a laser power of 7 mW and a pulse of 5 μSee. 11
When the film was irradiated with No. 1 and the surface was observed using a scanning electron microscope, it was confirmed that pits the size of one coral were formed.

しかし、銅フタロシアニン蒸着薄膜に前記と同様に半導
体1ノーサ光を照射してもピットは形成されなかった。
However, no pits were formed even when the copper phthalocyanine vapor-deposited thin film was irradiated with semiconductor 1 nosa light in the same manner as described above.

実施例3 鉛フタロシアニンと銅フタロシアニンとを1=1 (重
量比)の割合で混合したものをタンクルボードにのせ、
実施例1と同じ条件でプラズマ重合せしめ、膜厚約30
00人の鉛フタロシアニンと銅フタロシアニンとの共重
合薄膜を、洗浄したガラス基板」−に形成した。
Example 3 A mixture of lead phthalocyanine and copper phthalocyanine at a ratio of 1=1 (weight ratio) was placed on a tank board,
Plasma polymerization was carried out under the same conditions as in Example 1, and the film thickness was approximately 30 mm.
A copolymerized thin film of lead phthalocyanine and copper phthalocyanine was formed on a cleaned glass substrate.

えられた薄膜の膜硬度および耐溶剤性を測定したところ
、エンピッ硬度でOH,耐溶剤性も実施例1.2と同様
であった。結果を第1表に示す。
When the film hardness and solvent resistance of the obtained thin film were measured, the OH hardness and solvent resistance were also the same as in Example 1.2. The results are shown in Table 1.

また、えられた鉛フタロシアニン−銅フタロシアニン重
合薄膜に、光学系によりビーム径をを 111mに絞っ
た/VGaAs半導体レーザ光(λ=780 nm)を
膜」二で6.7mV、5μsecのパルス11で照射し
たところ、In大のきれいなピットが形成されているこ
とが走査型電子顕微鏡により観察された。
In addition, the obtained lead phthalocyanine-copper phthalocyanine polymer thin film was injected with a VGaAs semiconductor laser beam (λ = 780 nm) with a beam diameter of 111 m by an optical system at 6.7 mV and 5 μsec pulse 11. Upon irradiation, it was observed using a scanning electron microscope that clean pits of In size were formed.

[以下余白] 一  24  一 実施例4 銅フタロシアニンと鉛フタロシアニンとを1:1(重量
比)の割合で混合したものをタンタルボードにのせ、ロ
ータリーポンプにて 5X10−2Torrの減圧にし
、400〜500℃で加熱昇華させ、高周波出力400
mW / cJでプラズマ重合せしめて約5000人の
膜厚になるようにガラス基板−にに銅フタロシアニン−
銅フタロシアニン複合重合薄膜を形成させた。
[Blank below] 1 24 1 Example 4 A mixture of copper phthalocyanine and lead phthalocyanine at a ratio of 1:1 (weight ratio) was placed on a tantalum board, and the pressure was reduced to 5 x 10-2 Torr using a rotary pump, and the pressure was reduced to 400 to 500 Torr. Sublimated by heating at ℃, high frequency output 400
Copper phthalocyanine was applied to a glass substrate by plasma polymerization at mW/cJ to a film thickness of about 5000 nm.
A copper phthalocyanine composite polymer thin film was formed.

えられた重合薄膜にGaAl! As半導体レーザ(λ
= 830nm)を用いてレーザパルス(出力1.8m
L時間15μsec )を照射し、記録部を形成した。
GaAl! As semiconductor laser (λ
= 830 nm) using a laser pulse (output 1.8 m
A recording portion was formed by irradiating the film for a period of time (L time 15 μsec).

そののち、非記録部に3mWの微弱なレーザを照射し、
再生時の反射光強度をみたところ、光電変換後の電圧は
1.2mVであった。一方、記録部を同様にして調べる
と、同電圧は2.5mVであり、反射光強度変化率は1
08%にもなっていた。
After that, irradiate the non-recorded area with a weak laser of 3 mW,
Looking at the reflected light intensity during reproduction, the voltage after photoelectric conversion was 1.2 mV. On the other hand, when the recording section was similarly examined, the same voltage was 2.5 mV, and the rate of change in reflected light intensity was 1.
It was as high as 0.8%.

この記録部を1万倍の倍率で走査電子顕微鏡にて観察す
ると金属の遊離が0.01μ以下のこまかな粒状に分散
した状態で検出された。
When this recorded portion was observed with a scanning electron microscope at a magnification of 10,000 times, the free metal was detected as being dispersed in fine particles of 0.01 μm or less.

実施例5 鉛フタロシアニンをタンタルボードに入れて400〜5
00℃に加熱し、4X 1O−5Torrで真空蒸着し
、ガラス基板−1−に蒸着薄膜を形成せしめた。
Example 5 Putting lead phthalocyanine into tantalum board 400~5
It was heated to 00° C. and vacuum evaporated at 4×1O−5 Torr to form a deposited thin film on the glass substrate-1-.

ついで該蒸着薄膜をIX 1O−3Torrの真空下、
800mW/c−の高周波出力のプラズマ雰囲気下に3
0分間さらした。このようにして作製した重合薄膜に、
実施例4に述べた方法で記録部を形成するためにレーザ
光を照射したところ、非記録部の再生時の反射光強度は
光電変換電圧値で2.0mVであったが、記録部の値は
3.7mVであり、反射光強度変化率は85.0%であ
った。
Then, the deposited thin film was subjected to a vacuum of IX 1O-3 Torr.
3 in a plasma atmosphere with a high frequency output of 800 mW/c-
Exposure for 0 minutes. In the polymerized thin film prepared in this way,
When laser light was irradiated to form a recorded area by the method described in Example 4, the intensity of reflected light during reproduction of the non-recorded area was 2.0 mV in photoelectric conversion voltage value, but the value of the recorded area was 2.0 mV. was 3.7 mV, and the rate of change in reflected light intensity was 85.0%.

比較例3 無機系材料を用いた記録媒体として、Teを70%以−
lx含む記録層を有する光学的記録媒体を1500mW
/Q♂の高周波スパッタリング法により作製した。
Comparative Example 3 A recording medium using an inorganic material containing 70% or more of Te.
An optical recording medium with a recording layer containing 1500 mW
/Q♂ was produced by high frequency sputtering method.

作製された記録層はl000人の膜厚であった。The recording layer produced had a thickness of 1,000 layers.

実施例4と同様にしてレーザを照射し、記録部を形成し
、再生時の反射光強度を測定したところ、非記録部の再
生時の反射光強度は光電変換電圧値で7.1mVであっ
たが、記録部の値は[i、2mVであり、反射光強度変
化率は−12,7%で、その変化の絶対値は実施例4と
比較して大きく劣っていた。
In the same manner as in Example 4, a laser was irradiated to form a recorded area, and the intensity of reflected light during reproduction was measured. The intensity of reflected light during reproduction of the non-recorded area was 7.1 mV in photoelectric conversion voltage value. However, the value of the recording part was [i, 2 mV, the rate of change in reflected light intensity was -12.7%, and the absolute value of the change was significantly inferior to that in Example 4.

比較例4 Teをタンタルボードから加熱により蒸発させるととも
にエチレンガスを導入し、5X10−2Torrs高周
波出力10100O/clでプラズマ重合を行ない、膜
厚3500人のTc−ポリエチレン複合薄膜を作製した
Comparative Example 4 Te was evaporated from a tantalum board by heating, ethylene gas was introduced, and plasma polymerization was performed at a high frequency output of 10,100 O/cl at 5×10 −2 Torrs to produce a Tc-polyethylene composite thin film with a thickness of 3,500.

実施例4と同様にレーザを照射し、記録部を形成し、再
生時の反射強度を測定したところ、非記録部の再生時の
反射光強度は8.0mVであったが、記録部の値は5.
4mVであり、その変化率は−32,5%であった。
As in Example 4, a laser was irradiated to form a recorded area, and the reflection intensity during reproduction was measured. The reflected light intensity during reproduction of the non-recorded area was 8.0 mV, but the value of the recorded area was 8.0 mV. is 5.
4 mV, and its rate of change was -32.5%.

[発明の効果] フタロシアニン化合物重合薄膜は、膜硬度が高く (エ
ンピッ硬度でII〜911) 、耐溶剤性に優れ、パル
スレーザ光に対する感度が高く、かつ記録後の記録部と
非記録部との反射光強度の差が大きいので、この重合薄
膜を用いた本発明の記録媒体もこれらの特徴を有する優
れたものとなる。
[Effects of the Invention] The phthalocyanine compound polymerized thin film has high film hardness (II to 911 in terms of hardness), excellent solvent resistance, high sensitivity to pulsed laser light, and a high resistance between recorded and non-recorded areas after recording. Since the difference in reflected light intensity is large, the recording medium of the present invention using this polymerized thin film also has these characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1〜2でえられたプラズマ重合薄膜お
よび比較例1〜2でえられた蒸着薄膜の吸収スペクトル
を示すグラフである。 ヒ
FIG. 1 is a graph showing the absorption spectra of the plasma polymerized thin films obtained in Examples 1 and 2 and the vapor deposited thin films obtained in Comparative Examples 1 and 2. Hi

Claims (1)

【特許請求の範囲】 1 レーザにより記録、再生を行なう情報記録媒体にお
いて、フタロシアニン化合物を70重量%以上含有する
重合薄膜を記録層とする光学的情報記録媒体。 2 フタロシアニン化合物が一般式(1):▲数式、化
学式、表等があります▼ (式中、MはII価の金属、IV価の金属酸化物またはIII
価もしくはIV価の金属のハロゲン化物、Xは水素原子ま
たはハロゲン原子であり、それぞれのXが異なっていて
もよく、同一であってもよい)で示される化合物である
特許請求の範囲第1項記載の光学的情報記録媒体。 3 一般式(1)で示されるフタロシアニン化合物のM
が、Pb、Cu、NiまたはVOである特許請求の範囲
第2項記載の光学的情報記録媒体。 4 レーザにより記録、再生を行なう情報記録媒体であ
ってフタロシアニン化合物を70重量%以上含有する重
合薄膜を記録層とする光学的情報記録媒体を製造する際
に、昇華せしめたフタロシアニン化合物を含むガスを高
周波出力200〜2000mW/cm^2、放電時圧力
1×10^−^4〜8×10^−^2Torrの範囲で
プラズマ重合せしめて記録層となる重合薄膜を形成する
光学的情報記録媒体の製法。 5 レーザにより記録、再生を行なう情報記録媒体であ
ってフタロシアニン化合物を70重量%以上含有する重
合薄膜を記録層とする光学的情報記録媒体を製造する際
に、フタロシアニン化合物を含む薄膜を形成せしめたの
ち、放電時電圧1×10^−^4〜8×10^−^2T
orrの範囲で高周波出力200〜2000mW/cm
^2でプラズマ重合せしめて記録層となる重合薄膜を形
成する光学的情報記録媒体の製法。
[Scope of Claims] 1. An optical information recording medium that performs recording and reproduction using a laser, the recording layer being a polymeric thin film containing 70% by weight or more of a phthalocyanine compound. 2 The phthalocyanine compound has the general formula (1): ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, M is a valent metal of II, a metal oxide of IV valence, or a metal oxide of valence IV
Claim 1: A compound represented by a valent or IV valent metal halide, where X is a hydrogen atom or a halogen atom, and each X may be different or the same. The optical information recording medium described above. 3 M of the phthalocyanine compound represented by general formula (1)
The optical information recording medium according to claim 2, wherein is Pb, Cu, Ni or VO. 4. When manufacturing an optical information recording medium that records and reproduces information using a laser and has a recording layer of a polymeric thin film containing 70% by weight or more of a phthalocyanine compound, a gas containing a sublimated phthalocyanine compound is used. An optical information recording medium that forms a polymerized thin film as a recording layer by plasma polymerization in the range of high frequency output of 200 to 2000 mW/cm^2 and discharge pressure of 1 x 10^-^4 to 8 x 10^-^2 Torr. Manufacturing method. 5. A thin film containing a phthalocyanine compound is formed when producing an optical information recording medium that is recorded and reproduced by laser and has a recording layer of a polymerized thin film containing 70% by weight or more of a phthalocyanine compound. Later, the voltage during discharge is 1 x 10^-^4 ~ 8 x 10^-^2T
High frequency output 200-2000mW/cm in the range of orr
^2 A method for producing an optical information recording medium by plasma polymerization to form a polymerized thin film that becomes a recording layer.
JP61069113A 1985-12-13 1986-03-27 Optical information recording medium and its manufacture Pending JPS62222893A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-281795 1985-12-13
JP28179585 1985-12-13

Publications (1)

Publication Number Publication Date
JPS62222893A true JPS62222893A (en) 1987-09-30

Family

ID=17644082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069113A Pending JPS62222893A (en) 1985-12-13 1986-03-27 Optical information recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS62222893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130983A (en) * 1987-11-18 1989-05-23 Toyo Ink Mfg Co Ltd Optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130983A (en) * 1987-11-18 1989-05-23 Toyo Ink Mfg Co Ltd Optical recording medium

Similar Documents

Publication Publication Date Title
KR920001263B1 (en) Recording and removing method of information
US5080947A (en) Information recording medium
KR20050009734A (en) Information recording medium and process for producing the same
Mizuguchi et al. Phase change of 1, 4‐dithioketo‐3, 6‐diphenyl‐pyrrolo‐[3, 4‐c]‐pyrrole for information storage applications
JPS6253886A (en) Information-recording medium
JPS62222442A (en) Rewriting type optical recording medium
JPS62222893A (en) Optical information recording medium and its manufacture
JPH04298389A (en) Optical recording medium and manufacture thereof
JP3373626B2 (en) Optical recording medium
JP3074715B2 (en) Optical recording medium
JPH0582315B2 (en)
JPS6398493A (en) Optical recording medium
JPS62201288A (en) Light information recording medium
JPS6364794A (en) Optical recording medium
JP2941822B2 (en) Optical memory medium
WO2003070479A1 (en) Optical recording medium and optical recording method
JP3496240B2 (en) Manufacturing method of optical recording medium
JPH0582314B2 (en)
JPH01184189A (en) Phase change type optical data recording medium
Chou et al. Silver-particle-dispersed silver-oxide film: a dual-function write-once recording material
JPS62187091A (en) Optical information recording medium
JPH0327975B2 (en)
JPH0447382B2 (en)
JPS62222443A (en) Rewriting type optical recording medium
JPS62201289A (en) Light information recording medium