JPH0582315B2 - - Google Patents

Info

Publication number
JPH0582315B2
JPH0582315B2 JP60097528A JP9752885A JPH0582315B2 JP H0582315 B2 JPH0582315 B2 JP H0582315B2 JP 60097528 A JP60097528 A JP 60097528A JP 9752885 A JP9752885 A JP 9752885A JP H0582315 B2 JPH0582315 B2 JP H0582315B2
Authority
JP
Japan
Prior art keywords
polyethylene
compound
deposit
recording medium
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60097528A
Other languages
Japanese (ja)
Other versions
JPS61254392A (en
Inventor
Kazumasa Hashimoto
Kazuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60097528A priority Critical patent/JPS61254392A/en
Publication of JPS61254392A publication Critical patent/JPS61254392A/en
Publication of JPH0582315B2 publication Critical patent/JPH0582315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は光学的情報記録媒体に関する。さらに
詳しくは、レーザにより情報の記録、再生を行な
う光学的情報記録媒体に関する。 [従来の技術] 従来、レーザにより情報を記録する記録媒体と
して、レーザ照射部がレーザからのエネルギーを
吸収して局部的に加熱され、溶融、蒸発などの状
態変化を起こし、これを信号ピツトとして情報を
記録するものが知られている。いわゆるヒートモ
ード光記録材料と呼ばれるものである。 この種の記録層として、Teをはじめとするカ
ルコゲナイト系薄膜あるいは金属薄膜がよく知ら
れているが、感度をはじめ、作製技術、毒性、安
定性などの面でまだまだ多くの問題をかかえてい
る。 そこで、これら無機系薄膜にかわつて有機系薄
膜を使用したものが種々検討されている。すなわ
ち有機系材料のもつ優れた熱的性質(低融点、低
分解温度、低熱伝導率など)によつて高感度化を
達成するとともに製造コストの低減に寄与しよう
とするものである。 たとえばスクワリウム系色素(D.J.Graveteijn
et.al.,SPIE 420,327(1983)など)、アズレン
誘導体(特開昭58−214162号公報など)インダン
スレン誘導体(特開昭58−224448号公報など)を
用いたものや、色素を光吸収剤として熱可塑性ポ
リマー中に分散させたものが知られている
(James W.Whecler et.al.,SPIE 420,39
(1983)など)。また無機・有機複合型のものとし
て微細なに金属粉を光吸収剤としてポリマーに分
散したもの、たとえば熱収縮性のコロイド状有機
物(ゼラチン)中に銀粒子を分散させたもの
(Jerome Drexler,SPIE 420,57(1983))が知
られている。 さらに最近半導体レーザの発展が著しく、小型
でかつ安価なことから、各種記録装置の光源とし
て使用されてきている。 半導体レーザの発振波長は、短波長側では寿
命、出力などの点でまだ問題を残しており、比較
的長波長側のものが一般に使用されている。この
ような半導体レーザによつて感度よく記録を行な
うためには、発振波長に対応した吸収特性を持つ
記録層であること、すなわち700〜900nmの光を
効率よく吸収する記録層であることが必要であ
る。 しかしながら、一般に金属やカルコゲイト系の
ものを用いた記録層では、この領域における反射
率が高く、また通常の有機色素を用いた記録層で
はこの領域に吸収性を持たない。それゆえ、この
領域に吸収性を持つシアニン色素や有機金属錯体
を記録層として使用するための試みがなされてい
る。しかしながら、感度、安定性および成膜性に
多くの問題をかかえている。 [発明が解決しようとする問題点] 無機系材料にかわつて有機系薄膜を使用するこ
との利点はその優れた熱的材質により、感度が向
上できることにある。しかしながら半導体レーザ
ー光を効率よく吸収する色素類や有機金属錯体類
の使用では、その構造を有さなければならないと
いう制約を受けるので有利な材料を捜しても得ら
れにくく、優れた熱的性質を示すことができず、
感度の向上の妨げとなつている。 本発明は、有機系材料のもつ優れた熱的性質を
充分に発揮させ、高感度化を達成するためになさ
れたものである。 [問題点を解決するための手段] すなわち本発明は、半導体レーザにより記録、
再生を行なう情報記録媒体において、記録層が真
空蒸着法により基体上に形成されたポリエチレン
の蒸着物のうえにフタロシアニン環を有する化合
物の蒸着物が形成された複合膜またはフタロシア
ニン環を有する化合物の蒸着物とポリエチレンの
蒸着物とがお互いに分散しあつた共蒸着物からな
る複合膜からなることを特徴とする光学的情報記
録媒体に関する。 [実施例] 本発明における半導体レーザとは、発振波長が
700〜900nmのレーザで記録装置の光源として用
いうるものである限り、とくに限定はない。この
ようなレーザーの具体例としては、たとえば
AlGaAsのごとき半導体を用いた半導体レーザな
どがあげられる。 本発明の記録媒体はレーザにより記録、再生が
行なわれ、該記録媒体の記録層は真空蒸着法によ
り形成したフタロシアニン環を有する化合物の蒸
着物と、ポリエチレンの蒸着物との複合膜から形
成される。 前記フタロシアニン環を有する化合物として
は、たとえば一般式():
[Industrial Field of Application] The present invention relates to an optical information recording medium. More specifically, the present invention relates to an optical information recording medium in which information is recorded and reproduced using a laser. [Prior Art] Conventionally, as a recording medium that records information using a laser, the laser irradiation part absorbs energy from the laser and is locally heated, causing state changes such as melting and evaporation, and this is used as a signal pit. Devices that record information are known. This is a so-called heat mode optical recording material. Chalcogenite thin films such as Te or metal thin films are well known as this type of recording layer, but they still face many problems in terms of sensitivity, fabrication technology, toxicity, stability, etc. Therefore, various methods using organic thin films in place of these inorganic thin films have been studied. In other words, it is an attempt to achieve high sensitivity and contribute to a reduction in manufacturing costs by utilizing the excellent thermal properties (low melting point, low decomposition temperature, low thermal conductivity, etc.) of organic materials. For example, squalium pigments (DJ Graveteijn)
et.al., SPIE 420, 327 (1983), etc.), azulene derivatives (JP-A-58-214162, etc.), indanthrene derivatives (JP-A-58-224448, etc.), and dyes. Dispersed in thermoplastic polymers as light absorbers is known (James W.Whecler et.al., SPIE 420, 39
(1983) etc.). In addition, there are inorganic-organic composite types in which fine metal powder is dispersed in a polymer as a light absorbing agent, such as silver particles dispersed in a heat-shrinkable colloidal organic material (gelatin) (Jerome Drexler, SPIE 420, 57 (1983)) is known. Furthermore, semiconductor lasers have recently made remarkable progress, and because they are small and inexpensive, they have been used as light sources for various recording devices. Regarding the oscillation wavelength of semiconductor lasers, there still remain problems in terms of lifetime, output, etc. on the short wavelength side, and those on the relatively long wavelength side are generally used. In order to perform sensitive recording with such a semiconductor laser, it is necessary that the recording layer has absorption characteristics corresponding to the oscillation wavelength, that is, the recording layer must efficiently absorb light in the range of 700 to 900 nm. It is. However, recording layers using metals or chalcogates generally have high reflectance in this region, and recording layers using ordinary organic dyes have no absorption in this region. Therefore, attempts have been made to use cyanine dyes or organometallic complexes that have absorption properties in this region as recording layers. However, there are many problems with sensitivity, stability, and film formability. [Problems to be Solved by the Invention] The advantage of using an organic thin film instead of an inorganic material is that sensitivity can be improved due to its excellent thermal properties. However, the use of dyes and organometallic complexes that efficiently absorb semiconductor laser light is constrained by the fact that they must have the same structure. unable to show
This is an obstacle to improving sensitivity. The present invention has been made in order to fully utilize the excellent thermal properties of organic materials and to achieve high sensitivity. [Means for Solving the Problems] That is, the present invention provides recording and recording using a semiconductor laser.
In an information recording medium for reproduction, the recording layer is a composite film in which a deposit of a compound having a phthalocyanine ring is formed on a deposit of polyethylene formed on a substrate by a vacuum deposition method, or a deposit of a compound having a phthalocyanine ring. The present invention relates to an optical information recording medium characterized in that it is composed of a composite film consisting of a co-deposited material in which a material and a polyethylene vapor-deposited material are mutually dispersed. [Example] The semiconductor laser in the present invention has an oscillation wavelength of
There is no particular limitation as long as the laser has a wavelength of 700 to 900 nm and can be used as a light source for a recording device. As a specific example of such a laser, for example,
Examples include semiconductor lasers using semiconductors such as AlGaAs. The recording medium of the present invention performs recording and reproduction using a laser, and the recording layer of the recording medium is formed from a composite film of a vapor deposit of a compound having a phthalocyanine ring formed by a vacuum deposition method and a vapor deposit of polyethylene. . Examples of the compound having the phthalocyanine ring include the general formula ():

【化】 (式中、Mは価の金属、価の金属酸化物、
価もしくは価の金属のハロゲン化物または水
素2原子、Xは水素原子またはハロゲン原子であ
り、それぞれが異なつていてもよく、同一であつ
てもよい)で表わされる化合物(以下M−Pc
(X)16という)があげられる。一般式()で示
される化合物の具体例としては、たとえば Cu−Pc(H)16,Cu−Pc(Cl)o(H)16-o(n=
1〜16, Co−Pc(H)16,Ni−Pc(H)16,Mg−Pc(H)1
, Pb−Pc(H)16,Mn−Pc(H)16,Zn−Pc(H)1
, V−Pc(H)16,VO−Pc(H)16,VCl−Pc
(H)16, CrCl−Pc(H)16,CrF−Pc(H)16,Cr−Pc
(H)16, AlCl−Pc(H)16, AlCl−Pc(Cl)o(H)16-o(n=1〜16), InCl−Pc(H)16,In−Pc(Cl)o(H)16-o(n=
1〜16), H2−Pc(H)16,Ga−Pc(H)16, Ga−Pc(Cl)o(H)16-o(n=1〜16), GaCl−Pc(Cl)o(H)16-o(n=1〜16),Sn−
Pc(H)16, Ti−pc(H)16,Pr−Pc(H)16などがあげられ
る。 フタロシアニン環を有する化合物は、700〜
900nmの領域で高い吸光度を示し、熱的、化学的
に安定で、耐光性などの長期安定性にも優れてい
る。また、一般に熱昇華性を有し、10-4〜10-6
Torrの減圧下、300〜500℃の条件で真空蒸着法
により均一な薄膜をうることができるという特徴
を有するものである。 第1図に基板上にフタロシアニン環を有する化
合物から形成された薄膜の吸収スペクトルの具体
例を示す。 前記ポリエチレンは、低密度(0.91〜0.94)、
高密度(0.94〜0.97)のいずれをも用いることが
できるが、得られた蒸着物の熱的性質の良さから
高密度で枝分かれが少ないものが好ましい。該ポ
リエチレンの分子量は、重量平均分子量wが
5000以上のものが好ましい。 ポリエチレンは、真空蒸着を行なう条件で加熱
することにより、主鎖および側鎖の開烈をおこ
し、蒸着時における圧力と加熱温度により決まる
ある大きさのフラグメントとなつて蒸着され、薄
膜を形成する。このようにして得られたポリエチ
ンの蒸着物は蒸着前のものに比べ、分子量が低下
し、枝分かれが少なくなり、分子量分布が小さな
ものとなつている。第2図にポリエチレンの蒸着
前と蒸着後の分子量分布をGPC(ゲルバーミエイ
シヨンクロマトグラフイ)により測定した結果の
例を示す。 次にフタロシアニン環を有する化合物とポリエ
チレンとを用いて真空蒸着法により形成される記
録層である複合膜について説明する。 該複合膜は、基板上に形成されたポリエチレン
の蒸着物のうえにフタロシアニン環を有する化合
物の蒸着物を積層したものであつてもよく、また
それぞれの蒸着物が互いに分散しあつた共蒸着物
からなるものであつてもよい。 前記複合膜を形成する方法としてはつぎのよう
な方法が例示されうる。 第1に、フタロシアニン環を有する化合物の蒸
着物とポリエチレンの蒸着物とを積層して複合膜
を形成する方法である。エチレンの蒸着物10-4
10-6Torrの減圧下、ルツボを200〜400℃に加熱
し、基板温度0〜50℃で、膜厚が好ましくは100
〜10000Å、より好ましくは500〜5000Åになるよ
うに形成したのち、フタロシアニン環を有する化
合物の蒸着物を10-4〜10-6Torrの減圧下、300〜
500℃の条件でフタロシアニン環を有する化合物
を、膜厚が好ましくは100〜10000Å、より好まし
くは500〜5000Åになるように蒸着させることに
よりえられる。要すればこの操作をくりかえせば
よい。 第2に、フタロシアニン環を有する化合物の蒸
着物とポリエチレンの蒸着物とが互いに分散しあ
つた共蒸着物からなる複合膜を形成する方法につ
いて説明する。 前記共蒸着物は1個のルツボにポリエチレンと
フタロシアニン環を有する化合物との所定の割合
の混合物を入れ、前記と同様の条件で真空蒸着を
おこなう1源系共蒸着法、および2個のルツボを
使用してそれぞれ別個にポリエチレンとフタロシ
アニン環を有する化合物とを入れて、前記と同様
の条件で真空蒸着を行なう2源系共蒸着法により
形成することができる。 形成されたポリエチレンの蒸着物とフタロシア
ニン環を有する化合物の蒸着物との共蒸着物にお
けるポリエチレンの蒸着物とフタロシアニン環を
有する化合物の蒸着物との混合割合は、成膜条件
により任意に変えることが可能であるが、フロシ
アニン環を有する化合物の蒸着物/ポリエチレン
の蒸着物の重量比が0.01〜10であることが好まし
く、0.5〜2の範囲がより好ましい。共蒸着物の
膜厚は500〜50000Åが好ましく、1000〜10000Å
の範囲がより好ましい。 本発明に用いられる基板は、通常の記録媒体に
使用できるものであればいずれのものを用いても
よい。このような基板の具体例としては、たとえ
ばガラス、ポリメタクリル酸メチル、ポリカーボ
ネート、ポリ酸化ビニルなどがあげられる。また
必要に応じてアルミニウムなど反射率の高い膜を
基板上に形成されたもの、または表面反射率の高
いアルミ板なども基板として用いてもよい。 つぎに本発明の記録媒体を実施例にもとづき説
明する。 実施例 1 ガラス基板上にポリエチレンの蒸着物を膜厚が
2000Åになるように形成させ、その上にAlCl−
Pc(H)16の蒸着物を3000Åの膜厚になるように載
せ、積層型の複合膜を作製した。得られた複合膜
を光学顕微鏡下で観察したところ不均一性は見ら
れず、また表面平滑性の優れたきれいな薄膜であ
ることが確認できた。 AlGaAs半導体レーザ(発振波長780nm)を使
用し、レンズによつてビームを1μm径に絞り、
5μsecのパルスで複合膜上に照射した。このとき
膜上におけるレーザーパワーは6.7mwであつた。
そのうちの走査型電子顕微鏡で表面観察を行つた
ところ約1μm径のきれいな円形のピツトの形成が
確認できた。 比較例 1 ガラス基板上にAlCl−Pc(H)16の蒸着物を膜
厚が2000Åになるように載せ、これに実施例1と
同様の試験をおこなつたところ、ピツトの形成は
確認できなかつた。パルス幅を50μsecにして行な
つたところピツトらしきものが確認できただけで
形状は不十分であつた。 比較例 2 ガラス基板上にポリエチレンの蒸着物を膜厚が
2000Åになるように形成させ、これに実施例1と
同様の試験を行なつたところ、ピツトは確認でき
なかつた。パルス幅を50μsecにして行なつてもピ
ツトは確認できなかつた。 以上の実施例1および比較例1,2の結果から
うかがえるように、蒸着によりフタロシアニンと
ポリエチレンとを複合させた場合にパルス巾
0.5μsecのレーザ光で記録しうる高感度の記録媒
体を得られた。すなわちこの場合ポリエチレン蒸
着物は感度向上材の役割をしている。 実施例 2 ガラス基板上にポリエチレンとAlCl−Pc(H)1
の2源系共蒸着によりトータル膜厚9000Åの薄
膜を作製した。AlCl−Pc(H)16/ポリエチレン
の蒸着物の重量比は0.8であつた。得られた複合
膜を光学顕微鏡下で観察したところ不均一性は見
られず、また表面平滑性の優れたきれいな薄膜で
あることが確認できた。実施例1と同様の試験を
行なつたところ、実施例1と同様約1μm径のピツ
トの形成が確認できた。 [発明の効果] 真空蒸着法により形成されたフクロシアニン環
を有する化合物の蒸着物とポリエチレンの蒸着物
とを複合することにより、レーザ光のパルスに感
度の高い記録媒体がえられた。
[Chemical formula] (where M is a valent metal, a valent metal oxide,
Compounds (hereinafter referred to as M-Pc
(X) 16 ) can be mentioned. Specific examples of compounds represented by the general formula () include Cu-Pc(H) 16 , Cu-Pc(Cl) o (H) 16-o (n=
1-16, Co-Pc(H) 16 , Ni-Pc(H) 16 , Mg-Pc(H) 1
6 , Pb-Pc(H) 16 , Mn-Pc(H) 16 , Zn-Pc(H) 1
6 , V-Pc(H) 16 , VO-Pc(H) 16 , VCl-Pc
(H) 16 , CrCl-Pc (H) 16 , CrF-Pc (H) 16 , Cr-Pc
(H) 16 , AlCl-Pc(H) 16 , AlCl-Pc(Cl) o (H) 16-o (n=1 to 16), InCl-Pc(H) 16 , In-Pc(Cl) o ( H) 16-o (n=
1-16), H2 - Pc(H) 16 , Ga-Pc(H) 16 , Ga-Pc(Cl) o (H) 16-o (n=1-16), GaCl-Pc(Cl) o (H) 16-o (n=1 to 16), Sn-
Examples include Pc(H) 16 , Ti-pc(H) 16 , Pr-Pc(H) 16 and the like. Compounds with phthalocyanine rings are 700~
It exhibits high absorbance in the 900 nm region, is thermally and chemically stable, and has excellent long-term stability such as light resistance. In addition, it generally has thermal sublimation property, and has a temperature of 10 -4 to 10 -6
It has the characteristic that a uniform thin film can be obtained by vacuum evaporation under reduced pressure of Torr and at a temperature of 300 to 500°C. FIG. 1 shows a specific example of the absorption spectrum of a thin film formed from a compound having a phthalocyanine ring on a substrate. The polyethylene has a low density (0.91-0.94),
Although any high density (0.94 to 0.97) can be used, one with high density and less branching is preferred from the viewpoint of good thermal properties of the obtained vapor deposit. The molecular weight of the polyethylene is such that the weight average molecular weight w is
5000 or more is preferred. When polyethylene is heated under vacuum deposition conditions, the main chain and side chains are opened, and fragments of a certain size determined by the pressure and heating temperature during deposition are deposited to form a thin film. The polyethine vapor deposited thus obtained has a lower molecular weight, less branching, and a narrower molecular weight distribution than that before vapor deposition. FIG. 2 shows an example of the results of measuring the molecular weight distribution of polyethylene before and after vapor deposition using GPC (gel permeation chromatography). Next, a composite film, which is a recording layer formed by a vacuum deposition method using a compound having a phthalocyanine ring and polyethylene, will be described. The composite film may be one in which a vapor deposit of a phthalocyanine ring-containing compound is laminated on a polyethylene vapor deposit formed on a substrate, or a co-deposited film in which the respective vapor deposits are mutually dispersed. It may consist of. The following method may be exemplified as a method for forming the composite membrane. The first method is to form a composite film by laminating a vapor deposit of a compound having a phthalocyanine ring and a vapor deposit of polyethylene. Ethylene deposit 10 -4 ~
Under reduced pressure of 10 -6 Torr, the crucible is heated to 200 to 400°C, the substrate temperature is 0 to 50°C, and the film thickness is preferably 100°C.
After forming the phthalocyanine ring-containing compound to a thickness of ~10,000 Å, more preferably 500 to 5,000 Å, the vapor deposit of the compound having a phthalocyanine ring is heated to a temperature of 300 to 100 Å under a reduced pressure of 10 −4 to 10 −6 Torr.
It can be obtained by vapor-depositing a compound having a phthalocyanine ring at 500° C. to a film thickness of preferably 100 to 10,000 Å, more preferably 500 to 5,000 Å. This operation may be repeated if necessary. Second, a method for forming a composite film consisting of a co-deposited product in which a deposited product having a phthalocyanine ring and a deposited polyethylene are mutually dispersed will be described. The co-deposited product can be produced by a single-source co-deposition method in which a mixture of polyethylene and a compound having a phthalocyanine ring at a predetermined ratio is placed in one crucible and vacuum evaporated under the same conditions as above, or by a single-source co-deposition method in which a mixture of polyethylene and a compound having a phthalocyanine ring is placed in one crucible in a predetermined ratio. It can be formed by a two-source co-evaporation method in which polyethylene and a compound having a phthalocyanine ring are separately added and vacuum evaporated under the same conditions as described above. The mixing ratio of the polyethylene vapor deposit and the vapor deposit of the compound having a phthalocyanine ring in the formed co-evaporation product of the polyethylene vapor deposit and the vapor deposit of the compound having a phthalocyanine ring can be arbitrarily changed depending on the film forming conditions. Although it is possible, it is preferable that the weight ratio of the vapor deposited material having a phlocyanine ring/the vapor deposited material of polyethylene is in the range of 0.01 to 10, more preferably in the range of 0.5 to 2. The film thickness of the codeposit is preferably 500 to 50,000 Å, and 1000 to 10,000 Å.
The range is more preferable. The substrate used in the present invention may be any substrate that can be used for ordinary recording media. Specific examples of such substrates include glass, polymethyl methacrylate, polycarbonate, polyvinyl oxide, and the like. Further, if necessary, a substrate on which a film with a high reflectance such as aluminum is formed, or an aluminum plate with a high surface reflectance may be used as the substrate. Next, the recording medium of the present invention will be explained based on examples. Example 1 Polyethylene vapor deposited on a glass substrate with a film thickness of
2000 Å, and AlCl−
A stacked composite film was prepared by depositing Pc(H) 16 to a thickness of 3000 Å. When the obtained composite film was observed under an optical microscope, no non-uniformity was observed, and it was confirmed that it was a clean thin film with excellent surface smoothness. Using an AlGaAs semiconductor laser (oscillation wavelength 780 nm), the beam is narrowed to a diameter of 1 μm using a lens.
The composite film was irradiated with a 5 μsec pulse. At this time, the laser power on the film was 6.7 mw.
When the surface was observed using a scanning electron microscope, the formation of neat circular pits with a diameter of approximately 1 μm was confirmed. Comparative Example 1 A vapor deposit of AlCl-Pc(H) 16 was placed on a glass substrate to a film thickness of 2000 Å, and the same test as in Example 1 was conducted, but no pit formation was observed. Ta. When the pulse width was set to 50 μsec, only what appeared to be pits was observed, but the shape was insufficient. Comparative Example 2 Polyethylene vapor deposited on a glass substrate with a film thickness of
When the film was formed to a thickness of 2000 Å and subjected to the same test as in Example 1, no pits were observed. Even when the pulse width was set to 50 μsec, pits could not be confirmed. As can be seen from the results of Example 1 and Comparative Examples 1 and 2 above, when phthalocyanine and polyethylene are composited by vapor deposition, the pulse width increases.
A highly sensitive recording medium that can be recorded with a 0.5μsec laser beam was obtained. That is, in this case, the polyethylene deposit plays the role of a sensitivity improving material. Example 2 Polyethylene and AlCl-Pc(H) 1 on a glass substrate
A thin film with a total thickness of 9000 Å was fabricated by two-source co-evaporation in step 6 . The weight ratio of the AlCl-Pc(H) 16 /polyethylene deposit was 0.8. When the obtained composite film was observed under an optical microscope, no non-uniformity was observed, and it was confirmed that it was a clean thin film with excellent surface smoothness. When the same test as in Example 1 was conducted, the formation of pits with a diameter of about 1 μm was confirmed as in Example 1. [Effects of the Invention] A recording medium highly sensitive to laser light pulses was obtained by combining a vapor deposit of a compound having a fucrocyanine ring formed by a vacuum vapor deposition method with a vapor deposit of polyethylene.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板上に形成されたフタロシアニン環
を有する化合物から形成された薄膜の吸収スペク
トルの具体例を示すグラフ、第2図は、ポリエチ
レンとその蒸着物のGPCによる分子量分布の測
定結果である。
Figure 1 is a graph showing a specific example of the absorption spectrum of a thin film formed from a compound having a phthalocyanine ring formed on a substrate, and Figure 2 is the result of measuring the molecular weight distribution of polyethylene and its vapor deposits by GPC. .

Claims (1)

【特許請求の範囲】 1 半導体レーザにより記録、再生を行なう情報
記録媒体において、記録層が真空蒸着法により基
体上に形成されたポリエチレンの蒸着物のうえに
フタロシアニン環を有する化合物の蒸着物が形成
された複合膜またはフタロシアニン環を有する化
合物の蒸着物とポリエチレンの蒸着物とがお互い
に分散しあつた共蒸着物からなる複合膜からなる
ことを特徴とする光学的情報記録媒体。 2 フタロシアニン環を有する化合物が一般式
(): 【化】 (式中、Mは価の金属、価の金属の酸化
物、価もしくは価の金属のハロゲン化物また
は水素2原子、Xは水素原子またはハロゲン原子
であり、それぞれのXが異なつていてもよく、同
一であつてもよい)で示される化合物であること
を特徴とする特許請求の範囲第1項記載の光学的
情報記録媒体。
[Scope of Claims] 1. In an information recording medium that performs recording and reproduction using a semiconductor laser, the recording layer is formed on a polyethylene deposit formed on a substrate by a vacuum deposition method, and a deposit of a compound having a phthalocyanine ring is formed thereon. 1. An optical information recording medium comprising a composite film comprising a co-evaporated composite film or a co-evaporated composite film in which a vapor deposit of a compound having a phthalocyanine ring and a vapor deposit of polyethylene are mutually dispersed. 2 A compound having a phthalocyanine ring has the general formula (): [Chemical formula] (where M is a valent metal, an oxide of a valent metal, a halide of a valent metal or a valent metal, or two hydrogen atoms, and X is a hydrogen atom or 2. The optical information recording medium according to claim 1, wherein the optical information recording medium is a halogen atom, and each X may be different or the same.
JP60097528A 1985-05-07 1985-05-07 Optical information-recording medium Granted JPS61254392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097528A JPS61254392A (en) 1985-05-07 1985-05-07 Optical information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097528A JPS61254392A (en) 1985-05-07 1985-05-07 Optical information-recording medium

Publications (2)

Publication Number Publication Date
JPS61254392A JPS61254392A (en) 1986-11-12
JPH0582315B2 true JPH0582315B2 (en) 1993-11-18

Family

ID=14194748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097528A Granted JPS61254392A (en) 1985-05-07 1985-05-07 Optical information-recording medium

Country Status (1)

Country Link
JP (1) JPS61254392A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749231B2 (en) * 1985-08-13 1995-05-31 三菱化学株式会社 Optical recording body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782096A (en) * 1980-11-12 1982-05-22 Ricoh Co Ltd Optical information recording medium
JPS57212636A (en) * 1981-06-23 1982-12-27 Ricoh Co Ltd Optical information recording medium
JPS58112794A (en) * 1981-12-28 1983-07-05 Ricoh Co Ltd Optical information recording medium
JPS5967093A (en) * 1982-10-11 1984-04-16 Tdk Corp Optical recording medium
JPS59190895A (en) * 1983-04-14 1984-10-29 Tdk Corp Optical recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782096A (en) * 1980-11-12 1982-05-22 Ricoh Co Ltd Optical information recording medium
JPS57212636A (en) * 1981-06-23 1982-12-27 Ricoh Co Ltd Optical information recording medium
JPS58112794A (en) * 1981-12-28 1983-07-05 Ricoh Co Ltd Optical information recording medium
JPS5967093A (en) * 1982-10-11 1984-04-16 Tdk Corp Optical recording medium
JPS59190895A (en) * 1983-04-14 1984-10-29 Tdk Corp Optical recording medium

Also Published As

Publication number Publication date
JPS61254392A (en) 1986-11-12

Similar Documents

Publication Publication Date Title
US4492750A (en) Ablative infrared sensitive devices containing soluble naphthalocyanine dyes
US5080947A (en) Information recording medium
US4529688A (en) Infrared sensitive phthalocyanine compositions
US4458004A (en) Optical information recording medium
EP0195532A1 (en) An information recording medium
JPH0582315B2 (en)
JPH0582314B2 (en)
JPS5816888A (en) Lasers-recording film
US20040191688A1 (en) Optical recording material, optical recording medium and manufacturing method thereof, optical recording method and reproduction method
JPS62222893A (en) Optical information recording medium and its manufacture
JPH01184189A (en) Phase change type optical data recording medium
JP3564962B2 (en) Optical recording medium and optical recording / reproducing method thereof
JP3742507B2 (en) Optical recording medium
JPS6364794A (en) Optical recording medium
CN1311739A (en) Information recording medium and method
JP2697770B2 (en) Optical recording and reproduction method
JPS6398493A (en) Optical recording medium
JP2585459B2 (en) Optical information recording medium
JPH0361584A (en) Data recording medium
JPS62201288A (en) Light information recording medium
JPS62231439A (en) Optical recording medium
JPS6360796A (en) Optical information recording medium
JPS62202792A (en) Optical recording medium
JPH02204089A (en) Optical card
JPS60124292A (en) Recording method for optical recording medium