JPS62222618A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JPS62222618A
JPS62222618A JP61296973A JP29697386A JPS62222618A JP S62222618 A JPS62222618 A JP S62222618A JP 61296973 A JP61296973 A JP 61296973A JP 29697386 A JP29697386 A JP 29697386A JP S62222618 A JPS62222618 A JP S62222618A
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
layer capacitor
electrode
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61296973A
Other languages
Japanese (ja)
Other versions
JPH0479127B2 (en
Inventor
敦 西野
田島 巖
村中 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP54007768A external-priority patent/JPS6015138B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61296973A priority Critical patent/JPS62222618A/en
Publication of JPS62222618A publication Critical patent/JPS62222618A/en
Publication of JPH0479127B2 publication Critical patent/JPH0479127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気二重層キャパシターに関するもので、更に
詳細に説明すれば、分極性電極として活性炭繊維を用い
ることにより、分極性電極の加工性、利用効率を改善す
るとともに、単位体積当たり充電容量の大きい電気二重
層キャパシターを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric double layer capacitor, and more specifically, by using activated carbon fibers as polarizable electrodes, the processability and utilization efficiency of the polarizable electrodes are improved, and The present invention provides an electric double layer capacitor with a large charging capacity per unit volume.

従来、この種の電気二重層キャパシターの分極性電極と
しては、アルミニウムのような金属の薄板、ネットまた
はパンチングメタルをそのまま用いるか、若しくはこれ
らの集電体金属表面をエツチング処理などにより表面を
粗面化したものを金属集電体として、この両表面に、活
性炭からなる分極性電極材料を成型プレスするか、また
はゴム状のものを圧延ロールにかけて担持されることに
より分極性電極を製造していた。
Conventionally, as polarizable electrodes for this type of electric double layer capacitor, thin metal plates such as aluminum, nets, or punched metals have been used as they are, or the surfaces of these current collector metals have been roughened by etching. Polarizable electrodes were manufactured by using the resulting metal current collector as a metal current collector, and by mold-pressing a polarizable electrode material made of activated carbon onto both surfaces of the metal current collector, or by rolling a rubber-like material to support it. .

しかしながら、このような集電体を用いて製造した分極
性電極は金属集電体と活性炭電極との接触が強固でなく
、特に圧延ローラにかけて薄くした分極性電極を巻回し
て渦巻き構造にしたものは、集電体の外側の活性炭電極
層と集電体の内側の活性炭電極層とは応力がそれぞれ逆
にかかるため、集電体と活性炭電極との接触は一層弱く
なり、このため電気二重層キャパシターの内部抵抗が次
第に増大したり、活性炭電極層の利用効率が次第に低下
する等の欠点があった。
However, in polarizable electrodes manufactured using such current collectors, the contact between the metal current collector and the activated carbon electrode is not strong, and in particular, polarizable electrodes manufactured using a rolling roller are rolled to form a spiral structure. Since stress is applied to the activated carbon electrode layer on the outside of the current collector and the activated carbon electrode layer on the inside of the current collector, the contact between the current collector and the activated carbon electrode becomes weaker, and therefore the electric double layer There were drawbacks such as a gradual increase in the internal resistance of the capacitor and a gradual decrease in the utilization efficiency of the activated carbon electrode layer.

、また前述の従来の構造の場合、電気二重層キャパシタ
ーを大量に量産するときに、これらの問題は更に深刻で
ある。すなわち、分極性電極を渦巻状に巻回するときに
生じる集電体と活性炭電極層との!II fi、脱落等
による容量のバラツキや活性炭電極層の利用効率の低下
や使用時に内部抵抗が増大し、容量変化や充電時間のバ
ラツキ等が生じ、商品価値上重要な問題となっている。
Furthermore, in the case of the conventional structure described above, these problems become even more serious when mass-producing electric double layer capacitors. In other words, the current collector and activated carbon electrode layer formed when the polarizable electrode is spirally wound! II fi, variations in capacity due to falling off, etc., decrease in utilization efficiency of the activated carbon electrode layer, and increase in internal resistance during use, resulting in changes in capacity and variations in charging time, etc., which are important problems in terms of commercial value.

本発明ではこれらの欠点を解決するために、分極性電極
となる活性炭繊維に直接導電性集電極を設けたものであ
る。
In the present invention, in order to solve these drawbacks, a conductive collector electrode is provided directly on the activated carbon fiber serving as the polarizable electrode.

活性炭繊維の原料繊維としては、類別すると、フェノー
ル系(硬化ノボラック繊維)、レーヨン系、アクリル系
、ピッチ系の四種類がある。これらの原料繊維は炭化賦
活したとき比表面積が大きく、電気抵抗が小さく、形状
加工に必要な柔軟性と引張強度に耐え、また長時間の電
解質との接触に対する耐薬品性を有さねばならない。
There are four types of raw material fibers for activated carbon fibers: phenol type (cured novolac fiber), rayon type, acrylic type, and pitch type. These raw material fibers must have a large specific surface area when carbonized, have low electrical resistance, withstand flexibility and tensile strength necessary for shaping, and have chemical resistance against long-term contact with electrolytes.

なお、これらの原料繊維を用いて、炭素繊維化あるいは
活性炭繊維化する方法を示すと図のようになる。この図
から理解できるように、原料繊維を直接炭化、賦活する
方法と、一旦炭素繊維化したあとに賦活する方法とがあ
る。一般的には、一度炭素繊維化した後、水蒸気と窒素
からなる混合ガス雰囲気下で700〜800℃の温度で
賦活化を行う。また、一般に、炭素繊維の比表面積と電
気抵抗、柔軟性とは反比例の関係にあるので、炭素繊維
から活性炭繊維に賦活するに従って比表面積の増大がと
もない、炭化収率は低下し、電気抵抗、柔軟性は悪(な
る。
The figure below shows a method of forming carbon fibers or activated carbon fibers using these raw material fibers. As can be understood from this figure, there are two methods: one is to carbonize and activate the raw material fiber directly, and the other is to activate it after it has been turned into carbon fiber. Generally, once carbon fibers are formed, activation is performed at a temperature of 700 to 800° C. in a mixed gas atmosphere consisting of water vapor and nitrogen. Additionally, since the specific surface area of carbon fibers, electrical resistance, and flexibility are generally inversely proportional to each other, as carbon fibers are activated to activated carbon fibers, the specific surface area increases and the carbonization yield decreases, resulting in electrical resistance, Flexibility is evil.

電気二重層キャパシターの分極性電極として用いるため
には、原料繊維の種類によって異なるが、炭化収率は1
0〜80%程度が好ましく、炭化収率が10%以下では
比表面積が大になるが、原料繊維によって柔軟性がなく
なり、渦巻状に巻回したり、また、逆に炭化収率80%
以上では、電気抵抗、柔軟性、炭素繊維強度等は優れて
いるが、比表面積が小となり単位体積当たりの電気容量
が小となるので好ましくない。
In order to use it as a polarizable electrode of an electric double layer capacitor, the carbonization yield is 1, although it varies depending on the type of raw material fiber.
About 0 to 80% is preferable, and if the carbonization yield is less than 10%, the specific surface area becomes large, but the raw material fiber loses its flexibility and may wind into a spiral, or conversely, if the carbonization yield is 80%.
The above-mentioned materials are excellent in electrical resistance, flexibility, carbon fiber strength, etc., but are not preferable because the specific surface area becomes small and the electric capacity per unit volume becomes small.

ここで、繊維の炭化収率とは、 を炭化収率といい、フェノール繊維の場合、炭素繊維の
炭化収率は50〜58%で活性炭繊維の炭化収率は、1
8〜55%程度となる。
Here, the carbonization yield of fiber is referred to as the carbonization yield, and in the case of phenol fiber, the carbonization yield of carbon fiber is 50 to 58%, and the carbonization yield of activated carbon fiber is 1
It will be about 8 to 55%.

表1にそれぞれ種類の異なる炭素繊維の特徴を示してい
る。この表より明らかなように、アクリル系、ピッチ系
は、一般に稍々柔軟性にかけ、また比表面積が稍々少な
い。また、レーヨン系は比表面積が大であるが、繊維が
もろく、またフェルト状の炭素繊維は普及しているが、
抄紙が困難で、ペーパー状にするのは不可能であり、耐
薬品性、耐水性に問題がある。一方、フェノール系炭素
繊維は硬化ノボラック繊維を原料とするもので、このフ
ェノール系炭素繊維は硬化ノボラック繊維が不溶融性で
且つ熱収縮が小さいために原料繊維を予め不融化する必
要がなく、織物や不織布がそのまま活性炭化ができ、ま
た強くて柔軟性に優れているので、電気二重層キャパシ
ターの分極性電極として、特に優れている。また、フェ
ノール系炭素繊維を原料にした抄紙化には数々の特長を
有し、特にフェノール系炭素繊維を原料にバインダーと
して特殊カイノール(日本カイノール株式会社製フェノ
ール系繊維の商品名)を用いて抄紙化したものは、柔軟
性、電気抵抗、耐薬品性、巻回加工強度、加工精度、電
気容量、コスト等の数々の面で極めて優れた特長を有す
ることが認められた。
Table 1 shows the characteristics of different types of carbon fibers. As is clear from this table, acrylic and pitch-based materials are generally slightly more flexible and have a slightly smaller specific surface area. In addition, although rayon-based fibers have a large specific surface area, the fibers are brittle, and although felt-like carbon fibers are popular,
It is difficult to make paper, it is impossible to make it into paper form, and there are problems with chemical resistance and water resistance. On the other hand, phenolic carbon fibers are made from cured novolac fibers, and since the cured novolac fibers are infusible and have low heat shrinkage, there is no need to make the raw material fibers infusible beforehand, and it can be used to fabricate woven fabrics. It is particularly excellent as a polarizable electrode for electric double layer capacitors because it can be activated carbonized as it is and is strong and flexible. In addition, paper making using phenolic carbon fiber as a raw material has a number of advantages, especially paper making using phenolic carbon fiber as a raw material and special Kynol (trade name of phenolic fiber manufactured by Nippon Kynor Co., Ltd.) as a binder. It was recognized that the resulting product has extremely excellent features in many aspects such as flexibility, electrical resistance, chemical resistance, winding strength, processing accuracy, electric capacity, and cost.

次に、従来例として、粉末ヤシガラ炭を原料にアルミニ
ウムのパンチングメタル(t=0.1m+n)のエツチ
ング処理を施したものを集電体とし、この集電体の両面
に厚み200μの活性炭電極層を圧延により加工処理し
、電極寸法(20ciX2.5co+X0.5mm)の
形状に切断して電極を得た。これに公知の方法で、アル
ミニウムのリードを取付け、そして2枚の電極間にポリ
プロピレンのセパレーターを挾み込み、巻取機で、渦巻
状に巻き取る。そして、これを直径16m+nφ、長さ
33 mamのアルミニウムのケースに入れ、ケース溝
入れ、蓋のとりつけ、電解液の注入(真空含浸)、かし
め封口を行うことにより従来品を得た。
Next, as a conventional example, a current collector is made of powdered coconut husk charcoal and etched with aluminum punching metal (t=0.1m+n), and activated carbon electrode layers with a thickness of 200μ are formed on both sides of this current collector. was processed by rolling and cut into a shape with electrode dimensions (20 ci x 2.5 co + x 0.5 mm) to obtain an electrode. An aluminum lead is attached to this by a known method, a polypropylene separator is inserted between the two electrodes, and the material is wound into a spiral shape using a winder. Then, this was placed in an aluminum case with a diameter of 16 m + nφ and a length of 33 mm, and a conventional product was obtained by grooving the case, attaching a lid, injecting electrolyte (vacuum impregnation), and caulking.

次に、本発明の実施例について述べる。レーヨン系フェ
ルト状活性炭繊維、アクリル系フェルト状活性炭繊維、
ピッチ系フェルト状活性炭繊維、フェノール系フェルト
状活性炭繊維、フェノール系クロス状活性炭繊維、フェ
ノール系抄紙状活性炭繊維からなるそれぞれの活性炭繊
維原料を用い、これを分極性電極形状(20cm X 
2 、5 cm XO,5+nm)に切断し、それぞれ
の活性炭繊維の電極間にPTFE系のセパレーターを挾
み込み、巻取機で渦巻状に巻き取る。この時、対極の端
面のみIn11m程度の段差を設けて巻き取る。電極の
取り出しはアルミニウム導線を用い、アルミニウム粉末
を用いたプラズマ溶射法により、両端面から両極の集電
とリード端子とを同時に形成する。このようにして得ら
れた活性炭繊維からなる電極を前述の従来品と同様な方
法で組立、ハウジングを行い、そして電解液としては、
プロピレンカーボネートを溶媒として、IM/eのテト
ラエチルアンモニウムバークロレートを電解質としたも
のを用いた。
Next, examples of the present invention will be described. Rayon-based felt-like activated carbon fiber, acrylic-based felt-like activated carbon fiber,
Activated carbon fiber raw materials consisting of pitch-based felt-like activated carbon fibers, phenolic-based felt-like activated carbon fibers, phenolic-based cross-like activated carbon fibers, and phenol-based paper-like activated carbon fibers were used as polarizable electrode shapes (20 cm x
A PTFE separator is inserted between the electrodes of each activated carbon fiber, and the activated carbon fiber is wound into a spiral shape using a winder. At this time, a step of about In11 m is provided only on the end face of the opposite electrode, and the electrode is wound. The electrodes are taken out using aluminum conductive wires, and current collectors and lead terminals for both poles are simultaneously formed from both end faces by plasma spraying using aluminum powder. The electrode made of activated carbon fiber thus obtained was assembled and housingd in the same manner as the conventional product described above, and the electrolyte was
Propylene carbonate was used as a solvent and IM/e's tetraethylammonium barchlorate was used as an electrolyte.

このようにして製作した本発明の実施例と従来例との特
性を表2に比較して示している。この表から判るように
、分極性電極として活性炭繊維を用いこれに集電極層を
形成した本発明によれば、単位体積当たりの容量、内部
抵抗を著しく改善することができる。
Table 2 shows a comparison of the characteristics of the embodiment of the present invention manufactured in this way and the conventional example. As can be seen from this table, according to the present invention in which activated carbon fiber is used as a polarizable electrode and a collector electrode layer is formed thereon, the capacitance per unit volume and internal resistance can be significantly improved.

以上のように本発明の電気二重層キャパシターにおいて
は活性炭繊維に導電性電極層を形成しているので、素子
の内部抵抗は小さくなる、また活性炭繊維の形状もよく
保たれる。
As described above, in the electric double layer capacitor of the present invention, since the conductive electrode layer is formed on the activated carbon fiber, the internal resistance of the element is reduced, and the shape of the activated carbon fiber is well maintained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の電気二重層キャパシターで用いる活性炭繊
維の製造法の説明図である。
The figure is an explanatory diagram of a method for manufacturing activated carbon fibers used in the electric double layer capacitor of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)活性炭繊維からなる分極性電極と、前記分極性電
極間に介在させたセパレータと、電解液と、前記活性炭
繊維に形成した導電性集電極を具備することを特徴とす
る電気二重層キャパシター。
(1) An electric double layer capacitor comprising a polarizable electrode made of activated carbon fibers, a separator interposed between the polarizable electrodes, an electrolyte, and a conductive collector electrode formed on the activated carbon fibers. .
(2)導電性集電極は金属を溶射ししたものであること
を特徴とする特許請求の範囲第1項記載の電気二重層キ
ャパシター。
(2) The electric double layer capacitor according to claim 1, wherein the conductive collector electrode is formed by spraying metal.
(3)導電性集電極はアルミニウムであることを特徴と
する特許請求の範囲第1項または第2項記載の電気二重
層キャパシター。
(3) The electric double layer capacitor according to claim 1 or 2, wherein the conductive collector electrode is made of aluminum.
JP61296973A 1979-01-25 1986-12-12 Electric double-layer capacitor Granted JPS62222618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296973A JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP54007768A JPS6015138B2 (en) 1979-01-25 1979-01-25 electric double layer capacitor
JP61296973A JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Publications (2)

Publication Number Publication Date
JPS62222618A true JPS62222618A (en) 1987-09-30
JPH0479127B2 JPH0479127B2 (en) 1992-12-15

Family

ID=26342119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296973A Granted JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPS62222618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112719A (en) * 1987-10-27 1989-05-01 Kuraray Co Ltd Electric double-layer capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713577A (en) * 1970-12-28 1972-07-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713577A (en) * 1970-12-28 1972-07-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112719A (en) * 1987-10-27 1989-05-01 Kuraray Co Ltd Electric double-layer capacitor

Also Published As

Publication number Publication date
JPH0479127B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
JPS6015138B2 (en) electric double layer capacitor
EP1400996B1 (en) Organic electrolyte capacitor
EP0112923B1 (en) Double electric layer capacitor
JPS6351535B2 (en)
JPH08107048A (en) Electric double-layer capacitor
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
EP0680061A1 (en) Electric double-layer capacitor
EP1677321A1 (en) Electric double layer capacitor
JP2010238680A (en) Electrode for electric storage device, method of manufacturing the same, and lithium ion capacitor
JPH06342739A (en) Electric double layer capacitor and manufacture thereof
JPS62222618A (en) Electric double-layer capacitor
JPS6325694B2 (en)
JPH1041199A (en) Manufacture of large-capacity electric double layer capacitor
JPS60235419A (en) Electric double layer capacitor
JPS62222619A (en) Manufacture of electric double-layer capacitor
JPS62222617A (en) Electric double-layer capacitor
JPH04286108A (en) Electric double layer capacitor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPS6159716A (en) Electric double layer capacitor
JP2723578B2 (en) Organic electrolyte battery
JPS59138327A (en) Electric double layer capacitor
JP3023129B2 (en) Wet condenser using organic semiconductor
JP2003297695A (en) Electric double layer capacitor
KR102631343B1 (en) Hybrid ion capacitor and method for manufacturing the same
JPH08222485A (en) Electric double-layered capacitor