JPH0479127B2 - - Google Patents

Info

Publication number
JPH0479127B2
JPH0479127B2 JP61296973A JP29697386A JPH0479127B2 JP H0479127 B2 JPH0479127 B2 JP H0479127B2 JP 61296973 A JP61296973 A JP 61296973A JP 29697386 A JP29697386 A JP 29697386A JP H0479127 B2 JPH0479127 B2 JP H0479127B2
Authority
JP
Japan
Prior art keywords
activated carbon
fibers
electrode
electric double
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61296973A
Other languages
Japanese (ja)
Other versions
JPS62222618A (en
Inventor
Atsushi Nishino
Iwao Tajima
Takayoshi Muranaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP54007768A external-priority patent/JPS6015138B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61296973A priority Critical patent/JPS62222618A/en
Publication of JPS62222618A publication Critical patent/JPS62222618A/en
Publication of JPH0479127B2 publication Critical patent/JPH0479127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気二重層キヤパシターに関するもの
で、更に詳細に説明すれば、分極性電極として活
性炭繊維を用いることにより、分極性電極の加工
性、利用効率を改善するとともに、単位体積当た
り充電容量の大きい電気二重層キヤパシターを提
供するものである。 従来、この種の電気二重層キヤパシターの分極
性電極としては、アルミニウムのような金属の薄
板、ネツトまたはパンチングメタルをそのまま用
いるか、若しくはこれらの集電体金属表面をエツ
チング処理などにより表面を粗面化したものを金
属集電体として、この両表面に、活性炭からなる
分極性電極材料を成型プレスするか、またはゴム
状のものを圧延ロールにかけて担持されることに
より分極性電極を製造していた。 しかしながら、このような集電体を用いて製造
した分極性電極は金属集電体と活性炭電極との接
触が強固でなく、特に圧延ローラにかけて薄くし
た分極性電極を巻回して渦巻き構造にしたもの
は、集電体の外側の活性炭電極層と集電体の内側
の活性炭電極層とは応力がそれぞれ逆にかかるた
め、集電体と活性炭電極との接触は一層弱くな
り、このため電気二重層キヤパシターの内部抵抗
が次第に増大したり、活性炭電極層の利用効率が
次第に低下する等の欠点があつた。 また前述の従来の構造の場合、電気二重層キヤ
パシターを大量に量産するときに、これらの問題
は更に深刻である。すなわち、分極性電極を渦巻
状に巻回するときに生じる集電体と活性炭電極層
との剥離、脱落等による容量のバラツキや活性炭
電極層の利用効率の低下や使用時に内部抵抗が増
大し、容量変化や充電時間のバラツキ等が生じ、
商品価値上重要な問題となつている。 本発明ではこれらの欠点を解決するために、分
極性電極となる活性炭繊維に直接導電性集電極を
設けたものである。 活性炭繊維の原料繊維としては、類別すると、
フエノール系(硬化ノボラツク繊維)、レーヨン
系、アクリル系、ピツチ系の四種類がある。これ
らの原料繊維は炭化賦活したとき比表面積が大き
く、電気抵抗が小さく、形状加工に必要な柔軟性
と引張強度に耐え、また長時間の電解質との接触
に対する耐薬品性を有さねばならない。 なお、これらの原料繊維を用いて、炭素繊維化
あるいは活性炭繊維化する方法を示すと図のよう
になる。この図から理解できるように、原料繊維
を直接炭化、賦活する方法と、一旦炭素繊維化し
たあとに賦活する方法とがある。一般的には、一
度炭素繊維化した後、水蒸気と窒素からなる混合
ガス雰囲気下で700〜800℃の温度で賦活化を行
う。また、一般に、炭素繊維の比表面積と電気抵
抗、柔軟性とは反比例の関係にあるので、炭素繊
維から活性炭繊維に賦活するに従つて比表面積の
増大がともない、炭化収率は低下し、電気抵抗、
柔軟性は悪くなる。 電気二重層キヤパシターの分極性電極として用
いるためには、原料繊維の種類によつて異なる
が、炭化収率は10〜80%程度が好ましい。炭化収
率が10%より小さいと炭化繊維の比表面積は大と
なるが、柔軟性がなくなり実用的ではない。また
炭化収率が80%より大きいと炭化繊維の電気抵
抗、柔軟性、強度などは優れているが、比表面積
が小となり、単位体積当たりの電気容量が小とな
るので好ましくない。 ここで、繊維の炭化収率とは、
The present invention relates to an electric double layer capacitor, and more specifically, by using activated carbon fiber as a polarizable electrode, the processability and utilization efficiency of the polarizable electrode are improved, and the charging capacity per unit volume is large. The present invention provides an electric double layer capacitor. Conventionally, as polarizable electrodes for this type of electric double layer capacitor, thin metal plates such as aluminum, nets, or punched metals have been used as they are, or the surfaces of these current collector metals have been roughened by etching or other means. Polarizable electrodes were manufactured by using the resulting metal current collector as a metal current collector, and by mold-pressing a polarizable electrode material made of activated carbon onto both surfaces of the metal current collector, or by rolling a rubber-like material to support it. . However, in polarizable electrodes manufactured using such current collectors, the contact between the metal current collector and the activated carbon electrode is not strong, and in particular, polarizable electrodes manufactured using a rolling roller are rolled to form a spiral structure. Since stress is applied to the activated carbon electrode layer on the outside of the current collector and the activated carbon electrode layer on the inside of the current collector, the contact between the current collector and the activated carbon electrode becomes weaker, and therefore the electric double layer There were drawbacks such as a gradual increase in the internal resistance of the capacitor and a gradual decrease in the utilization efficiency of the activated carbon electrode layer. Furthermore, in the case of the conventional structure described above, these problems become even more serious when electric double layer capacitors are mass-produced in large quantities. In other words, when the polarizable electrode is spirally wound, the current collector and the activated carbon electrode layer may peel off or fall off, resulting in variations in capacity, a decrease in the utilization efficiency of the activated carbon electrode layer, and an increase in internal resistance during use. Changes in capacity and variations in charging time may occur.
This has become an important issue in terms of product value. In the present invention, in order to solve these drawbacks, a conductive collector electrode is provided directly on the activated carbon fiber serving as the polarizable electrode. The raw material fibers for activated carbon fiber can be categorized as follows:
There are four types: phenol type (cured novolac fiber), rayon type, acrylic type, and pitch type. These raw material fibers must have a large specific surface area when carbonized, have low electrical resistance, withstand flexibility and tensile strength necessary for shaping, and have chemical resistance against long-term contact with electrolyte. The figure below shows a method of forming carbon fibers or activated carbon fibers using these raw material fibers. As can be understood from this figure, there are two methods: one is to carbonize and activate the raw material fiber directly, and the other is to activate it after it has been turned into carbon fiber. Generally, after carbon fibers are formed, activation is performed at a temperature of 700 to 800°C in a mixed gas atmosphere consisting of water vapor and nitrogen. Additionally, since the specific surface area of carbon fibers, electrical resistance, and flexibility are generally inversely proportional to each other, as carbon fibers are activated to activated carbon fibers, the specific surface area increases, the carbonization yield decreases, and the electrical resistance decreases. resistance,
Flexibility deteriorates. In order to use it as a polarizable electrode of an electric double layer capacitor, the carbonization yield is preferably about 10 to 80%, although it varies depending on the type of raw material fiber. If the carbonization yield is less than 10%, the specific surface area of the carbonized fibers will be large, but the fibers will not have flexibility and are not practical. Further, if the carbonization yield is higher than 80%, the carbonized fibers have excellent electrical resistance, flexibility, strength, etc., but the specific surface area becomes small and the electric capacity per unit volume becomes small, which is not preferable. Here, the carbonization yield of fiber is

【表】 炭素繊維の重量/原料繊維の重量×100(%)または 活性炭繊維の重量/原料繊維の重量×100(%)で表さ
れるものを 炭化収率といい、フエノール繊維の場合、炭素繊
維の炭化収率は50〜58%で活性炭繊維の炭化収率
は、18〜55%程度となる。 表1にそれぞれ種類の異なる炭素繊維の特徴を
示している。この表より明らかなように、アクリ
ル系、ピツチ系は、一般に稍々柔軟性にかけ、ま
た比表面積が稍々少ない。また、レーヨン系は比
表面積が大であるが、繊維がもろく、またフエル
ト状の炭素繊維は普及しているが、抄紙が困難
で、ペーパー状にするのは不可能であり、耐薬品
性、耐水性に問題がある。一方、フエノール系炭
素繊維は硬化ノボラツク繊維を原料とするもの
で、このフエノール系炭素繊維は硬化ノボラツク
繊維が不溶融性で且つ熱収縮が小さいために原料
繊維を予め不融化する必要がなく、織物や不織布
がそのまま活性炭化ができ、また強くて柔軟性
[Table] Carbonization yield is expressed as weight of carbon fiber/weight of raw material fiber x 100 (%) or weight of activated carbon fiber/weight of raw material fiber x 100 (%). The carbonization yield of fibers is 50 to 58%, and the carbonization yield of activated carbon fibers is approximately 18 to 55%. Table 1 shows the characteristics of different types of carbon fibers. As is clear from this table, acrylic and pitch type materials are generally somewhat flexible and have a slightly smaller specific surface area. In addition, although rayon-based fibers have a large specific surface area, their fibers are brittle, and although felt-like carbon fibers are popular, they are difficult to make into paper, and they have poor chemical resistance. There is a problem with water resistance. On the other hand, phenolic carbon fibers are made from cured novolac fibers, and since the cured novolac fibers are infusible and have low heat shrinkage, there is no need to make the raw material fibers infusible beforehand, and the phenolic carbon fibers can be woven into fabrics. Non-woven fabrics can be activated carbonized as they are, and are strong and flexible.

【表】 に優れているので、電気二重層キヤパシターの分
極性電極として、特に優れている。また、フエノ
ール系炭素繊維を原料にした抄紙化には数々の特
長を有し、特にフエノール系炭素繊維を原料にバ
インダーとして特殊カイノール(日本カイノール
株式会社製フエノール系繊維の商品名)を用いて
抄紙化したものは、柔軟性、電気抵抗、耐薬品
性、巻回加工強度、加工精度、電気容量、コスト
等の数々の面で極めて優れた特長を有することが
認められた。 次に、従来例として、粉末ヤシガラ炭を原料に
アルミニウムのパンチングメタル(t=0.1mm)
のエツチング処理を施したものを集電体とし、こ
の集電体の両面に厚み200μの活性炭電極層を圧
延により加工処理し、電極寸法(20cm×2.5cm×
0.5mm)の形状に切断して電極を得た。これに公
知の方法で、アルミニウムのリードを取付け、そ
して2枚の電極間にポリプロピレンのセパレータ
ーを挾み込み、巻取機で、渦巻状に巻き取る。そ
して、これを直径16mmφ、長さ33mmのアルミニウ
ムのケースに入れ、ケース溝入れ、蓋のとりつ
け、電解液の注入(真空含浸)、かしめ封口を行
うことにより従来品を得た。 次に、本発明の実施例について述べる。レーヨ
ン系フエルト状活性炭繊維、アクリル系フエルト
状活性炭繊維、ピツチ系フエルト状活性炭繊維、
フエノール系フエルト状活性炭繊維、フエノール
系クロス状活性炭繊維、フエノール系抄紙状活性
炭繊維からなるそれぞれの活性炭繊維原料を用
い、これを分極性電極形状(20cm×2.5cm×0.5
mm)に切断し、それぞれの活性炭繊維の電極間に
PTFE系のセパレーターを挾み込み、巻取機で渦
巻状に巻き取る。この時、対極の端面のみ1mm程
度の段差を設けて巻き取る。電極の取り出しはア
ルミニウム導線を用い、アルミニウム粉末を用い
たプラズマ溶射法により、両端面から両極の集電
とリード端子とを同時に形成する。このようにし
て得られた活性炭繊維からなる電極を前述の従来
品と同様な方法で組立、ハウジングを行い、そし
て電解液としては、プロピレンカーボネートを溶
媒として、1M/lのテトラエチルアンモニウム
パークロレートを電解質としたものを用いた。 このようにして製作した本発明の実施例と従来
例との特性を表2に比較して示している。この表
から判るように、分極性電極として活性炭繊維を
用いこれに集電極層を形成した本発明によれば、
単位体積当たりの容量、内部抵抗を著しく改善す
ることができる。 以上のように本発明の電気二重層キヤパシター
においては活性炭繊維に導電性電極層を形成して
いるので、素子の内部抵抗は小さくなる、また活
性炭繊維の形状もよく保たれる。
[Table] Therefore, it is particularly excellent as a polarizable electrode for electric double layer capacitors. In addition, paper making using phenolic carbon fiber as a raw material has a number of advantages.In particular, paper is made using phenolic carbon fiber as a raw material and special Kynol (trade name of phenolic fiber manufactured by Nippon Kynor Co., Ltd.) as a binder. It was recognized that the resulting product has extremely excellent features in many aspects such as flexibility, electrical resistance, chemical resistance, winding strength, processing accuracy, electric capacity, and cost. Next, as a conventional example, aluminum punching metal (t = 0.1 mm) is made using powdered coconut charcoal as raw material.
A current collector is prepared by etching the current collector, and activated carbon electrode layers with a thickness of 200μ are processed by rolling on both sides of this current collector, and the electrode dimensions (20 cm x 2.5 cm
The electrode was obtained by cutting it into a shape of 0.5 mm). An aluminum lead is attached to this by a known method, a polypropylene separator is inserted between the two electrodes, and the material is wound into a spiral shape using a winder. Then, this was placed in an aluminum case with a diameter of 16 mmφ and a length of 33 mm, and a conventional product was obtained by grooving the case, attaching a lid, injecting electrolyte (vacuum impregnation), and caulking. Next, examples of the present invention will be described. Rayon-based felt-like activated carbon fiber, acrylic-based felt-like activated carbon fiber, pitch-based felt-like activated carbon fiber,
Activated carbon fiber raw materials consisting of phenolic felt-like activated carbon fibers, phenolic cross-like activated carbon fibers, and phenolic paper-like activated carbon fibers were used to form polarizable electrodes (20 cm x 2.5 cm x 0.5 cm).
mm) and cut each activated carbon fiber between the electrodes.
Insert a PTFE separator and wind it up into a spiral using a winder. At this time, a step of about 1 mm is provided only on the end face of the opposite electrode, and the electrode is wound. The electrodes are taken out using aluminum conductive wires, and current collectors and lead terminals for both poles are simultaneously formed from both end faces by plasma spraying using aluminum powder. The electrode made of activated carbon fiber thus obtained was assembled and housed in the same manner as the conventional product described above, and the electrolyte was 1M/l of tetraethylammonium perchlorate using propylene carbonate as the solvent. The following was used. Table 2 shows a comparison of the characteristics of the embodiment of the present invention manufactured in this way and the conventional example. As can be seen from this table, according to the present invention in which activated carbon fiber is used as the polarizable electrode and a collector electrode layer is formed thereon,
Capacity per unit volume and internal resistance can be significantly improved. As described above, in the electric double layer capacitor of the present invention, since the conductive electrode layer is formed on the activated carbon fiber, the internal resistance of the element is reduced and the shape of the activated carbon fiber is well maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の電気二重層キヤパシターで用いる
活性炭繊維の製造法の説明図である。
The figure is an explanatory diagram of a method for producing activated carbon fibers used in the electric double layer capacitor of the present invention.

Claims (1)

【特許請求の範囲】 1 活性炭繊維からなる分極性電極と、前記分極
性電極間に介在させたセパレータと、電解液と、
前記活性炭繊維に接触担持して形成した導電性集
電極を具備することを特徴とする電気二重層キヤ
パシター。 2 導電性集電極は金属を溶射したものであるこ
とを特徴とする特許請求の範囲第1項記載の電気
二重層キヤパシター。 3 導電性集電極はアルミニウムであることを特
徴とする特許請求の範囲第1項または第2項記載
の電気二重層キヤパシター。
[Claims] 1. A polarizable electrode made of activated carbon fibers, a separator interposed between the polarizable electrodes, and an electrolyte;
An electric double layer capacitor comprising a conductive collector electrode formed in contact with the activated carbon fiber. 2. The electric double layer capacitor according to claim 1, wherein the conductive collector electrode is made of a metal sprayed. 3. The electric double layer capacitor according to claim 1 or 2, wherein the conductive collector electrode is made of aluminum.
JP61296973A 1979-01-25 1986-12-12 Electric double-layer capacitor Granted JPS62222618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296973A JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP54007768A JPS6015138B2 (en) 1979-01-25 1979-01-25 electric double layer capacitor
JP61296973A JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Publications (2)

Publication Number Publication Date
JPS62222618A JPS62222618A (en) 1987-09-30
JPH0479127B2 true JPH0479127B2 (en) 1992-12-15

Family

ID=26342119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296973A Granted JPS62222618A (en) 1979-01-25 1986-12-12 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPS62222618A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667837B2 (en) * 1987-10-27 1997-10-27 株式会社クラレ Electric Double Layer Capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713577A (en) * 1970-12-28 1972-07-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713577A (en) * 1970-12-28 1972-07-13

Also Published As

Publication number Publication date
JPS62222618A (en) 1987-09-30

Similar Documents

Publication Publication Date Title
JPS6015138B2 (en) electric double layer capacitor
EP0112923B1 (en) Double electric layer capacitor
EP1400996B1 (en) Organic electrolyte capacitor
JPS6351535B2 (en)
JP3496338B2 (en) Electric double layer capacitor
JPH08107048A (en) Electric double-layer capacitor
JPH10507881A (en) Double-layer condenser
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
JPH0479127B2 (en)
JPS6325694B2 (en)
JPH1041199A (en) Manufacture of large-capacity electric double layer capacitor
JPH0577281B2 (en)
JPS62222617A (en) Electric double-layer capacitor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPS6159716A (en) Electric double layer capacitor
JP2723578B2 (en) Organic electrolyte battery
JPS59138327A (en) Electric double layer capacitor
JP2003297695A (en) Electric double layer capacitor
JPH10144570A (en) Electric double layer capacitor
JPH0444407B2 (en)
JP3023129B2 (en) Wet condenser using organic semiconductor
JP2002260971A (en) Electric double-layer capacitor
JPS63194319A (en) Energy storage device
JPS6355204B2 (en)
JPS6240011A (en) Polarizing electrode and manufacture thereof