JPS62222569A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPS62222569A
JPS62222569A JP6377186A JP6377186A JPS62222569A JP S62222569 A JPS62222569 A JP S62222569A JP 6377186 A JP6377186 A JP 6377186A JP 6377186 A JP6377186 A JP 6377186A JP S62222569 A JPS62222569 A JP S62222569A
Authority
JP
Japan
Prior art keywords
active material
electrolyte
positive electrode
binder
positive active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6377186A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kazunobu Matsumoto
和伸 松本
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6377186A priority Critical patent/JPS62222569A/en
Publication of JPS62222569A publication Critical patent/JPS62222569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To widen the contact area of a positive active material with an electrolyte to increase the utilization of the positive electrode by using a polymer having the affinity to organic solvent as a binder of a positive active material. CONSTITUTION:A polymer having the affinity to organic solvent is used as a binder of a positive active material. The polymer having the affinity to organic solvent is dissolved in an electrolyte forms a high viscous film on the surface of positive active material particles to prevent the separation of the particles and to serve as a binder. Since the high viscous film contains the electrolyte and conducts lithium ions, the wide surface area of the positive active material particles is in contact with the electrolyte without hindering the discharge reaction. Since the particle surface which does not have the affinity to the electrolyte is in contact with the high viscous film containing the electrolyte, the wettability of the positive active material to the electrolyte is improved. As a result, current is distributed, current density is lowered, polarization is reduced, and the utilization of the positive electrode is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に係り、さらに詳しくはその正極
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to lithium batteries, and more particularly to improvements in positive electrodes thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム電池の正極には、正極活物質粉末に結着
剤としてポリテトラフルオロエチレン粉末を加えて加圧
成形するか、または正極活物質粉末に黒鉛などの導電助
剤と結着剤としてのポリテトラフルオロエチレン粉末と
を加えて加圧成形したものが用いられていたく例えば特
開昭55−146880号公報)。
Conventionally, the positive electrode of a lithium battery is made by adding polytetrafluoroethylene powder as a binder to the positive electrode active material powder and press-molding it, or by adding a conductive agent such as graphite to the positive electrode active material powder and a binder as a binder. Polytetrafluoroethylene powder is added and pressure-molded.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記ポリテトラフルオロエチレンは有機電解
液とのなじみが悪く、しかも電気伝導性がないため、正
極活物質表面のポリテトラフルオロエチレンで覆われた
部分は、放電反応に利用されなくなり、その結果、電流
密度が高くなって、分極が大きくなり、正極の利用率が
低下するという問題があった。
However, the polytetrafluoroethylene mentioned above has poor compatibility with organic electrolytes and has no electrical conductivity, so the part covered with polytetrafluoroethylene on the surface of the positive electrode active material is no longer used for the discharge reaction, and as a result, However, there was a problem in that the current density increased, polarization increased, and the utilization rate of the positive electrode decreased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、正極材料の結着剤としてポリエチレンオキサ
イド、ポリメチルメタクリレート、ポリビニルホルマー
ルなどの親有機溶媒性の高分子材料を用いることによっ
て、正極活物質が電解液に広い面積で接触するようにし
、かつ、本来、有機電解液に対する濡れ性が悪い二硫化
チタンなどの正極活物質の電解液に対する濡れ性をも改
善して、電流密度を低くさせ、分極を小さくして、正極
の利用率を向上させたものである。
The present invention uses an organosolophilic polymeric material such as polyethylene oxide, polymethyl methacrylate, or polyvinyl formal as a binder for the positive electrode material so that the positive electrode active material comes into contact with the electrolyte over a wide area, In addition, it improves the wettability of positive electrode active materials such as titanium disulfide, which originally have poor wettability with organic electrolytes, to lower current density, reduce polarization, and improve the utilization rate of the positive electrode. This is what I did.

すなわち、正極活物質の結着剤として前記ポリエチレン
オキサイドなどの親有機溶媒性の高分子材料を用いると
、それら親有機溶媒性の高分子材料は、電解液中に熔解
して、正極活物質の粒子表面に高粘性の膜を形成し、正
極活物質粒子の離散を防止して結着剤として働くが、そ
れと共に、上記高粘性膜は電解液を含んでいてリチウム
イオンを伝導するので、ポリテトラフルオロエチレンの
ように放電反応を阻害することがなく、正極活物質粒子
の表面が広い面積で′2を留液に接触するようになる。
That is, when an organosolophilic polymeric material such as polyethylene oxide is used as a binder for the positive electrode active material, the organosolophilic polymeric material dissolves in the electrolytic solution and binds the positive electrode active material. A highly viscous film is formed on the particle surface and acts as a binder to prevent the particles of the positive electrode active material from becoming dispersed.At the same time, the highly viscous film contains an electrolyte and conducts lithium ions. Unlike tetrafluoroethylene, it does not inhibit the discharge reaction, and the surface of the positive electrode active material particles comes into contact with the distillate over a wide area.

また、本来、電解液に対するなじみが悪い正極活物質の
粒子表面が常に電解液を含んだ高粘性膜と接することに
なるので、正極活物質の電解液に対する濡れ性も改善さ
れる。その結果、電流が分散され、電流密度が低下して
、分極が小さくなり、正極の利用率が向上する。
In addition, since the particle surface of the positive electrode active material, which originally has poor affinity with the electrolytic solution, is always in contact with the highly viscous film containing the electrolytic solution, the wettability of the positive electrode active material with the electrolytic solution is also improved. As a result, the current is dispersed, the current density is reduced, the polarization is reduced, and the utilization rate of the positive electrode is improved.

本発明において結着剤として用いる高分子材料としては
、例えばポリエチレンオキサイド、ポリメチルメタクリ
レート、ポリエチルメタクリレート、ポリプロピルメタ
クリレート、ポリブチルメタクリレートなどのポリアル
キルメタクリレート、ポリメチルアクリレート、ポリエ
チルアクリレート、ポリプロピルアクリレート、ポリブ
チルアクリレートなどのポリアルキルアクリレート、ポ
リビニリデンフルオライド、ポリビニルメチルエーテル
、ポリビニルホルマール、ポリアクリロニトリル、ポリ
アクリロニトリルや、それらのポリマーを構成するモノ
マーの2種以上の共重合体などが用いられる。そして、
分子量的には平均分子量で2,000〜200.000
程度のものが好用される。
Examples of the polymeric material used as a binder in the present invention include polyalkyl methacrylates such as polyethylene oxide, polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, and polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, and polypropyl acrylate. , polyalkyl acrylate such as polybutyl acrylate, polyvinylidene fluoride, polyvinyl methyl ether, polyvinyl formal, polyacrylonitrile, polyacrylonitrile, and copolymers of two or more types of monomers constituting these polymers. and,
In terms of molecular weight, the average molecular weight is 2,000 to 200,000.
A moderate amount is preferred.

これらの高分子材料は、いずれも有機溶媒に可溶、つま
り、有機溶媒を用いた電解液に可溶であって、従来使用
のポリテトラフルオロエチレンとは異なり、電解液中で
溶解して高粘性膜として正極活物質の粒子表面近傍に存
在し、正極活物質の離散を防止して結着剤として働き、
かつ上記高粘性膜が電解液を含んでいて、正極活物質の
粒子表面へのリチウムイオン伝導層として(動り。
All of these polymeric materials are soluble in organic solvents, that is, they are soluble in electrolytes using organic solvents, and unlike conventionally used polytetrafluoroethylene, they dissolve in electrolytes and produce high It exists as a viscous film near the particle surface of the positive electrode active material, prevents the positive electrode active material from dispersing, and acts as a binder.
In addition, the high viscosity film contains an electrolytic solution and acts as a lithium ion conductive layer on the particle surface of the positive electrode active material (movement).

上記高分子材料の使用量としては、導電助剤を添加する
か否かによって若干異なるが、通常、正極活物質100
重量部に対して5〜20重量部にするのが好ましい。
The amount of the above-mentioned polymer material used varies slightly depending on whether or not a conductive additive is added, but it is usually 100% of the positive electrode active material.
It is preferable to use 5 to 20 parts by weight.

そして、上記高分子材料を正極活物質粉末と混合するに
あたっては、上記高分子材料を有機溶媒、とりわけ電解
液の溶媒として使用される有機溶媒または電解液に熔解
させておいてから、正極活物質粉末と混合する方が、高
分子材料の正極活物質中への分散が良くなるので好まし
い。
When mixing the polymeric material with the positive electrode active material powder, the polymeric material is dissolved in an organic solvent, especially an organic solvent used as a solvent for the electrolytic solution or an electrolytic solution, and then the positive electrode active material is mixed with the positive electrode active material powder. It is preferable to mix it with powder because the polymer material can be better dispersed in the positive electrode active material.

上記高分子材料で結着される正極活物質は、特に限定さ
れるものではなく、リチウム電池の正極活物質として通
常用いられるものがすべて使用することができる。これ
を例示すると、二硫化チタン(TiS2)、二硫化モリ
ブデン(MO32)、三硫化モリブデンCMO33)、
硫化ジルコニウム(ZrS2)、二硫化ニオブ(N b
 S2 )、三硫化リンニッケル(NiPS3)、バナ
ジウムセレナイド(VSe2)、五酸化バナジウム(V
2O3)、十三酸化バナジウム(V15013)などで
ある。
The positive electrode active material bound by the polymer material is not particularly limited, and any material commonly used as a positive electrode active material for lithium batteries can be used. Examples of this include titanium disulfide (TiS2), molybdenum disulfide (MO32), molybdenum trisulfide CMO33),
Zirconium sulfide (ZrS2), niobium disulfide (N b
S2 ), nickel phosphorous trisulfide (NiPS3), vanadium selenide (VSe2), vanadium pentoxide (V
2O3), vanadium trioxide (V15013), etc.

本発明の電池において、負極にはリチウムまたはリチウ
ム合金が用いられる。リチウム合金としては、例えばリ
チウム−アルミニウム、リチウム−鉛、リチウム−ガリ
ウム、リチウム−インジウム、リチウム−ガリウム−イ
ンジウム、リチウム−マグネシウム、リチウム−亜鉛な
どのリチウム合金があげられる。
In the battery of the present invention, lithium or a lithium alloy is used for the negative electrode. Examples of lithium alloys include lithium alloys such as lithium-aluminum, lithium-lead, lithium-gallium, lithium-indium, lithium-gallium-indium, lithium-magnesium, and lithium-zinc.

電解液には、例えばプロピレンカーボネート、T−ブチ
ロラクトン、テトラヒドロフラン、1.2−ジメトキシ
エタン、1.2−ジェトキシエタン、1.3−ジオキソ
ラン、4−メチル−1,3−ジオキソランなどの有機溶
媒の単独もしくは2種以上の混合溶媒を電解液溶媒とし
、これにLiCIO4、LiPF6、LiAsF6、L
i5bFs、LiBF4、LiB(CsHc、)4など
の電解質の1種または2種以上を熔解したものが用いら
れる。またLiPF6などの電解質の熱安定性を高める
ために、ヘキサメチルホスホリックトリアミドなどの熱
安定化剤を添加することも好ましく採用される。
The electrolyte may contain organic solvents such as propylene carbonate, T-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-jethoxyethane, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. alone or A mixed solvent of two or more types is used as an electrolyte solvent, and LiCIO4, LiPF6, LiAsF6, L
A solution of one or more electrolytes such as i5bFs, LiBF4, and LiB(CsHc, )4 is used. Further, in order to improve the thermal stability of the electrolyte such as LiPF6, it is also preferably employed to add a thermal stabilizer such as hexamethylphosphoric triamide.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例に 硫化チタン粉末50重量部を、平均分子量20.000
のポリエチレンオキサイド10重量部を1.2−ジメト
キシエタン30重量部に溶解した溶液と混合した後、1
1mAh相当量秤取して金型に充填し、100kg/−
で加圧成形して直径7.0mm、厚さ0.51の正極を
作製した。この正極と、負極にはリチウムを用い、電解
液には4−メチル−1,3−ジオキソランと1.2−ジ
メトキシエタンとへキサメチルホスホリックトリアミド
の容量比60:35:5の混合溶媒にLiPF6を1m
ol/j!溶解した有機電解液を用いて、第1図に示す
構造のリチウム電池を作製した。
In the example, 50 parts by weight of titanium sulfide powder was used, and the average molecular weight was 20.000.
After mixing 10 parts by weight of polyethylene oxide in 30 parts by weight of 1,2-dimethoxyethane, 1
Weigh out an amount equivalent to 1mAh and fill it into a mold, 100kg/-
A positive electrode having a diameter of 7.0 mm and a thickness of 0.5 mm was produced by pressure molding. Lithium was used for the positive and negative electrodes, and the electrolyte was a mixed solvent of 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, and hexamethylphosphoric triamide in a volume ratio of 60:35:5. 1m of LiPF6
ol/j! A lithium battery having the structure shown in FIG. 1 was produced using the dissolved organic electrolyte.

第1図において、1は負極であり、この負極1は前述の
ようにリチウムからなる。2は前述のようにポリエチレ
ンオキサイドを結着剤として用いて作製した正極であり
、3は前述の電解液である。4は微孔性ポリプロピレン
フィルムからなるセパレータで、5はポリプロピレン不
織布からなる電解液吸収体である。7はステンレス鋼製
で外面にニッケルメッキを施した負極缶で、8はステン
レス鋼製で外面にニッケルメッキを施した正極缶である
。9はステンレス鋼製網からなる負極側の集電体である
In FIG. 1, 1 is a negative electrode, and this negative electrode 1 is made of lithium as described above. 2 is a positive electrode prepared using polyethylene oxide as a binder as described above, and 3 is the electrolytic solution described above. 4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. 7 is a negative electrode can made of stainless steel with nickel plating on the outer surface, and 8 is a positive electrode can made of stainless steel with nickel plating on the outer surface. 9 is a current collector on the negative electrode side made of a stainless steel mesh.

実施例2 ポリエチレンオキサイドに代えて、平均分子量10.0
00のポリビニルホルマールを用いたほかは、実施例1
と同様にして、第1図に示す構造のリチウム電池を作製
した。
Example 2 Instead of polyethylene oxide, average molecular weight 10.0
Example 1 except that 00 polyvinyl formal was used.
In the same manner as above, a lithium battery having the structure shown in FIG. 1 was produced.

実施例3 ポリエチレンオキサイドに代えて、平均分子量20 、
000のポリメチルメタクリレートを用いたほかは、実
施例1と同様にして、第1図に示す構造のリチウム電池
を作製した。
Example 3 Instead of polyethylene oxide, average molecular weight 20,
A lithium battery having the structure shown in FIG. 1 was produced in the same manner as in Example 1 except that 000 polymethyl methacrylate was used.

比較例に 硫化チタン粉末50重量部にポリテトラフルオロエチレ
ン粉末2.5重量部を加えて混合し、これを11mAh
相当量秤取して、金型に充填し、100kg / cd
で加圧成形して直径7.011111. FXさ0.5
m−の正極を作製した。この正極を用いたほかは実施例
1と同様にして、第1図に示す構造のリチウム電池を作
製した。
In a comparative example, 2.5 parts by weight of polytetrafluoroethylene powder was added to 50 parts by weight of titanium sulfide powder and mixed, and this was heated to 11 mAh.
Weigh the equivalent amount and fill it into a mold, 100kg/cd
Pressure molded with a diameter of 7.011111. FX 0.5
A positive electrode of m- was produced. A lithium battery having the structure shown in FIG. 1 was produced in the same manner as in Example 1 except that this positive electrode was used.

上記のようにして作製された実施例1〜3の電池および
比較例1の電池を25℃、放電電流0.76mA(正極
のみかけ表面積あたり2mA/cj)で放電した。その
結果を第2図に示す。
The batteries of Examples 1 to 3 and the battery of Comparative Example 1 produced as described above were discharged at 25° C. with a discharge current of 0.76 mA (2 mA/cj per apparent surface area of the positive electrode). The results are shown in FIG.

第2図に示すように、実施例1〜3の電池は、ポリテト
ラフルオロエチレンを結着剤として用いた比較例1の電
池に比べて、放電容量がはるかに大きかった。これは、
実施例では、ポリエチレンオキサイドなどの親有機溶媒
性を有する高分子材料を結着剤として用いたことにより
、正極活物質の粒子表面の電解液への濡れ性が改善され
、放電反応に有効に利用される表面積が増加し、電流密
度が低下して、分極が小さくなり、正極の利用率が向上
したためであると考えられる。
As shown in FIG. 2, the batteries of Examples 1 to 3 had much larger discharge capacities than the battery of Comparative Example 1, which used polytetrafluoroethylene as a binder. this is,
In the example, by using a polymer material with organosolophilic properties such as polyethylene oxide as a binder, the wettability of the particle surface of the positive electrode active material to the electrolyte was improved, and it was effectively used for the discharge reaction. This is thought to be due to the fact that the surface area covered by the positive electrode increased, the current density decreased, the polarization became smaller, and the utilization rate of the positive electrode improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、ポリエチレンオキサ
イド、ポリビニルホールマール、ポリメチルメタクリレ
ートなどの現有ta溶媒性の高分子材料を結着剤として
用いることにより、正極活物質が広い面積で電解液と接
触できるようにし、正極の利用率を向上させることがで
きた。
As explained above, in the present invention, by using existing ta-solvent polymer materials such as polyethylene oxide, polyvinyl formal, and polymethyl methacrylate as a binder, the positive electrode active material can come into contact with the electrolyte over a wide area. We were able to improve the utilization rate of the positive electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム電池の一例を示す断面図
である。第2図は実施例1〜3の電池と比較例1の電池
の放電特性を示す図である。 1・・・負極、 2・・・正極、 3・・・電解液第 
1 層 I・・・重層 2・・・正極 端 2 圀 袂を容量(mAh)
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention. FIG. 2 is a diagram showing the discharge characteristics of the batteries of Examples 1 to 3 and the battery of Comparative Example 1. 1... Negative electrode, 2... Positive electrode, 3... Electrolyte No.
1 Layer I...Multilayer 2...Positive end 2 Capacity (mAh)

Claims (2)

【特許請求の範囲】[Claims] (1)正極活物質の結着剤として、親有機溶媒性を有す
る高分子材料を用いたことを特徴とするリチウム電池。
(1) A lithium battery characterized in that a polymeric material having organophilic solvent properties is used as a binder for a positive electrode active material.
(2)親有機溶媒性を有する高分子材料がポリエチレン
オキサイド、ポリアルキルメタクリレート、ポリアルキ
ルアクリレート、ポリビニリデンフルオライド、ポリビ
ニルメチルエーテル、ポリビニルホルマール、ポリアク
リロニトリル、ポリメタクリロニトリルまたはそれらの
ポリマーを構成するモノマーの2種以上の共重合体であ
る特許請求の範囲第1項記載のリチウム電池。
(2) The polymeric material having organosolophilic properties constitutes polyethylene oxide, polyalkyl methacrylate, polyalkyl acrylate, polyvinylidene fluoride, polyvinyl methyl ether, polyvinyl formal, polyacrylonitrile, polymethacrylonitrile, or a polymer thereof. The lithium battery according to claim 1, which is a copolymer of two or more types of monomers.
JP6377186A 1986-03-20 1986-03-20 Lithium battery Pending JPS62222569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6377186A JPS62222569A (en) 1986-03-20 1986-03-20 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6377186A JPS62222569A (en) 1986-03-20 1986-03-20 Lithium battery

Publications (1)

Publication Number Publication Date
JPS62222569A true JPS62222569A (en) 1987-09-30

Family

ID=13238964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6377186A Pending JPS62222569A (en) 1986-03-20 1986-03-20 Lithium battery

Country Status (1)

Country Link
JP (1) JPS62222569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287788A (en) * 2009-06-12 2010-12-24 Nichicon Corp Oil-impregnated capacitor
JP2013175477A (en) * 2013-05-08 2013-09-05 Nissan Motor Co Ltd Electrode for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287788A (en) * 2009-06-12 2010-12-24 Nichicon Corp Oil-impregnated capacitor
JP2013175477A (en) * 2013-05-08 2013-09-05 Nissan Motor Co Ltd Electrode for battery

Similar Documents

Publication Publication Date Title
JPH11191319A (en) Hybrid polymer electrolyte, its production and lithium battery manufactured by use of this
JPS63102173A (en) Lithium secondary battery
JP2002530838A (en) Electrolyte with improved low temperature performance
KR100467455B1 (en) Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder
KR101956827B1 (en) Negative electrode active material and lithium secondary battery comprising the same
KR20180087169A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
KR100467454B1 (en) Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPS63121258A (en) Nonaqueous secondary battery
KR100327915B1 (en) Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same
JP2005018998A (en) Negative electrode material and battery using the same
JP2002117832A (en) Lithium secondary battery
JPS62222569A (en) Lithium battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JPH1154113A (en) Manufacture of mix for electrode of nonaqueous secondary battery
JPH08222206A (en) Positive electrode for lithium secondary battery and lithium secondary battry
KR20180111322A (en) Preparing method for electrode for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery comprising the same
JP2000133245A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this as positive electrode
JPH113706A (en) Lithium secondary battery
JPH10106546A (en) Manufacture of electrode for battery
JP3902349B2 (en) Polymer electrolyte battery
JP3526695B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20040042749A (en) Porous Polymer-Coated Gelling Separators and Electrochemical Cells Using the Same
KR102054266B1 (en) Active material separated type lithium-sulfur battery