JP3526695B2 - Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Info

Publication number
JP3526695B2
JP3526695B2 JP15458796A JP15458796A JP3526695B2 JP 3526695 B2 JP3526695 B2 JP 3526695B2 JP 15458796 A JP15458796 A JP 15458796A JP 15458796 A JP15458796 A JP 15458796A JP 3526695 B2 JP3526695 B2 JP 3526695B2
Authority
JP
Japan
Prior art keywords
positive electrode
tin oxide
active material
aqueous electrolyte
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15458796A
Other languages
Japanese (ja)
Other versions
JPH103903A (en
Inventor
慎一 齊藤
博也 山下
昇二 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15458796A priority Critical patent/JP3526695B2/en
Publication of JPH103903A publication Critical patent/JPH103903A/en
Application granted granted Critical
Publication of JP3526695B2 publication Critical patent/JP3526695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な非水電解液
二次電池用正極、及びこれを使用した非水電解液二次電
池に関するものである。
TECHNICAL FIELD The present invention relates to a novel positive electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年の電子機器の急速な小型軽量化に伴
い、小型、軽量で高エネルギー密度を持つ二次電池が求
められるようになってきた。これらの要求を満たす二次
電池としてはいろいろ考えることが出来るが、特に非水
電解液二次電池が有望である。
2. Description of the Related Art With the rapid reduction in size and weight of electronic devices in recent years, there has been a demand for a small size, lightweight secondary battery having a high energy density. There are various possible secondary batteries that meet these requirements, but non-aqueous electrolyte secondary batteries are particularly promising.

【0003】非水電解液二次電池としては、LiMn2
4やLiCoO2、LiNiO2、Li2MnO4等のリ
チウムと遷移金属の複合酸化物等からなる正極活物質を
有する正極と,リチウム金属や炭素材料等のリチウムを
吸蔵、放出することが可能な物質からなる負極活物質を
有する負極と、LiClO4やLiPF6等のリチウム塩
からなる電解質をプロピレンカーボネートやエチレンカ
ーボネート、1,2−ジメトキシエタン等の非水溶媒に
溶解してなる非水電解液と正・負極を隔たせるセパレー
タ等より構成される二次電池が挙げられる。この非水電
解液二次電池は電解液に非水溶媒を用いているため、水
の分解電圧以上の起電力が得られ、エネルギー密度を非
常に大きくすることが可能である。
As a non-aqueous electrolyte secondary battery, LiMn 2
Capable of occluding and releasing a positive electrode having a positive electrode active material composed of a composite oxide of lithium and a transition metal such as O 4 , LiCoO 2 , LiNiO 2 , Li 2 MnO 4 and lithium such as lithium metal or carbon material Non-aqueous electrolysis obtained by dissolving a negative electrode having a negative electrode active material composed of a substance, and an electrolyte composed of a lithium salt such as LiClO 4 or LiPF 6 in a non-aqueous solvent such as propylene carbonate, ethylene carbonate or 1,2-dimethoxyethane. An example of the secondary battery includes a separator that separates the liquid from the positive and negative electrodes. Since this non-aqueous electrolyte secondary battery uses a non-aqueous solvent for the electrolyte, an electromotive force equal to or higher than the decomposition voltage of water can be obtained, and the energy density can be greatly increased.

【0004】この非水電解液二次電池に用いられる正極
活物質には、一般的にリチウムと遷移金属の複合酸化物
が用いられる。しかし、この様な材料は導電性に乏し
く、該材料単体で使用することは困難である。そこで、
一般に導電性を向上させる目的でグラファイトやアセチ
レンブラック等の炭素材料が導電性付与剤として添加さ
れている。このグラファイトやアセチレンブラック等の
炭素材料を該複合酸化物に添加することにより導電性が
向上し、該複合酸化物が正極活物質として実用に耐える
ようになった。
A composite oxide of lithium and a transition metal is generally used for the positive electrode active material used in this non-aqueous electrolyte secondary battery. However, such a material has poor conductivity, and it is difficult to use the material alone. Therefore,
Generally, a carbon material such as graphite or acetylene black is added as a conductivity-imparting agent for the purpose of improving conductivity. By adding a carbon material such as graphite or acetylene black to the composite oxide, the conductivity was improved and the composite oxide became practically usable as a positive electrode active material.

【0005】しかし,該正極活物質に導電性付与剤とし
てグラファイト粉末を添加する場合、グラファイト同士
の密着性があまり良好ではないため、充分な導電性を有
するようにするために正極活物質をプレス機によって加
圧し、その密着性を高めて正極としている。ところが、
この様に正極活物質を加圧成形すると、正極活物質の粒
子間の空孔がつぶれてしまい、正極活物質内に非水電解
液が充分に含浸しなくなる。この結果、非水電解液と正
極活物質との接触面積が著しく小さくなり、リチウムイ
オンの拡散が非常に困難なものとなるため、利用率が低
下するといった問題があった。
However, when graphite powder is added as a conductivity-imparting agent to the positive electrode active material, the adhesion between the graphite particles is not so good, and therefore the positive electrode active material is pressed to have sufficient conductivity. It is pressed by a machine to increase its adhesion and make a positive electrode. However,
When the positive electrode active material is pressure-molded in this manner, the pores between the particles of the positive electrode active material are collapsed, and the nonaqueous electrolytic solution cannot be sufficiently impregnated into the positive electrode active material. As a result, the contact area between the non-aqueous electrolyte solution and the positive electrode active material is remarkably reduced, and diffusion of lithium ions becomes extremely difficult, resulting in a problem of low utilization rate.

【0006】さらに、該二次電池は非水電解液を用いて
いるが、数〜数十ppm程度の水分が不純物として含ま
れており、これが充放電サイクル中に分解し酸素ガスを
発生する。この酸素が導電性付与剤である炭素材料と反
応し炭酸ガスとなって揮発する。つまり、該正極活物質
は充放電サイクルを繰り返すことにより、導電性付与剤
である炭素材料を徐々に失って消耗し、それに伴って正
極活物質の導電性が低下しその利用率が低下するといっ
た問題があった。炭素材料の中でもアセチレンブラック
は、特に消耗が激しかった。
Further, although the secondary battery uses a non-aqueous electrolyte, it contains several to several tens of ppm of water as an impurity, which decomposes during charge / discharge cycles to generate oxygen gas. This oxygen reacts with the carbon material that is the conductivity-imparting agent to become carbon dioxide gas and volatilize. That is, by repeating the charge / discharge cycle, the positive electrode active material gradually loses and consumes the carbon material that is the conductivity-imparting agent, and accordingly, the conductivity of the positive electrode active material decreases and the utilization rate thereof decreases. There was a problem. Among the carbon materials, acetylene black was particularly worn out.

【0007】さらには、該正極活物質は充放電サイクル
中にリチウムの吸蔵、放出によって膨張・収縮し、特に
深い充放電サイクルを繰り返すと正極活物質の微細化が
生じ、その結果正極活物質の崩壊や集電体との密着性が
低下し集電不良が発生するといった問題があった。
Further, the positive electrode active material expands / contracts due to the occlusion and release of lithium during the charge / discharge cycle, and particularly when the deep charge / discharge cycle is repeated, the positive electrode active material is miniaturized, and as a result, the positive electrode active material There are problems such as collapse and poor adhesion to the current collector, resulting in poor current collection.

【0008】また、電気容量を大きくするために、正極
中に占める正極活物質の割合を大きくすることが望まれ
ているが、導電性付与剤である炭素材料を減量しすぎる
と正極が導電性を失い利用率が低下する。また、結着剤
を減量しすぎると充放電サイクル中に発生する電極の膨
張・収縮に強度が耐えられず、正極活物質が崩壊する等
の現象が起こり、正極活物質の割合を増加するには限界
があった。
Further, in order to increase the electric capacity, it is desired to increase the proportion of the positive electrode active material in the positive electrode, but if the carbon material as the conductivity-imparting agent is excessively reduced, the positive electrode becomes conductive. Loses the utilization rate. Further, if the amount of the binder is reduced too much, the strength cannot withstand the expansion and contraction of the electrode that occurs during the charge / discharge cycle, and the phenomenon such as the collapse of the positive electrode active material occurs, increasing the proportion of the positive electrode active material. There was a limit.

【0009】[0009]

【発明が解決しようとする課題】そこで、長期間充放電
サイクルを繰り返しても導電性を失わず、充放電サイク
ル中に発生する電極の膨張・収縮によっても集電不良を
起こさず、また結着剤が少なくても正極活物質が崩壊せ
ず、高い利用率を維持するような非水電解液二次電池用
正極が強く望まれていた。
Therefore, even if the charge / discharge cycle is repeated for a long period of time, the conductivity is not lost, and the expansion / contraction of the electrode that occurs during the charge / discharge cycle does not cause the current collection failure and the binding. There has been a strong demand for a positive electrode for a non-aqueous electrolyte secondary battery in which the positive electrode active material does not collapse even if the amount of the agent is small and the high utilization rate is maintained.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記技術
課題を解決するべく、鋭意研究を行ってきた。その結
果、リチウムを吸蔵、放出することが可能な材料中に酸
化錫繊維を含有されてなる正極活物質が集電体に接合さ
れた非水電解液二次電池用正極は、長期間の充放電サイ
クルを行っても導電性を失わず、充放電サイクル中に発
生する電極の膨張・収縮によっても集電不良を起こさ
ず、また結着剤が少なくても正極活物質が崩壊せず、高
い利用率を維持することを見いだして、本発明を完成
し、ここに提案するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to solve the above technical problems. As a result, a positive electrode for a non-aqueous electrolyte secondary battery in which a positive electrode active material containing a tin oxide fiber in a material capable of inserting and extracting lithium is joined to a current collector is used for a long period of time. Conductivity is not lost even if the discharge cycle is performed, current collection failure does not occur due to expansion / contraction of the electrode that occurs during the charge / discharge cycle, and the positive electrode active material does not collapse even if the amount of the binder is small, which is high. The inventors have found that the utilization rate is maintained, have completed the present invention, and have proposed the present invention.

【0011】即ち、本発明は、リチウムを吸蔵、放出す
ることが可能な材料中に酸化錫繊維を含有してなる正極
活物質が集電体に接合されていることを特徴とする非水
電解液二次電池用正極に関する。他の発明は、該非水電
解液二次電池用正極と、リチウムを吸蔵、放出が可能な
物質からなる負極活物質を集電体に接合してなる負極と
が、セパレータを介して非水電解液と共に容器内に収納
されていることを特徴とする非水電解液二次電池に関す
る。
That is, the present invention is characterized in that a positive electrode active material containing tin oxide fibers in a material capable of inserting and extracting lithium is joined to a current collector. The present invention relates to a positive electrode for a liquid secondary battery. Another invention is that the positive electrode for a non-aqueous electrolyte secondary battery and a negative electrode formed by joining a negative electrode active material made of a material capable of absorbing and releasing lithium to a current collector are non-aqueous electrolytic via a separator. The present invention relates to a non-aqueous electrolyte secondary battery, which is housed in a container together with a liquid.

【0012】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0013】本発明の非水電解液二次電池において、非
水電解液、正極を構成する正極活物質、負極を構成する
負極活物質及びセパレータとしては、特に制限されず公
知のものがいずれも使用できる。
In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte, the positive electrode active material that constitutes the positive electrode, the negative electrode active material that constitutes the negative electrode, and the separator are not particularly limited, and any known ones can be used. Can be used.

【0014】正極活物質としてはリチウムを吸蔵、放出
することが可能な材料が使用され、具体的にはTi
2、MoS2、FeS2等の硫化物、NbSe3等のセレ
ン化物等のカルコゲン化合物、あるいはCr25、Cr
38、V38、V25、V613等の遷移金属の酸化
物、LiMn24、Li2MnO4、LiV35、LiN
iO2、LiCoO2等のリチウムと遷移金属との複合酸
化物等、あるいはポリアニリン、ポリアセチレン、ポリ
パラフェニリン、ポリフェニレンビニレン、ポリピロー
ル、ポリチオフェン等の共役系高分子、ジスルフィド結
合を有する架橋高分子等が挙げられる。
A material capable of inserting and extracting lithium is used as the positive electrode active material, and specifically, Ti is used.
Sulfides such as S 2 , MoS 2 and FeS 2 , chalcogen compounds such as selenides such as NbSe 3 , or Cr 2 O 5 and Cr
3 O 8, V 3 O 8 , V 2 O 5, V 6 O 13 oxide of a transition metal such as, LiMn 2 O 4, Li 2 MnO 4, LiV 3 O 5, LiN
Composite oxides of lithium and a transition metal such as iO 2 and LiCoO 2 and the like, conjugated polymers such as polyaniline, polyacetylene, polyparaphenylene, polyphenylene vinylene, polypyrrole and polythiophene, crosslinked polymers having a disulfide bond, etc. Can be mentioned.

【0015】本発明においては、上記リチウムの吸蔵、
放出が可能な正極活物質中に酸化錫繊維が含有されてい
ることに特徴がある。
In the present invention, the above-mentioned lithium occlusion,
It is characterized in that tin oxide fibers are contained in the positive electrode active material that can be released.

【0016】負極活物質としてはリチウムを吸蔵、放出
することが可能な材料が使用され、具体的には金属リチ
ウム、あるいはLi−Al合金、Li−Pb−Cd−B
i合金等の合金、あるいはグラファイト(黒鉛)等の炭
素材料等が挙げられる。
As the negative electrode active material, a material capable of inserting and extracting lithium is used. Specifically, metallic lithium, Li-Al alloy, Li-Pb-Cd-B is used.
Examples thereof include alloys such as i alloys and carbon materials such as graphite.

【0017】非水電解液としては、プロピレンカーボネ
ート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリル等の単独あるいは2種類以上の混合非水溶媒に、
LiClO4、LiPF6、LiAsF6、LiBF4、L
iB(C654、LiCl、LiBr、CH3SO3
i、CF3SO3Li等のリチウム塩が溶解してなる非水
電解液がいずれの組合せにおいても使用可能である。
As the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
Tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. alone or in a mixture of two or more kinds of non-aqueous solvents,
LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , L
iB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 L
A non-aqueous electrolyte solution in which a lithium salt such as i or CF 3 SO 3 Li is dissolved can be used in any combination.

【0018】セパレータとしては、イオンの移動に対し
て低抵抗であり、かつ溶液保持性に優れたものであれば
なんら制限なく用いることができる。例えば、ガラス繊
維フィルターやポリプロピレン、ポリエチレン、ポリエ
ステル、ポリフロン等の高分子ポアフィルター、不織
布、あるいはガラス繊維フィルターとこれらの高分子か
らなる不織布が使用可能である。更に、電池内部が高温
になったとき、溶融して細孔をふさぎ正・負極のショー
トを防ぐ材料が好ましい。
Any separator can be used without any limitation as long as it has a low resistance to the movement of ions and is excellent in solution retention. For example, a glass fiber filter, a polymer pore filter such as polypropylene, polyethylene, polyester, or polyflon, a non-woven fabric, or a glass fiber filter and a non-woven fabric composed of these polymers can be used. Further, it is preferable to use a material that melts and closes the pores to prevent a short circuit between the positive and negative electrodes when the temperature inside the battery becomes high.

【0019】本発明に好適に使用される酸化錫繊維とし
ては、直径が1〜50μmの範囲にあり、かつ直径に対
する長さの比、即ちアスペクト比が10を超える繊維形
状物が挙げられる。ここで直径とは、酸化錫繊維の長さ
方向に対して垂直方向の断面が、円形であればその直径
であり、楕円形であれば、その短径と長径との平均とす
る。三角形である場合は三辺の平均とし、四角形以上の
多角形である場合は、2本以上の対角線の平均とする。
The tin oxide fibers preferably used in the present invention include fiber shapes having a diameter in the range of 1 to 50 μm and a length to diameter ratio, that is, an aspect ratio of more than 10. Here, the diameter is the diameter of the cross section of the tin oxide fiber in the direction perpendicular to the length direction when the cross section is circular, and is the average of the short diameter and the long diameter when the cross section is elliptical. In the case of a triangle, the average of three sides is used, and in the case of a polygon of quadrangle or more, the average of two or more diagonal lines is used.

【0020】上記直径及び長さの値は、少なくとも10
本以上の酸化錫繊維の平均値とする。直径及び長さの測
定は、写真撮影装置を付属した走査型電子顕微鏡、光学
顕微鏡などで撮影された該酸化錫繊維の写真を用いて容
易に行うことが出来る。
The diameter and length values are at least 10
The average value of at least one tin oxide fiber is used. The diameter and length can be easily measured by using a photograph of the tin oxide fiber taken by a scanning electron microscope, an optical microscope or the like equipped with a photography device.

【0021】該酸化錫繊維中の酸化錫は、二酸化錫(S
nO2)、一酸化錫(SnO)、酸素欠陥を有する酸化
錫(SnO2-x,但し0<x<1)などの錫の酸化物と
して存在し、これら化学組成の異なる酸化錫が複数混在
していることもある。酸化錫繊維中にどの化学組成の酸
化錫が含有されるかは、焼成時の雰囲気などの製造条件
によって変わる。例えば、焼成時に酸素、空気などの酸
化性雰囲気であれば、酸化錫のほとんどが二酸化錫であ
ったり、二酸化錫の含有量が多い酸化錫繊維となる。ま
た、アルゴンガス、ヘリウムガスなどの不活性雰囲気、
あるいは一酸化炭素などの還元性雰囲気などの非酸化性
雰囲気であれば、二酸化錫の他に一酸化錫、酸素欠陥を
有する酸化錫が含有されたり、酸化錫のほとんどが一酸
化錫あるいは酸素欠陥を有する酸化錫である酸化錫繊維
となる。中でも酸化錫のほとんどが二酸化錫である酸化
錫繊維は、機械的強度が高いため好ましい。
The tin oxide in the tin oxide fiber is tin dioxide (S
nO 2 ), tin monoxide (SnO), and tin oxide having oxygen defects (SnO 2-x , where 0 <x <1) exist as tin oxides, and a plurality of tin oxides having different chemical compositions are mixed. There are also things I do. Which chemical composition of tin oxide is contained in the tin oxide fiber depends on manufacturing conditions such as an atmosphere during firing. For example, in an oxidizing atmosphere such as oxygen and air during firing, most of tin oxide is tin dioxide, or tin oxide fibers having a high tin dioxide content are obtained. In addition, an inert atmosphere such as argon gas or helium gas,
Alternatively, in a non-oxidizing atmosphere such as a reducing atmosphere such as carbon monoxide, tin monoxide and tin oxide having oxygen defects are contained in addition to tin dioxide, and most of tin oxide is tin monoxide or oxygen defects. It becomes a tin oxide fiber which is a tin oxide having. Among them, tin oxide fibers in which most of tin oxide is tin dioxide are preferable because they have high mechanical strength.

【0022】酸化錫繊維の酸化錫の量は、導電性を向上
させるため、60モル%以上が望ましく、70モル%以
上がより好ましい。
The amount of tin oxide in the tin oxide fiber is preferably 60 mol% or more, more preferably 70 mol% or more in order to improve the conductivity.

【0023】酸化錫繊維中の他の成分としては、導電性
を制御するためのドーピング成分、又は機械的強度を向
上させるための添加成分などがあり、複数のドーピング
成分、又は添加成分を添加しても構わない。しかし、ド
ーピング成分や添加成分などの酸化錫以外の他の成分を
あまり多量に添加してしまうと、導電性や機械的強度が
逆に低下してしまう。そのため、ドーピング成分及び/
又は添加成分の合計量は、酸化錫の量を超えないよう
に、即ち50モル%未満とする事が望ましい。
As other components in the tin oxide fiber, there are a doping component for controlling conductivity, an additive component for improving mechanical strength, etc., and a plurality of doping components or additive components are added. It doesn't matter. However, if a component other than tin oxide, such as a doping component or an additive component, is added in a too large amount, the conductivity and the mechanical strength are deteriorated. Therefore, the doping component and /
Alternatively, it is desirable that the total amount of the added components does not exceed the amount of tin oxide, that is, less than 50 mol%.

【0024】ドーピング成分としては、アンチモン、ビ
スマスなどの周期律表第15族(新IUPAC方式)元
素を含む酸化物、あるいはバナジウム、ニオブなどの第
5族元素を含む酸化物などがある。これらの中でも、ア
ンチモンの酸化物は、導電性を向上させる効果が非常に
高いため好ましい。
Examples of the doping component include oxides containing elements of Group 15 (new IUPAC system) of the Periodic Table such as antimony and bismuth, and oxides containing Group 5 elements such as vanadium and niobium. Among these, antimony oxide is preferable because it has a very high effect of improving conductivity.

【0025】またドーピング成分の量は、非水電解液二
次電池の性能とコストに応じてその都度最適な量が選択
されるが、一般にあまりにも少なすぎると導電性向上の
効果が少なく、あまりにも多すぎるとコストの上昇を招
いたり、あるいは分相などが起こり、機械的強度を低下
させるなどの不都合が生じる。よってドーピング成分の
量は錫とドーピング成分の合計モル数に対して0.1〜
30モル%が望ましく、その中でも1〜10モル%がよ
り好ましい。
The optimum amount of the doping component is selected depending on the performance and cost of the non-aqueous electrolyte secondary battery. Generally, if the amount is too small, the effect of improving the conductivity is small and the amount is too large. If it is too large, the cost will rise, or phase separation or the like will occur, resulting in inconvenience such as reduction in mechanical strength. Therefore, the amount of the doping component is 0.1 to the total number of moles of tin and the doping component.
30 mol% is desirable, and 1 to 10 mol% is more preferable.

【0026】一方、添加成分としては、カルシウム、マ
グネシウムなどの第2族元素を含有する酸化物、イット
リウム、ランタノイド(ランタン、セリウムなどの原子
番号57〜71までの元素)などの第3族元素を含有す
る酸化物、チタン、ジルコニウムなどの第4族元素を含
有する酸化物、バナジウム、ニオブなどの第5族元素を
含有する酸化物、クロムなどの第6族元素を含有する酸
化物、マンガンなどの第7族元素を含有する酸化物、亜
鉛などの第12族元素を含有する酸化物、アルミニウ
ム、インジウムなどの第13族元素を含有する酸化物、
ケイ素、ゲルマニウムなどの第14族元素を含有する酸
化物、アンチモン、ビスマスなどの第15族元素を含有
する酸化物などがある。この中で、ケイ素、ゲルマニウ
ムなどの第14族元素(錫を除く)を含有する酸化物、
アルミニウム、インジウムなどの第13族元素を含有す
る酸化物、チタンなどの第4族元素を含有する酸化物
は、機械的強度を向上させる効果が高いため好ましい。
On the other hand, as the additive component, an oxide containing a Group 2 element such as calcium or magnesium, a Group 3 element such as yttrium or lanthanoid (elements having atomic numbers 57 to 71 such as lanthanum and cerium) is used. Oxides containing, oxides containing Group 4 elements such as titanium and zirconium, oxides containing Group 5 elements such as vanadium and niobium, oxides containing Group 6 elements such as chromium, manganese, etc. An oxide containing a Group 7 element, an oxide containing a Group 12 element such as zinc, an oxide containing a Group 13 element such as aluminum or indium,
There are oxides containing a Group 14 element such as silicon and germanium, oxides containing a Group 15 element such as antimony and bismuth, and the like. Of these, oxides containing Group 14 elements (excluding tin) such as silicon and germanium,
An oxide containing a Group 13 element such as aluminum or indium, or an oxide containing a Group 4 element such as titanium is preferable because it has a high effect of improving mechanical strength.

【0027】添加成分の量は非水電解液二次電池の性能
とコストに応じて、その都度最適な量が選択されるが、
一般に多すぎると分相などが起こり、かえって機械的強
度を低下させるなどの不都合が生じる。よって添加成分
の量は錫と添加成分の合計モル数に対して40モル%以
下が望ましく、30モル%以下がより好ましい。但し、
該添加成分は添加しなくとも構わない。
The optimum amount of the additive component is selected each time according to the performance and cost of the non-aqueous electrolyte secondary battery.
In general, if the amount is too large, phase separation or the like occurs, which rather causes inconvenience such as reduction in mechanical strength. Therefore, the amount of the additive component is preferably 40 mol% or less, and more preferably 30 mol% or less with respect to the total number of moles of tin and the additive component. However,
The additive component may not be added.

【0028】該酸化錫繊維の形状は特に限定されない
が、余りに長さが短すぎると正極活物質に添加した際、
導電性を付与する効果が少ないため、該酸化錫繊維のア
スペクト比は10以上であることが好ましい。また、酸
化錫繊維の直径はあまりに大きすぎると可とう性を失う
ため強度が低下し、あまりに小さすぎると取り扱いが困
難になり、強度も充分ではなくなるため、酸化錫繊維の
直径は1〜50μmであることが好ましい。また、酸化
錫繊維の長さに対して垂直方向の断面が多角形である場
合は、その角の部分において応力が集中し、正極の強度
を低下させる可能性がある。そのため、酸化錫繊維の長
さ方向に対して垂直方向の断面の形状は円形、あるいは
楕円形であることがより望ましい。
The shape of the tin oxide fiber is not particularly limited, but if the length is too short, when added to the positive electrode active material,
Since the effect of imparting conductivity is small, the tin oxide fiber preferably has an aspect ratio of 10 or more. Further, if the diameter of the tin oxide fiber is too large, the flexibility is lost and the strength decreases. If it is too small, the handling becomes difficult and the strength becomes insufficient. Therefore, the diameter of the tin oxide fiber is 1 to 50 μm. Preferably there is. If the cross section of the tin oxide fiber in the direction perpendicular to the length is polygonal, stress concentrates at the corners, which may reduce the strength of the positive electrode. Therefore, it is more desirable that the shape of the cross section of the tin oxide fiber in the direction perpendicular to the length direction is circular or elliptical.

【0029】該酸化錫繊維は、製造条件によっても異な
るが、非晶質、又は多結晶、又は単結晶の酸化錫からな
る。但し、上記ドーピング成分又は添加成分が分相する
こともある。該酸化錫繊維の構造は、エックス線回折分
析などによって確認することが出来る。例えば、非晶質
の場合、エックス線回折パターンはハローとなる。ま
た、多結晶の場合には酸化錫あるいは分相したドーピン
グ成分又は添加成分のエックス線回折パターンが現れ
る。
The tin oxide fiber is made of amorphous, polycrystalline, or single crystal tin oxide, although it varies depending on the production conditions. However, the doping component or additive component may be phase-separated. The structure of the tin oxide fiber can be confirmed by X-ray diffraction analysis or the like. For example, in the case of amorphous, the X-ray diffraction pattern becomes halo. Further, in the case of polycrystal, an X-ray diffraction pattern of tin oxide or a phase-separated doping component or addition component appears.

【0030】該酸化錫繊維の比抵抗は、ドーピング成分
の種類、添加量、製造条件などによって大きく変化す
が、あまりにも比抵抗が大きいと導電性付与の効果がな
くなるため、103〜10-2Ω・cmが望ましく、102
〜10-2Ω・cmがより好ましい。
The specific resistance of the tin oxide fiber largely changes depending on the type of the doping component, the addition amount, the manufacturing conditions, etc. However, if the specific resistance is too large, the effect of imparting conductivity is lost, so that 10 3 -10 − 2 Ω · cm is desirable 10 2
More preferably, 10 −2 Ω · cm.

【0031】正極活物質中に添加される酸化錫繊維の量
は、あまりにも少量であると、導電性を付与する効果が
少なく、またあまりにも多量であると正極活物質の量の
割合が低下し、正極の電気容量はかえって低下する。酸
化錫繊維の添加量は、酸化錫繊維と正極活物質、結着剤
の合計量に対して、1〜40重量%が望ましく、5〜3
0重量%がより好ましい。
If the amount of tin oxide fibers added to the positive electrode active material is too small, the effect of imparting conductivity will be small, and if it is too large, the proportion of the amount of the positive electrode active material will decrease. However, the electric capacity of the positive electrode rather decreases. The addition amount of the tin oxide fiber is preferably 1 to 40% by weight, based on the total amount of the tin oxide fiber, the positive electrode active material and the binder, and 5 to 3%.
0% by weight is more preferred.

【0032】酸化錫繊維を含有する正極活物質を有する
正極は、代表的には以下のようにして製造される。まず
混練機、混合機等を用いて、リチウムと遷移金属との複
合酸化物の粉末と、酸化錫繊維をN−メチルピロリドン
等の溶媒と混練し、酸化錫繊維を含有する正極活物質の
ペーストを製造する。先にリチウムと遷移金属との複合
酸化物と溶媒を混練し、その後酸化錫繊維と混練しても
構わない。ペースト製造後、集電体に該ペーストを塗
布、含浸させ、溶媒を乾燥した後、加圧、切断などを行
って所望の形状に加工して正極とする。ペースト製造時
に酸化錫繊維が若干、粉砕又は切断されることがあるが
アスペクト比が10以上であればその効果はほとんど損
なわれることはない。また、溶液法により作製された酸
化錫繊維は可とう性に優れているので、高アスペクト比
を特に維持しやすい。
A positive electrode having a positive electrode active material containing tin oxide fibers is typically manufactured as follows. First, using a kneader, a mixer or the like, a powder of a composite oxide of lithium and a transition metal and tin oxide fibers are kneaded with a solvent such as N-methylpyrrolidone, and a paste of a positive electrode active material containing tin oxide fibers. To manufacture. It is also possible to first knead the composite oxide of lithium and transition metal and the solvent, and then knead with the tin oxide fiber. After the paste is manufactured, the current collector is coated with the paste, impregnated with it, and the solvent is dried. Then, the paste is pressed and cut to be processed into a desired shape to obtain a positive electrode. The tin oxide fibers may be crushed or cut to some extent during the production of the paste, but if the aspect ratio is 10 or more, the effect is hardly impaired. Further, since the tin oxide fiber produced by the solution method has excellent flexibility, it is easy to maintain a high aspect ratio.

【0033】本発明において、該酸化錫繊維はどの様な
方法で製造されてもよい。例えば、酸化錫の前駆体を含
む溶液から製造する溶液法、または酸化錫を含有するタ
ーゲットをアルゴンプラズマ下でスパッタリングし、溝
を有する基板状に酸化錫を堆積させるスパッタ法、さら
には酸化第一錫などの錫化合物又は錫を密閉容器中又は
密閉状態に近い容器中で加熱、昇華させ、酸化錫(酸化
第二錫)のウィスカーとして再結晶させる析出法などに
よって製造される。この中で溶液法は、酸化錫繊維の直
径と長さを簡単に制御でき、大量生産性に優れ、歩留ま
りも高いなどの理由より好ましい。
In the present invention, the tin oxide fiber may be manufactured by any method. For example, a solution method produced from a solution containing a tin oxide precursor, a sputtering method in which a target containing tin oxide is sputtered under argon plasma and tin oxide is deposited on a substrate having grooves, It is produced by a precipitation method or the like in which a tin compound such as tin or tin is heated and sublimated in a closed container or a container close to a closed state and recrystallized as whiskers of tin oxide (tin oxide). Among them, the solution method is preferable because the diameter and the length of the tin oxide fiber can be easily controlled, the mass productivity is excellent, and the yield is high.

【0034】溶液法としては、例えば、特願平7−33
5547あるいは特願平7−255395などに記載の
方法がよく用いられる。概略は以下の通りである。
The solution method is, for example, Japanese Patent Application No. 7-33.
The method described in 5547 or Japanese Patent Application No. 7-255395 is often used. The outline is as follows.

【0035】ハロゲン化錫などの錫化合物あるいは金属
錫と、ドーピング成分及び添加成分を含む化合物をメタ
ノールなどのアルコールに順次溶解する。溶解後、不要
な有機溶媒を減圧下で濃縮し、粘稠な紡糸液とする。直
径数μm〜数mm程度の穴を多数有するノズルから紡糸
液を押し出すか、又は吸い出して紡糸を行い、ゲル繊維
とした後、500〜1000℃程度の温度で焼成を行
う。
A tin compound such as tin halide or metallic tin, and a compound containing a doping component and an additive component are sequentially dissolved in alcohol such as methanol. After dissolution, unnecessary organic solvent is concentrated under reduced pressure to give a viscous spinning solution. The spinning solution is extruded or sucked out from a nozzle having a large number of holes each having a diameter of several μm to several mm to perform spinning to obtain gel fiber, and then firing is performed at a temperature of about 500 to 1000 ° C.

【0036】高アスペクト比を持つ酸化錫繊維は、特に
酸化錫繊維同士の接触性を考慮しなくとも導電性が維持
され、その結果プレス機による加圧圧力を低減させるこ
とが可能となる。正極活物質を成形する際の加圧々力が
低いと、正極活物質内に充分な空孔が残存し、この結果
正極活物質内に非水電解液が充分含浸することが可能と
なる。更に、該酸化錫繊維は非水電解液との濡れ性も良
好であるため、正極活物質の非水電解液に対する濡れ性
が向上する。
The tin oxide fibers having a high aspect ratio maintain their electrical conductivity without considering the contact between the tin oxide fibers, and as a result, the pressure applied by the press machine can be reduced. If the pressing force at the time of molding the positive electrode active material is low, sufficient pores remain in the positive electrode active material, and as a result, the nonaqueous electrolytic solution can be sufficiently impregnated in the positive electrode active material. Furthermore, since the tin oxide fiber has good wettability with the non-aqueous electrolyte, the wettability of the positive electrode active material with the non-aqueous electrolyte is improved.

【0037】また、該酸化錫繊維は充放電サイクル中に
過酷な酸化電位下に置かれても、酸化分解を起こすこと
がなく、また導電性等の性能が劣化することもない。こ
のため、該酸化錫繊維を添加した正極は、アセチレンブ
ラック等の炭素材料を添加した場合と比較して、充放電
サイクル寿命に優れることになる。
Further, even if the tin oxide fiber is placed under a severe oxidation potential during a charge / discharge cycle, it does not undergo oxidative decomposition and does not deteriorate in performance such as conductivity. Therefore, the positive electrode to which the tin oxide fiber is added has an excellent charge / discharge cycle life as compared with the case where a carbon material such as acetylene black is added.

【0038】また、該酸化錫繊維は、その形状よりある
程度以上のアスペクト比を持つと、可とう性に優れた材
料となる。この様な材料を正極に添加すると、電極が充
放電サイクル中に膨張・収縮を起こしても、酸化錫繊維
の補強効果により安定な電極とすることが可能となり、
その結果として充放電サイクル寿命を伸ばすことが可能
となる。
If the tin oxide fiber has an aspect ratio of a certain value or more than its shape, it becomes a material having excellent flexibility. When such a material is added to the positive electrode, even if the electrode expands or contracts during the charge / discharge cycle, the reinforcing effect of the tin oxide fiber makes it possible to provide a stable electrode.
As a result, the charge / discharge cycle life can be extended.

【0039】また、該酸化錫繊維は正極活物質との絡み
性が良好であり、電気容量を増加させるために正極中の
正極活物質の割合を増加させ、代わりに結着剤の量を減
らしても、充分な強度を持ち、長期間充放電サイクルを
繰り返すことにより正極が膨張・収縮しても崩壊し難
い。
Further, the tin oxide fiber has good entanglement with the positive electrode active material, and increases the proportion of the positive electrode active material in the positive electrode in order to increase the electric capacity, and instead reduces the amount of the binder. However, it has sufficient strength and does not easily collapse even if the positive electrode expands or contracts by repeating a charge-discharge cycle for a long time.

【0040】[0040]

【発明の効果】本発明の酸化錫繊維を添加した非水電解
液二次電池正極は、長期間の充放電サイクルを行っても
導電性を失わず、充放電サイクル中に発生する電極の膨
張・収縮によっても集電不良を起こさず、また結着剤が
少なくても正極活物質が崩壊せず、高い利用率を維持す
るという効果を有する。
INDUSTRIAL APPLICABILITY The non-aqueous electrolyte secondary battery positive electrode to which the tin oxide fiber of the present invention is added does not lose its conductivity even after a long-term charging / discharging cycle, and the expansion of the electrode generated during the charging / discharging cycle. -Even when contracted, current collection failure does not occur, and the positive electrode active material does not collapse even if the amount of the binder is small, which has the effect of maintaining a high utilization rate.

【0041】[0041]

【実施例】以下、実施例を示すが、本発明はなんらこれ
に限定されない。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto.

【0042】以下の実施例及び比較例において、非水溶
媒にはプロピレンカーボネートを使用した。リチウム塩
には過塩素酸リチウムを使用し、これを前記溶媒中に1
モル/リットルとなるように溶解し、電解液とした。ま
た電池セルには、ステンレス製の底板上にポリテトラフ
ルオロエチレン製の円筒部を設置したものを使用し、正
極を下部底板上に設置し、負極並びに参照極は上部蓋か
ら吊り下げて使用した。正極活物質の充放電サイクル特
性を測定するために、市販の充放電装置(北斗電工製)
にて正極活物質の利用率を測定した。なお、充放電電流
密度を12.7μA/cm2とし、参照電極に対して+
4.3Vに達した時点で充電を終了し、参照電極に対し
て+3.0Vに達した時点で放電を終了した。以降、同
一条件で充放電試験を繰り返した。但し、充電後並びに
放電後にはそれぞれ1時間のレストをとった。この時、
正極活物質としてLiCoO2、結着剤にポリテトラフ
ルオロエチレン(以下、PTFEと表す)、導電性付与
剤として酸化錫繊維、アセチレンブラックあるいは市販
の球状酸化錫粉末を用い、これらを混合した後プレス機
にてペレット状に加圧成形し正極とした。負極並びに参
照極にはリチウム金属を使用した。ポリプロピレン製の
微多孔膜をセパレータとして負極を囲むように配置し
た。ここで、利用率は活物質のみに対する値とした。具
体的には正極活物質(LiCoO2)の理論電気容量、
試料に用いた正極活物質の重量及び放電電気量より以下
の計算式をもって計算した。
In the following examples and comparative examples, propylene carbonate was used as the non-aqueous solvent. Lithium salt is lithium perchlorate, which is
It was dissolved so as to have a mol / liter to obtain an electrolytic solution. As the battery cell, a stainless steel bottom plate with a polytetrafluoroethylene cylindrical portion installed was used, the positive electrode was installed on the lower bottom plate, and the negative electrode and the reference electrode were used by being hung from the upper lid. . A commercially available charging / discharging device (made by Hokuto Denko) to measure the charging / discharging cycle characteristics of the positive electrode active material.
Then, the utilization rate of the positive electrode active material was measured. The charge / discharge current density was set to 12.7 μA / cm 2 and +
Charging was terminated when the voltage reached 4.3 V, and discharging was terminated when the voltage reached +3.0 V with respect to the reference electrode. Thereafter, the charge / discharge test was repeated under the same conditions. However, a rest of 1 hour was taken after each of charging and discharging. At this time,
LiCoO 2 was used as the positive electrode active material, polytetrafluoroethylene (hereinafter referred to as PTFE) was used as the binder, tin oxide fiber, acetylene black or commercially available spherical tin oxide powder was used as the conductivity-imparting agent, and these were mixed and then pressed. It was pressed into pellets with a machine to obtain a positive electrode. Lithium metal was used for the negative electrode and the reference electrode. A polypropylene microporous film was used as a separator to surround the negative electrode. Here, the utilization rate is a value for only the active material. Specifically, the theoretical electric capacity of the positive electrode active material (LiCoO 2 ),
It was calculated from the weight of the positive electrode active material used in the sample and the amount of discharged electricity by the following calculation formula.

【0043】[0043]

【数1】 [Equation 1]

【0044】また、100回目の放電時の利用率を、初
回放電時の利用率で除し、それを100倍したものを1
00サイクル目容量維持率とし、比較した。
The utilization factor at the 100th discharge is divided by the utilization factor at the first discharge and multiplied by 100 to obtain 1
The capacity retention rate at the 00th cycle was used for comparison.

【0045】実施例にて使用した酸化錫繊維は以下の方
法で製造した。
The tin oxide fibers used in the examples were manufactured by the following method.

【0046】塩化第一錫(SnCl2)639.0g、
金属錫549.6g、塩化アンチモン95.8gをメタ
ノール3942g中に順次溶解した。得られた溶液をロ
ータリーエバポレーターによって濃縮し、紡糸液を得
た。この紡糸液を多数の穴を有するノズルから紡糸し、
ゲル繊維を作製した。このゲル繊維を700℃で2時間
焼成した後、切断し、平均繊維径27μm、アスペクト
比20(酸化錫繊維A),アスペクト比50(同B),
アスペクト比200(同C)の酸化錫繊維及び平均繊維
径300μm、アスペクト比20(同D)の酸化錫繊維
を得た。蛍光エックス線を用いた検量線による元素分析
の結果、Sn/Sbモル比=94.9/5.1であっ
た。長さ方向に対して垂直方向の断面は円形であった。
639.0 g of stannous chloride (SnCl 2 ),
549.6 g of metal tin and 95.8 g of antimony chloride were sequentially dissolved in 3942 g of methanol. The obtained solution was concentrated by a rotary evaporator to obtain a spinning solution. This spinning solution is spun from a nozzle having many holes,
Gel fibers were made. This gel fiber was fired at 700 ° C. for 2 hours and then cut to have an average fiber diameter of 27 μm, an aspect ratio of 20 (tin oxide fiber A), an aspect ratio of 50 (same B),
A tin oxide fiber having an aspect ratio of 200 (same as C) and a tin oxide fiber having an average fiber diameter of 300 μm and an aspect ratio of 20 (same as D) were obtained. As a result of elemental analysis by a calibration curve using a fluorescent X-ray, the Sn / Sb molar ratio was 94.9 / 5.1. The cross section perpendicular to the length direction was circular.

【0047】実施例1 LiCoO2500mg(77.5重量%)に、結着剤
のPTFE16mg(2.5重量%)、酸化錫繊維A1
29mg(20重量%)を混合して正極活物質とし、集
電体(銅製)上にプレス機によって加圧成形して正極を
作製した。前記のように電池セルを組み立て、充放電試
験を行った。その結果を表1に示す。
Example 1 500 mg (77.5% by weight) of LiCoO 2 , 16 mg (2.5% by weight) of PTFE as a binder, and tin oxide fiber A1
29 mg (20% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0048】実施例2 LiCoO2500mg(77.5重量%)に、結着剤
のPTFE16mg(2.5重量%)、酸化錫繊維B1
29mg(20重量%)を混合して正極活物質とし、集
電体(銅製)上にプレス機によって加圧成形して正極を
作製した。前記のように電池セルを組み立て、充放電試
験を行った。その結果を表1に示す。
Example 2 500 mg (77.5% by weight) of LiCoO 2 , 16 mg (2.5% by weight) of PTFE as a binder and tin oxide fiber B1
29 mg (20% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0049】実施例3 LiCoO2500mg(77.5重量%)に、結着剤
のPTFE16mg(2.5重量%)、酸化錫繊維C1
29mg(20重量%)を混合して正極活物質とし、集
電体(銅製)上にプレス機によって加圧成形して正極を
作製した。前記のように電池セルを組み立て、充放電試
験を行った。その結果を表1に示す。
Example 3 500 mg (77.5% by weight) of LiCoO 2 , 16 mg (2.5% by weight) of PTFE as a binder, and tin oxide fiber C1
29 mg (20% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0050】比較例1 LiCoO2500mg(75重量%)に、結着剤のP
TFE33mg(5重量%)、球状酸化錫粉末(平均粒
子径0.5μm)133mg(20重量%)を混合して
正極活物質とし、集電体(銅製)上にプレス機によって
加圧成形して正極を作製した。前記のように電池セルを
組み立て、充放電試験を行った。その結果を表1に示
す。
Comparative Example 1 LiCoO 2 (500 mg, 75% by weight) was mixed with P as a binder.
33 mg (5% by weight) of TFE and 133 mg (20% by weight) of spherical tin oxide powder (average particle size 0.5 μm) were mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine. A positive electrode was produced. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0051】比較例2 LiCoO2500mg(77.5重量%)に、結着剤
のPTFE16mg(2.5重量%)、球状酸化錫粉末
129mg(20重量%)を混合して正極活物質とし、
集電体(銅製)上にプレス機によって加圧成形して正極
を作製した。前記のように電池セルを組み立て、充放電
試験を行った。その結果を表1に示す。
Comparative Example 2 500 mg (77.5% by weight) of LiCoO 2 was mixed with 16 mg (2.5% by weight) of PTFE as a binder and 129 mg (20% by weight) of spherical tin oxide powder to prepare a positive electrode active material,
A current collector (made of copper) was pressure-molded with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0052】比較例3 LiCoO2500mg(90重量%)に、結着剤のP
TFE28mg(5重量%)、アセチレンブラック28
mg(5重量%)を混合して正極活物質とし、集電体
(銅製)上にプレス機によって加圧成形して正極を作製
した。前記のように電池セルを組み立て、充放電試験を
行った。その結果を表1に示す。
Comparative Example 3 500 mg (90% by weight) of LiCoO 2 was mixed with P as a binder.
TFE 28 mg (5% by weight), acetylene black 28
mg (5% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a pressing machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】実施例4 LiCoO2500mg(87.5重量%)に、結着剤
のPTFE14mg(2.5重量%)、酸化錫繊維B5
7mg(10重量%)を混合して正極活物質とし、集電
体(銅製)上にプレス機によって加圧成形して正極を作
製した。前記のように電池セルを組み立て、充放電試験
を行った。その結果を表2に示す。
Example 4 500 mg (87.5% by weight) of LiCoO 2 , 14 mg (2.5% by weight) of PTFE as a binder and tin oxide fiber B5
7 mg (10% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 2.

【0055】実施例5 LiCoO2500mg(67.5重量%)に、結着剤
のPTFE19mg(2.5重量%)、酸化錫繊維B2
22mg(30重量%)を混合して正極活物質とし、集
電体(銅製)上にプレス機によって加圧成形して正極を
作製した。前記のように電池セルを組み立て、充放電試
験を行った。その結果を表2に示す。
Example 5 LiCoO 2 (500 mg, 67.5% by weight), PTFE binder (19 mg, 2.5% by weight), tin oxide fiber B2
22 mg (30% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 2.

【0056】比較例4 LiCoO2500mg(77.5重量%)に、結着剤
のPTFE16mg(2.5重量%)、酸化錫繊維D1
29mg(20重量%)を混合して正極活物質とし、集
電体(銅製)上にプレス機によって加圧成形して正極を
作製した。前記のように電池セルを組み立て、充放電試
験を行った。その結果を表2に示す。
Comparative Example 4 500 mg (77.5% by weight) of LiCoO 2 , 16 mg (2.5% by weight) of PTFE as a binder and tin oxide fiber D1
29 mg (20% by weight) was mixed to obtain a positive electrode active material, which was pressure-molded on a current collector (made of copper) with a press machine to produce a positive electrode. A battery cell was assembled as described above and a charge / discharge test was conducted. The results are shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

フロントページの続き (56)参考文献 特開 平7−153495(JP,A) 特開 平6−163051(JP,A) 特開 平10−3904(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 Continuation of front page (56) Reference JP-A-7-153495 (JP, A) JP-A-6-163051 (JP, A) JP-A-10-3904 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムを吸蔵、放出することが可能な
材料中に酸化錫繊維を含有してなる正極活物質が集電体
に接合されていることを特徴とする非水電解液二次電池
用正極。
1. A non-aqueous electrolyte secondary battery in which a positive electrode active material containing tin oxide fibers in a material capable of inserting and extracting lithium is bonded to a current collector. For positive electrode.
【請求項2】 酸化錫繊維の直径が1〜50μm、アス
ペクト比が10以上であることを特徴とする請求項1記
載の非水電解液二次電池用正極。
2. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the tin oxide fiber has a diameter of 1 to 50 μm and an aspect ratio of 10 or more.
【請求項3】 請求項1又は2記載の非水電解液二次電
池用正極と、リチウムを吸蔵、放出が可能な物質からな
る負極活物質を集電体に接合してなる負極とが、セパレ
ータを介して非水電解液と共に容器内に収納されている
ことを特徴とする非水電解液二次電池。
3. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, and a negative electrode formed by joining a negative electrode active material made of a substance capable of absorbing and releasing lithium to a current collector. A non-aqueous electrolyte secondary battery, which is housed in a container together with a non-aqueous electrolyte via a separator.
JP15458796A 1996-06-14 1996-06-14 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Expired - Fee Related JP3526695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15458796A JP3526695B2 (en) 1996-06-14 1996-06-14 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15458796A JP3526695B2 (en) 1996-06-14 1996-06-14 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH103903A JPH103903A (en) 1998-01-06
JP3526695B2 true JP3526695B2 (en) 2004-05-17

Family

ID=15587463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15458796A Expired - Fee Related JP3526695B2 (en) 1996-06-14 1996-06-14 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3526695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581196B2 (en) * 2000-08-03 2010-11-17 株式会社豊田中央研究所 Positive electrode for lithium secondary battery
WO2008004393A1 (en) * 2006-07-07 2008-01-10 Murata Manufacturing Co., Ltd. Dielectric ceramic, ceramic electronic component, and laminated ceramic capacitor

Also Published As

Publication number Publication date
JPH103903A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
US5851504A (en) Carbon based electrodes
KR101430615B1 (en) Cathode and lithium battery using the same
US6468690B1 (en) Methods of fabricating electrochemical cells
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
KR102192082B1 (en) Anode active material, anode including the anode active material, and lithium secondary battery including the anode
US7674554B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
KR101228115B1 (en) Cathode, preparation method thereof, and lithium battery containing the same
KR20070065803A (en) Cathode active material and lithium ion secondary battery
JP2007194202A (en) Lithium ion secondary battery
CN101355146A (en) Anode, battery, and methods of manufacturing them
JP2000067852A (en) Lithium secondary battery
US5707760A (en) Additives for inhibiting decomposition of lithium salts and electrolytes containing said additives
KR100541896B1 (en) Battery with Nonaqueous Electrolyte
KR101093697B1 (en) Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same
US5561007A (en) Cathode-active material blends of Lix Mn2 O4 and Liy -α-MnO2
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
US11848440B2 (en) Prelithiated negative electrodes including composite Li—Si alloy particles and methods of manufacturing the same
JP3533664B2 (en) Negative electrode material and battery using the same
KR101621384B1 (en) Anode, lithium battery comprising the anode, and method for preparing the anode
JP3723146B2 (en) Non-aqueous electrolyte battery
JP4701595B2 (en) Lithium ion secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
US5972055A (en) Binary solvent method for battery
JP5492380B2 (en) Composite cathode active material, method for producing the same, cathode and lithium battery employing the same
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees