JPS62222534A - Impregnated type cathode structure - Google Patents

Impregnated type cathode structure

Info

Publication number
JPS62222534A
JPS62222534A JP61065135A JP6513586A JPS62222534A JP S62222534 A JPS62222534 A JP S62222534A JP 61065135 A JP61065135 A JP 61065135A JP 6513586 A JP6513586 A JP 6513586A JP S62222534 A JPS62222534 A JP S62222534A
Authority
JP
Japan
Prior art keywords
cathode
barium
porosity
thickness
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065135A
Other languages
Japanese (ja)
Inventor
Katsuhisa Honma
克久 本間
Sakae Kimura
木村 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61065135A priority Critical patent/JPS62222534A/en
Publication of JPS62222534A publication Critical patent/JPS62222534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the emission current property for a long period of time and realize a long service life, by specifying the porosity and the thickness of the covering layer of a porous W base. CONSTITUTION:A porous W base 11 is made by compressing and forming W powder of particle diameter 3-10mum into bar forms and sintered in a reducing atmosphere. The porosity of the base 11 is made at 20-40%. After it is combined with a cathode sleeve, a brazing material layer, a heater, fillers, and the like, and impregnated with an electron emission substance, the W base 11 is covered with Ir, for example, by a spattering. Then, at the final process, it is heat-treated in a high temperature vacuum to form the base metal of a W alloy layer, that is, Ir-W alloy layer 16 with the thickness of 3,000-30,000Angstrom . By increasing said porosity (p), the barium feeding amount to the surface of the cathode per unit time is made larger, and by increasing the thickness of the covering layer, the increasing speed of the W density over the surface of the cathode can be controlled. Therefore, an increase of the W density over the cathode, and a decrease of the barium feeding rate over the cathode are restricted, and the service life property can be improved.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、電子管などに使用される電子放射用含浸型
陰極構体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) This invention relates to an impregnated cathode structure for electron emission used in an electron tube or the like.

(従来の技術) 電子管などに使用される含浸型陰極は、タングステン(
W)のような高融点金属の粉末を焼結して作った多孔質
陰極基体の空孔部に、酸化バリウム(Bad) 、酸化
カルシウム(Cab) 、および酸化アルミニウム(A
t203)からなる電子放射物質を溶融含浸したもので
ある。この陰極は酸化物陰極に較べて動作温度が高いと
いう不都合を有するものの、高電流密度が得られ、また
ガス被毒に強く、かつ長寿命であるという特長を有する
。このため、例えば衛星搭載用進行波管や大電力クライ
ストロン、あるいは高運度を必要とするディスプレイ管
、投写管等に広く使用されている。これらの用途では、
高電流密度、長寿命、安定動作などの特性の高信頼性が
ますます要望されている。
(Prior technology) Impregnated cathodes used in electron tubes, etc. are made of tungsten (
Barium oxide (Bad), calcium oxide (Cab), and aluminum oxide (A
t203) is melted and impregnated with an electron emitting material. Although this cathode has the disadvantage of a higher operating temperature than an oxide cathode, it has the advantage of being able to obtain a high current density, being resistant to gas poisoning, and having a long life. For this reason, they are widely used, for example, in traveling wave tubes mounted on satellites, high-power klystrons, and display tubes and projection tubes that require high operation speed. In these applications,
High reliability with characteristics such as high current density, long life, and stable operation is increasingly required.

高電流密度、長寿命特性に優れたものとして、陰極の電
子放射面にイリジウム(Ir)、オスミウム(OB)、
ルテニウム(Ru)、あるいはレニウム(Re )のよ
うな白金属金属、あるいはその合金を被覆し、仕事関数
を低減させた含浸型陰極がある。これは被覆層がないも
のに比べて同一動作温度ならば3〜5倍の高電流密度が
得られ、また同程度の電流密度を得るのに必要な動作温
度は、数10乃至数100℃はど低減される。このため
電子放射物質の蒸発速度を低減することができ、長寿命
にできる。また電子管内の電極間などに付着する電子放
射物質の最も低減することができ、耐電圧不良等が発生
する要因を取除くことにもなる。
Iridium (Ir), osmium (OB),
There is an impregnated cathode coated with a white metal such as ruthenium (Ru) or rhenium (Re), or an alloy thereof to reduce the work function. This means that at the same operating temperature, a current density that is 3 to 5 times higher than that without a coating layer can be obtained, and the operating temperature required to obtain the same current density is several tens to hundreds of degrees Celsius. is reduced. Therefore, the evaporation rate of the electron emitting material can be reduced, and the lifespan can be extended. In addition, it is possible to reduce the amount of electron emitting substances that adhere between the electrodes in the electron tube, thereby eliminating the factors that cause breakdown voltage defects and the like.

従来品では、多孔質W製陰極基体はその比重が16程度
、従って空孔率が16〜17%である。
In the conventional product, the porous W cathode substrate has a specific gravity of about 16, and therefore a porosity of 16 to 17%.

また従来品のIr−W合金被覆層をもつものでは、rr
被覆層の厚さが約1000X〜4000Xである。
In addition, in the conventional product with an Ir-W alloy coating layer, rr
The thickness of the coating layer is about 1000X to 4000X.

この合金層は原子比が約1:1の安定な合金層となり、
この合金層の厚さは熱処理によりおよそ2倍、即ち20
00〜8000Xの厚さである。エミッション電流特性
的にみて従来品の場合の被覆層の厚さは上記の値よシ薄
いと長時間動作によυ合金層中のW濃度の上昇が速く、
その効果が長続きしなくなり、また逆に被覆層厚が上記
よりも厚いと基体金属内で生成されたフリーバリウムの
陰極表面への供給がこの合金被覆層によって極度に防げ
られ、エミッション電流特性が劣化するものと考えられ
ている。
This alloy layer becomes a stable alloy layer with an atomic ratio of approximately 1:1,
The thickness of this alloy layer is approximately doubled by heat treatment, that is, 20
The thickness is 00 to 8000X. In terms of emission current characteristics, if the thickness of the coating layer in the case of a conventional product is thinner than the above value, the W concentration in the υ alloy layer will increase quickly during long-term operation.
The effect will not last long, and conversely, if the coating layer is thicker than the above, the supply of free barium generated in the base metal to the cathode surface will be extremely prevented by the alloy coating layer, resulting in deterioration of the emission current characteristics. It is considered to be.

(発明が解決しようとする問題点) このような合金被覆層を有する含浸型陰極は、たとえば
、IA/cIrL2程度の電流密度で使用する場合、致
方時間の動作で電流値が初期値のおよそ90%に低下し
、これがすなわち一般的な寿命であった。近年は、さら
に高電流密度で且つ長寿命の要求が強まり、従来のもの
ではこの要求に十分応えることが困難になってきている
。その主な理由は次のように考えられる。すなわち第1
に、合金被覆層を持たがい陰極に較べて動作温度が低減
されるとはいえ、通常1000℃程度の温度で使用され
る。したがりて被覆層中へ基体金属のWが拡散して、陰
極表面のW濃度が徐々に高くなり、動作時間が長くなる
と被覆層による効果が小さくなり、仕事関数が高くなっ
ていく。また第2に、陰極表面へのフリーバリウムの供
給は、基体金属内の生成部分と陰極表面近傍とのフリー
バリウムの濃度差によるものであり、温度が一定の場合
、フリーバリウム主成部付近の濃度はほぼ一定と考えら
れるが、動作時間に伴ってその生成中心は陰極表面から
奥へ移動し、したがってフリーバリウム生成部から表面
までの経路が長くなりコンダクタンス、が時間とともに
小さくなっていく。換言すれば、フリーバリウムの濃度
勾配が時間とともに減少していくということになる。陰
極表面へのバリウム供給は、コンダクタンスまたは濃度
勾配にほぼ比例すると考えられるので、その供給速度は
時間とともに減少していく。
(Problems to be Solved by the Invention) When an impregnated cathode having such an alloy coating layer is used at a current density of, for example, IA/cIrL2, the current value will be approximately equal to the initial value in operation for a certain period of time. This decreased to 90%, which was the typical lifespan. In recent years, demands for higher current density and longer life have become stronger, and it has become difficult for conventional devices to sufficiently meet these demands. The main reason for this is thought to be as follows. That is, the first
In addition, although the operating temperature is lower than that of an insulating cathode due to the alloy coating layer, it is normally used at a temperature of about 1000°C. Therefore, W in the base metal diffuses into the coating layer, and the W concentration on the cathode surface gradually increases.As the operating time increases, the effect of the coating layer becomes smaller and the work function increases. Secondly, the supply of free barium to the cathode surface is due to the difference in concentration of free barium between the generated part in the base metal and the vicinity of the cathode surface. Although the concentration is considered to be approximately constant, the center of its production moves deeper from the cathode surface as the operating time increases, and the path from the free barium generator to the surface becomes longer and the conductance decreases over time. In other words, the concentration gradient of free barium decreases with time. Since the barium supply to the cathode surface is considered to be approximately proportional to the conductance or concentration gradient, the supply rate decreases with time.

陰極は一般に空間電荷制限領域で使用されるが、陰極表
面でも空孔から遠い部分など、部分的には飽和領域とな
っている部分もある。高電流密度動作になれば、当然飽
和領域部分の割合も大きくなる。先に述べた要因により
、陰極表面に占める飽和領域の割合は、動作時間ととも
に大きくなり、したがって一定の印加電圧下でのエミッ
ション電流値は減少していくことが必然となる。
The cathode is generally used in a space charge limited region, but there are also parts of the cathode surface that are saturated, such as parts far from the pores. When operating at a high current density, the proportion of the saturation region naturally increases. Due to the above-mentioned factors, the proportion of the saturated region on the cathode surface increases with operating time, and it is therefore inevitable that the emission current value under a constant applied voltage will decrease.

この発明は、エミッション電流特性が長時間にわたって
より安定で、長寿命特性を有する含浸形陰極を得ること
を目的とする。
The object of the present invention is to obtain an impregnated cathode whose emission current characteristics are more stable over a long period of time and which have long life characteristics.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明は、多孔質タングステン基体の表面部に、rr
 * Os + Ru r Reの中から選択された少
なくとも1つの金属とWからなる合金被覆層が形成され
てなる含浸形陰極において、多孔質W基体の空孔率が2
0%〜40%のとくに好ましくは25〜35%の範囲で
、且つ被覆層の厚さが3,0OOX〜30.0001の
範囲、とくに好ましくは10,000X〜25.000
Xの範囲に設定されてなる含浸形陰極構体である。
(Means for Solving the Problems) This invention provides rr
* In an impregnated cathode formed with an alloy coating layer consisting of at least one metal selected from Os + Ru r Re and W, the porosity of the porous W substrate is 2.
The range is 0% to 40%, particularly preferably 25 to 35%, and the thickness of the coating layer is in the range of 3,000X to 30,0001, particularly preferably 10,000X to 25,000.
This is an impregnated cathode structure set within the range of X.

(作用) この発明によれば、この種の含浸形陰極の長時間動作に
おける電子放射特性減衰の主要因である陰極表面のW濃
度上昇、陰極表面へのバリウム供給速度の低下の両方の
要因を抑え、大幅な寿命特性の改善を実現することがで
きる。
(Function) According to the present invention, both of the main causes of attenuation of electron emission characteristics during long-term operation of this type of impregnated cathode are an increase in the W concentration on the cathode surface and a decrease in the barium supply rate to the cathode surface. This makes it possible to significantly improve life characteristics.

(実施例) 以下図面を参照してその実施例を説明する。(Example) Examples thereof will be described below with reference to the drawings.

なお同一部分は同一符号であられす。Identical parts are designated by the same reference numerals.

第1図に示すように、多孔質W基体IIが陰極スリーブ
12の開口部に接合され、ろう材層13により隔てられ
たスリーブ内に絶縁充填物14により加熱用ヒータ15
が埋込まれている。多孔質W基体11の内部には、Ba
O+ CaO+ At203からなるような電子放射物
質が含浸されている。そしてこの多孔質W基体11の表
面部に、Ir r Os +Ru * Reの中から選
択された少なくとも1つの金属層(Z6)が被覆されて
いる。
As shown in FIG. 1, a porous W substrate II is joined to the opening of the cathode sleeve 12, and a heater 15 for heating is provided in the sleeve separated by a brazing material layer 13 with an insulating filling 14.
is embedded. Inside the porous W substrate 11, Ba
It is impregnated with an electron-emitting material such as O+ CaO+ At203. The surface of this porous W substrate 11 is coated with at least one metal layer (Z6) selected from Ir r Os +Ru*Re.

多孔質W基体11は、粒径が3〜10瑯のW粉末を棒状
に圧縮成形し、これを還元性雰囲気中で焼結する。従来
一般の基体の空孔率は前述のようにおよそ16〜17チ
であるが、この発明では20チ乃至40%の範囲、例え
ば約32%である。
The porous W substrate 11 is made by compression molding W powder having a particle size of 3 to 10 mm into a rod shape, and sintering this in a reducing atmosphere. The porosity of conventional substrates is about 16 to 17 inches as mentioned above, but in the present invention it is in the range of 20 to 40%, for example about 32%.

このようにして得られた焼結体の空孔部に、切削加工を
容易にするため鋼などを含浸させる。これを例えば外径
4.5−1厚さ1.5+aの円盤状に切削加工する。次
に銅を硝酸や水素炉加熱などで除去する。そして陰極ス
リーブ、ろう材層、ヒータ、充填物等と組合わせ、その
後上述のような電子放射物質を含浸する。
The pores of the sintered body thus obtained are impregnated with steel or the like to facilitate cutting. This is cut into a disk shape having, for example, an outer diameter of 4.5-1 and a thickness of 1.5+a. Next, copper is removed using nitric acid or heating in a hydrogen furnace. Then, it is combined with a cathode sleeve, a brazing material layer, a heater, a filler, etc., and then impregnated with the electron emitting material as described above.

電子放射物資を含浸した後、陰極表面をクリーニングし
、W基体ll上に例えばIrをスパッタリング法で10
,000又被覆する。そして最終工程でこれを真空中で
1000℃以上の高温で熱処理し、表面部に基体金属で
あるWとの合金層すなわちIr−W合金層I6がおよそ
20,000Xの厚さに形成される。
After impregnating the electron emitting material, the cathode surface is cleaned and, for example, Ir is applied onto the W substrate 10 by sputtering.
,000 coated. In the final step, this is heat-treated in a vacuum at a high temperature of 1000 DEG C. or higher to form an alloy layer with W as the base metal, that is, an Ir-W alloy layer I6 with a thickness of approximately 20,000X, on the surface portion.

つぎにこの発明の作用・効果を、簡単な動作モデルによ
って概略説明する。ある長時間動作後のこの含浸形陰極
構体の多孔質陰極基体表面部において、陰極表面へのフ
リーバリウム供給の様子を模式的に第2図および第3図
に示す。同図の符号11hはW粒子、Ilbは空孔、1
6は合金被覆層、17は電子放射物質の消耗領域、18
は電子放射物資の残存領域をあられしている。さて、こ
の陰極の長時間動作に伴う電子放射特性の劣化の主な原
因は、前述のように合金被覆表面のW濃度の上昇、並び
にフリーバリウム生成中心の後退による陰極表面へのバ
リウム供給速度の減衰であると考えられる。この発明の
特徴は、従来品に比べて同一温度での陰極表面のW濃度
上昇速度、およびフリーバリウム生成中心の後退速度を
抑えることを実現し、したがって動作時間に伴う電子放
射特性の劣化速度を大幅に低減させるところにある。
Next, the functions and effects of the present invention will be briefly explained using a simple operational model. FIGS. 2 and 3 schematically show how free barium is supplied to the cathode surface at the surface of the porous cathode substrate of this impregnated cathode structure after a certain long-time operation. The code 11h in the figure is a W particle, Ilb is a hole, 1
6 is an alloy coating layer, 17 is a consumption area of electron emitting material, 18
is raining down areas where electron emitting materials remain. The main causes of the deterioration of the electron emission characteristics due to long-term operation of this cathode are, as mentioned above, the increase in the W concentration on the alloy coating surface and the decrease in the barium supply rate to the cathode surface due to the retreat of free barium production centers. This is considered to be attenuation. The feature of this invention is that it suppresses the rate of increase in W concentration on the cathode surface and the rate of retreat of free barium generation centers at the same temperature compared to conventional products, and therefore reduces the rate of deterioration of electron emission characteristics over operating time. It is about to be significantly reduced.

そこで、フリーバリウム生成面付近のバリウム濃度をN
o (温度により一定)、陰極表面近傍のバリウム濃度
をN、バリウム生成中心から陰極表面へのバリウム供給
に対する基体金属と被覆層部の総コンダクタンスをCと
する。また多孔質Wの単位体積当りから生成されるフリ
ーバリウムの量をm、陰極表面積(横断面積)を81多
孔質Wのバリウム消耗深さく初期空乏層の深さを含む)
をtpとする。電子放射物質は陰極表面側から順に消耗
することを仮定すれば、これらの物理量と陰極動作時間
tとを用いて次の等式がなりたつ。
Therefore, we decided to reduce the barium concentration near the free barium generation surface to N
o (constant depending on temperature), N is the barium concentration near the cathode surface, and C is the total conductance of the base metal and the coating layer with respect to barium supply from the barium production center to the cathode surface. In addition, the amount of free barium generated per unit volume of porous W is m, and the cathode surface area (cross-sectional area) is 81 barium consumption depth of porous W (including the depth of the initial depletion layer).
Let be tp. Assuming that the electron emitting material is consumed sequentially from the cathode surface side, the following equation holds using these physical quantities and the cathode operating time t.

すなわち、熱平衡状態では単位時間当りに生成されるフ
リーバリウム量(式の左辺)は、空孔を通って陰極表面
に流れている単位時間当りのフリーバリウム量(0式の
右辺)とは等しい。実際の陰極の場合も、バリウム生成
は表面に近い方から徐々に奥の方へ進行するものと考え
られる。
That is, in a state of thermal equilibrium, the amount of free barium produced per unit time (the left side of the equation) is equal to the amount of free barium per unit time flowing through the pores to the cathode surface (the right side of the equation 0). In the case of an actual cathode as well, barium production is thought to progress gradually from near the surface to the depths.

ここで、総コンダクタンスCは多孔質W部のコンダクタ
ンスOpと、合金被覆層のコンダクタンス(4とで次の
ようにあられすことができる。
Here, the total conductance C can be expressed by the conductance Op of the porous W portion and the conductance (4) of the alloy coating layer as follows.

CCp  Cf また、多孔質Wの空孔率をPとすれば、この多孔質Wの
横断面での開孔面積をSpとすれば、次のような式がな
りたつ。
CCp Cf Further, if the porosity of the porous W is P, and the pore area in the cross section of the porous W is Sp, the following equation holds true.

Co−8aP Cp =□     ・・・・・・■ p ここで、Coは空孔率によらない一定の比例係数であり
、伝導度に相当する量である。そして0式、■式を用い
て次のようになる。
Co-8aP Cp = □ ...■ p Here, Co is a constant proportional coefficient independent of porosity, and is an amount corresponding to conductivity. Then, using the 0 formula and the ■ formula, it becomes as follows.

この式のうち1分母の(Go−8−P/C7)は、被覆
層部のコンダクタンスを多孔質W部のコンダクタンスで
換算し、バリウム消耗深さに相当させた換算深さである
。合金化が完了した後の被覆層の場合は、層構造の変化
がきわめて小さく、したがってほとんど動作時間によら
ない定数と考えられる。
In this equation, the denominator (Go-8-P/C7) is a converted depth obtained by converting the conductance of the coating layer portion by the conductance of the porous W portion, which corresponds to the barium consumption depth. In the case of the coating layer after alloying is completed, the change in the layer structure is extremely small, and therefore it is considered to be a constant that is almost independent of the operating time.

また■式の分母全体をtとおき、さらに単位体積の電子
放射物質から生成されるフリーバリウム量をMとすれば
、6式中のmは空孔率pを用いて、m = Mpとなる
。したがってt(!:Mを用いて0式を書き換えると、
次のようになる。
Also, if the entire denominator of equation (2) is t, and the amount of free barium generated from a unit volume of electron emitting material is M, then m in equation 6 uses the porosity p, and m = Mp. . Therefore, if we rewrite equation 0 using t(!:M), we get
It will look like this:

dt  CoCo−8 MP S −=     (No −N )   ・・
・・・・■dt       t いま、同一温度での長時間陰極動作を考える。
dt CoCo-8 MP S −= (No −N) ・・
...■dt t Now, consider long-term cathode operation at the same temperature.

フリーバリウム生成中心のバリウム濃度Noは、時間に
よらず一定と考えられ、■式中の動作時間tの関数はt
とNの2つとなり、したがりて次のようにあられすこと
ができる。
The barium concentration No. at the center of free barium production is considered to be constant regardless of time, and the function of the operating time t in the formula is t
and N, and therefore it can occur as follows.

dl    C。dl   C.

t=(No−N)    ・・・・・・■dt    
M この0式を時間tで積分する。ここで陰極表面近傍のバ
リウム濃度Nを動作時間で積分した値は、多孔質W中で
消耗されたバリウム量とバリウムの陰極表面での蒸発に
対する平均寿命時間τの積であられされ、これはMP 
(L −t(o) )τとなる。なおL (o)はt(
1=0)のときのtである。
t=(No-N) ・・・・・・■dt
M Integrate this 0 equation over time t. Here, the value obtained by integrating the barium concentration N near the cathode surface over the operating time is the product of the amount of barium consumed in the porous W and the average life time τ for barium evaporation on the cathode surface, and this is the value of the barium concentration N near the cathode surface.
(L-t(o))τ. Note that L (o) is t(
1=0).

これらを用いて0式は1=0でt=t(o)の条件のも
とに次のようになる。
Using these, the formula 0 becomes as follows under the conditions of 1=0 and t=t(o).

したがりて0式を用い、■式から次のようになる。Therefore, using equation 0, we get the following from equation (2).

そして、陰極表面へのバリウム供給速度は、次のように
あられされる。
The barium supply rate to the cathode surface is expressed as follows.

■および0式かられかるように、同一温度、同一時間比
較では空孔率pを大きくすれば陰極表面への単位時間当
りのバリウム供給量が多くなシ、表面バリウム濃度もそ
れに比例して大きくなる。
As can be seen from ■ and Equation 0, when comparing the same temperature and the same time, as the porosity p increases, the amount of barium supplied to the cathode surface per unit time increases, and the surface barium concentration also increases proportionally. Become.

しかし陰極表面からのバリウム蒸発側は、陰極表面への
供給量と同等であυ、したがって従来品に体してただ空
孔率が大きいだけでは過剰バリウム消耗、バリウム蒸発
による耐電圧不良などを生じやすく不都合となる。
However, the amount of barium evaporated from the cathode surface is equal to the amount supplied to the cathode surface. Therefore, if the porosity of conventional products is simply large, excessive barium consumption and poor withstand voltage due to barium evaporation may occur. This is easy and inconvenient.

そこでこの発明によれば、空孔率pを大きくするととも
に、初期状態での被覆層部を含めた換算深さくt(0)
)も大きくなり初期のバリウム供給速度を従来品と同等
にでき、さらにまた動作時間に対する供給速度の変化を
小さくすることができる、。
Therefore, according to the present invention, the porosity p is increased, and the converted depth t(0) including the coating layer portion in the initial state is increased.
), the initial barium supply rate can be made equal to that of conventional products, and the change in supply rate with respect to operating time can be reduced.

例えばO式右辺の分母で、Pとt (o)に着目して、
P、t(o)の両方を2倍の値とした場合を考えると、
初期のバリウム供給量は変化せず、且つバリウム供給速
度が同一となる動作時間は、4倍にも伸びることになる
For example, focusing on P and t (o) in the denominator of the right side of equation O,
Considering the case where both P and t(o) are doubled,
The operating time for which the initial barium supply amount does not change and the barium supply rate remains the same increases by four times.

る、すなわち被覆層の厚さを厚くすることにより、L 
(o)を大きくすることが可能となる。
In other words, by increasing the thickness of the coating layer, L
(o) can be increased.

被覆層の厚さを厚くすることは同時に陰極表面のW濃度
の上昇速度を抑える効果をも有する。因みに1合金化完
了後の動作初期状態で、合金層の厚さをd、Wの濃度を
no、動作時温度での被覆層中のW拡散係数をDとして
、層厚方向の簡単な一次元拡散問題を解き、その解で陰
極最表面のW濃度n (t)を近似iれば、次のように
なる。
Increasing the thickness of the coating layer also has the effect of suppressing the rate of increase in the W concentration on the cathode surface. Incidentally, in the initial state of operation after completion of alloying, the thickness of the alloy layer is d, the concentration of W is no, and the W diffusion coefficient in the coating layer at the operating temperature is D. Solving the diffusion problem and approximating the W concentration n (t) at the outermost surface of the cathode using the solution results in the following equation.

n(t)= 1−(1−no ) er f (=冨)
   =@4Dt したがって、層厚が厚いほど表面のW濃度の増加を遅く
することができる。
n(t) = 1-(1-no) er f (= wealth)
=@4Dt Therefore, the thicker the layer, the slower the increase in W concentration on the surface can be made.

次にこの発明の効果について述べる。この発明の実施例
は、前述のようにW体の空孔率が約32俤、表面部のI
r−W合金被覆層の厚さが約20,0OOXの場合であ
る。これに対して比較する従来品は、空孔率が16チ、
合金被覆層の厚さが約4,000 Xのもので、その表
面部拡大模式図を第4図に示す。
Next, the effects of this invention will be described. In the embodiment of the present invention, as mentioned above, the porosity of the W body is about 32, and the I
This is the case when the thickness of the r-W alloy coating layer is approximately 20,000X. On the other hand, the conventional product compared with this has a porosity of 16 cm.
The alloy coating layer has a thickness of about 4,000×, and an enlarged schematic diagram of its surface is shown in FIG.

第5図は両者の電子放射特性の動作時間による変化を示
したもので、動作温度はいずれも、1,000℃とし、
十分な活性化をした後寿命試験を開始したものである。
Figure 5 shows the change in the electron emission characteristics of both devices depending on the operating time.
The life test was started after sufficient activation.

初期のエミッション電流はIA/crn2である。例え
ば2万時間で両者を比較すると、エミッション電流の減
衰率は従来品が約6.3チであるのに対し7てこの発明
の実施例のものは約3.2チであり、およそ14にとど
まっている。そして従来品はおよそ1,000時間から
、この発明のものはおよそ4,000時間から電流減衰
率が概ね動作時間tのA乗に比例し、したがって同一減
衰率になるまでの動作時間はこの発明のものが従来のも
のの約4倍になるといえる。因、みに、電流減衰率が1
0%になるまでの予想動作時間は、従来品が約5万時間
、この発明のものが約20万時間となる。このようにこ
の発明によれば、寿命特性は大幅に改善される。
The initial emission current is IA/crn2. For example, when comparing the two after 20,000 hours, the decay rate of the emission current is about 6.3 inches for the conventional product, while it is about 3.2 inches for the embodiment of the present invention, which is about 14 degrees. It's staying. The current attenuation rate is approximately proportional to the A power of the operating time t from approximately 1,000 hours for the conventional product and approximately 4,000 hours for the inventive product. It can be said that the amount is about four times that of the conventional one. Incidentally, the current decay rate is 1
The expected operating time for the conventional product to reach 0% is approximately 50,000 hours, and that of the present invention is approximately 200,000 hours. As described above, according to the present invention, the life characteristics are significantly improved.

この発明は以上説明したように基体金属の空孔率および
表面被覆層の厚さ寸法を所定の範囲に大きくすることを
特徴としている。その数値範囲の有効性について述べる
と、空孔率は前述のように約20q6乃至40%の範囲
が好ましい。また被覆層の厚さは、動作温度が約1.O
OO’Cで、0〜500時間までの動作時間においてバ
リウム熱蒸発量が平均して約1乃至3/15I/(cr
IL2h)程度となるように選定すればよい。そして空
孔率が20%である場合は合金被覆層をおよそ3,00
0 X程度、また40%の空孔率では厚さおよそ30.
0001程度とする関係が好ましい。このように空孔率
および層厚を大きくすることによって、増大するバリウ
ム供給量をほど良く抑制でき、長寿命特性を得ることが
できる。
As explained above, this invention is characterized by increasing the porosity of the base metal and the thickness of the surface coating layer within predetermined ranges. Regarding the effectiveness of this numerical range, the porosity is preferably in the range of approximately 20q6 to 40%, as described above. The thickness of the coating layer is determined by the operating temperature of approximately 1.5 mm. O
At OO'C, the barium thermal evaporation amount averages from about 1 to 3/15 I/(cr
IL2h) may be selected. When the porosity is 20%, the alloy coating layer is approximately 3,00%
When the porosity is about 0.0X and the porosity is 40%, the thickness is about 30.
A relationship of about 0001 is preferable. By increasing the porosity and layer thickness in this manner, the increasing amount of barium supplied can be moderately suppressed, and long-life characteristics can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、この種含浸形陰極
の長時間動作における電子放射特性減衰の主要因である
陰極表面のW濃度上昇、陰極表面へのバリウム供給策度
の低下の両方の要因を抑え、寿命特性の改善を実現する
ことができる。
As described above, according to the present invention, both the increase in the W concentration on the cathode surface and the decrease in the barium supply efficiency to the cathode surface, which are the main causes of attenuation of electron emission characteristics during long-term operation of this type of impregnated cathode, can be reduced. It is possible to suppress the factors and improve the life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す概略縦断面図、第2図
はその表面部を拡大して示す模式図、第3図はその要部
拡大模式図、第4図は従来の構成のものの要部拡大模式
図、第5図は比較特性図である。 11・・・多孔質陰極基体、I6・・・合金被覆層。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
Fig. 1 is a schematic vertical sectional view showing an embodiment of the present invention, Fig. 2 is a schematic diagram showing an enlarged surface portion thereof, Fig. 3 is an enlarged schematic diagram of the main part thereof, and Fig. 4 is a schematic diagram of the conventional configuration. FIG. 5 is an enlarged schematic diagram of the main part of the product and a comparative characteristic diagram. 11... Porous cathode substrate, I6... Alloy coating layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 高融点金属からなる陰極基体内にアルカリ土類金属酸化
物が含浸され、この陰極基体の電子放射面に、イリジウ
ム、オスミウム、ルテニウム、レニウムの中から選択さ
れた少なくとも1つの金属と前記多孔質陰極基体の金属
との合金被覆層が形成されてなる含浸型陰極構体におい
て、 上記多孔質陰極基体の空孔率が20%乃至40%の範囲
で、且つ上記合金被覆層の厚さが3,000Å以上、3
0,000Å以下の範囲であることを特徴とする含浸型
陰極構体。
[Claims] A cathode substrate made of a high melting point metal is impregnated with an alkaline earth metal oxide, and the electron emitting surface of the cathode substrate is coated with at least one selected from iridium, osmium, ruthenium, and rhenium. In an impregnated cathode structure in which an alloy coating layer of a metal and the metal of the porous cathode substrate is formed, the porosity of the porous cathode substrate is in the range of 20% to 40%, and the alloy coating layer is Thickness of 3,000 Å or more, 3
An impregnated cathode structure characterized in that the thickness is in the range of 0,000 Å or less.
JP61065135A 1986-03-24 1986-03-24 Impregnated type cathode structure Pending JPS62222534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065135A JPS62222534A (en) 1986-03-24 1986-03-24 Impregnated type cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065135A JPS62222534A (en) 1986-03-24 1986-03-24 Impregnated type cathode structure

Publications (1)

Publication Number Publication Date
JPS62222534A true JPS62222534A (en) 1987-09-30

Family

ID=13278131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065135A Pending JPS62222534A (en) 1986-03-24 1986-03-24 Impregnated type cathode structure

Country Status (1)

Country Link
JP (1) JPS62222534A (en)

Similar Documents

Publication Publication Date Title
JPS58154131A (en) Impregnation type cathode
JPS58177484A (en) Manufacture of dispenser cathode
US4737679A (en) Impregnated cathode
JPS6191822A (en) Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby
KR100189035B1 (en) Scandate cathode and method of making it
KR890004116B1 (en) Dispenser-type cathodes
US5126623A (en) Dispenser cathode
JP4949603B2 (en) Cathode ray tube with composite cathode.
JP2004510291A (en) Cathode ray tube with oxide cathode
JPS62222534A (en) Impregnated type cathode structure
JP4018468B2 (en) Cathode and manufacturing method thereof
JP3260204B2 (en) Thermal field emission cathode
US5982083A (en) Cathode for electron tube
JPH0765693A (en) Oxide cathode
JPS6134218B2 (en)
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
JPS58192237A (en) Impregnation type cathode
JPS6062034A (en) Hot-cathode frame body
JPS62133632A (en) Impregnated type cathode
KR920004551B1 (en) Dispensor cathode
JPH06203738A (en) Cathode for electron tube
JP2650638B2 (en) Cathode ray tube
JPS6032232A (en) Impregnated cathode
JPH11204019A (en) Oxide cathode
JP2002025436A (en) Manufacturing method of impregnated type cathode structure