JPS62222259A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62222259A
JPS62222259A JP6473886A JP6473886A JPS62222259A JP S62222259 A JPS62222259 A JP S62222259A JP 6473886 A JP6473886 A JP 6473886A JP 6473886 A JP6473886 A JP 6473886A JP S62222259 A JPS62222259 A JP S62222259A
Authority
JP
Japan
Prior art keywords
oxygen
photoreceptor
amount
potential
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6473886A
Other languages
Japanese (ja)
Inventor
Minoru Matsuo
稔 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6473886A priority Critical patent/JPS62222259A/en
Publication of JPS62222259A publication Critical patent/JPS62222259A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the surface potential of a photosensitive body from changing by using an Se-Te-Te-Cl type alloy doped with <=0.1ppm O and 2-15ppm Cl. CONSTITUTION:The Se-Te-Te-Cl type alloy doped with <=0.1ppm O and 2-15ppm Cl is used for the electrophotographic sensitive body, thus permitting a doping amount of Cl to be saved, residual potential accumulation (fatigue characteristics) to be improved, and drop of acceptance potential and change of surface potential of the photosensitive body to be prevented.

Description

【発明の詳細な説明】 [技術分野] この発明は電子写真感光体、特にセレン−テルル−塩素
系(以下3e−Te−CI系と記載する)合金よりなる
電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor made of a selenium-tellurium-chlorine (hereinafter referred to as 3e-Te-CI) alloy.

[従来技術] 従来の3e−Te系感光体は、原材料のSe、Teおよ
びその合金中に含まれる酸素濃度が不明のまま使用され
、感光体中の酸素濃度も定量されていなかった。その従
来感光体ではTe1度が増すにしたがって、汎色性が増
し、感度は早めになると同時に、繰返し使用による残留
電位が蓄積するといういわゆる疲労特性が大きくなるこ
とが知られている。これに対して各種の改良が試みられ
ているが、その1つの方法としてCI(塩素)をドープ
する方法がある。
[Prior Art] Conventional 3e-Te photoreceptors have been used without knowing the oxygen concentrations contained in the raw materials Se, Te, and their alloys, and the oxygen concentrations in the photoreceptors have not been quantified. It is known that in the conventional photoreceptor, as the Te1 degree increases, the panchromaticity increases, the sensitivity becomes faster, and at the same time, the so-called fatigue characteristic that residual potential accumulates due to repeated use increases. Various improvements have been attempted in this regard, and one method is doping with CI (chlorine).

しかしながら、残留電位蓄積という疲労現象は、感光体
中の深いキャリヤートラップ準位に基因しており、CI
をドープするのは浅いトラップ準位を形成して深い単位
にトラップされたキャリヤーを放出させやすくしている
のて必るが、浅いトラップ準位の形成により、熱的にも
励起されて放出され易くなり、感光体温度が上昇すると
表面帯電電位が低下し易くなるという欠点を有している
However, the fatigue phenomenon of residual potential accumulation is caused by deep carrier trap levels in the photoreceptor, and CI
Doping is necessary to form a shallow trap level and make it easier to release carriers trapped in deep units, but the formation of a shallow trap level also causes them to be thermally excited and released. This has the disadvantage that the surface charging potential tends to decrease as the temperature of the photoreceptor increases.

現在までに使用されている市販品公称値99、99〜9
9.999%のSe、Teを用イテ作った感光体中に深
いトラップを形成するほどの不純物は知られていなかっ
たが、最近確立された分析法によると、原材料3e、T
’e、合金中ひいてはそれを用いて製造された感光体中
の酸素濃度の大小が疲労特性に大きく寄与していること
が判ってきて、感光体中の酸素濃度を減らすように工夫
されてきている。
Commercial products used to date nominal value 99, 99-9
Although no impurities were known to be sufficient to form deep traps in photoreceptors made using 9.999% Se and Te, recently established analytical methods revealed that the raw materials 3e, T
'e, It has become clear that the level of oxygen concentration in the alloy and, by extension, in the photoconductor manufactured using the same greatly contributes to fatigue characteristics, and efforts have been made to reduce the oxygen concentration in the photoconductor. There is.

しかしながら、酸素濃度を低くした3e、Teを用いた
合金で従来通り感光体をつくると、残留電位蓄積という
疲労特性は改良されるものの、高温時の電位低下は著し
くなるというeJ作用が必る。
However, if a photoconductor is conventionally made from an alloy using 3e and Te with a low oxygen concentration, although the fatigue characteristic of residual potential accumulation is improved, the eJ effect is inevitable, in which the potential drop at high temperatures becomes significant.

これは本来深い単位を形成する酸素が多い場合、C1は
有効であるが、酸素量が少ない場合、C1が過剰の補償
効果をもってしまうからである。
This is because C1 is effective when there is a large amount of oxygen forming deep units, but when the amount of oxygen is small, C1 has an excessive compensation effect.

[口  的] この発明は、C1のドープJを減少させることによって
従来の合金の疲労特性を改良し、同時に表面電位が変化
しないようにすることを目的と覆る。
[Information] This invention aims to improve the fatigue properties of conventional alloys by reducing the doping J of C1, while at the same time preventing the surface potential from changing.

[構 成] 上記目的を速成するためのこの発明の構成は、酸素ドー
プ量が0.1ppln以下で、C1ドープ量が2〜15
ppmの範囲で必るセレン−テルル−塩素系合金からな
ることを特徴とする電子写頁用感光体である。
[Structure] The structure of the present invention for quickly achieving the above object is that the oxygen doping amount is 0.1 ppln or less and the C1 doping amount is 2 to 15
This is a photoreceptor for electrophotographic pages, characterized in that it is made of a selenium-tellurium-chlorine alloy in a ppm range.

すなわち、感光体中の酸素量か少ないとき、C1のドー
プ量を上記特定の範囲に限定することにより、残留電位
蓄積、電位低下の両特性を改良するものである。
That is, when the amount of oxygen in the photoreceptor is small, by limiting the doping amount of C1 to the above-mentioned specific range, both characteristics of residual potential accumulation and potential drop are improved.

以下実施例によって、この発明の構成を具体的に説明す
る。
The structure of the present invention will be specifically explained below with reference to Examples.

実施例1 公称純度99.999%の市販Seおよび99.999
%の市販Teを各種用い、従来のC1ドープ両(20〜
301)I)m)T e組成5〜15wt%で合金を製
造し、真空度10−5丁orr以上で蒸着し、膜厚50
timの感光体を作成した。
Example 1 Commercially available Se with nominal purity of 99.999% and 99.999
% of commercially available Te, using conventional C1-doped steel (20~
301) I) m) Te An alloy is manufactured with a composition of 5 to 15 wt%, and is deposited at a vacuum level of 10-5 orr or higher to a film thickness of 50%.
tim photoreceptor was created.

同感光体をチャージ電流50μAおよび照度1000 
luxのクエンチングランプで同時露光して繰返しなが
ら表面電位を測定した。繰返し500回後の電位の増加
mを残留電位増加vRとして比較した。
Charge the photoreceptor with a current of 50 μA and an illuminance of 1000
The surface potential was measured while repeating simultaneous exposure with a lux quenching lamp. The increase m in potential after 500 repetitions was compared as the residual potential increase vR.

また、測定環境温度、空温(20’C)と35°Cの雰
囲気中で、同感光体をチャージ電流10μAで20秒帯
電して、空温と35°Cでの帯電電位の差を帯N電位変
化△Vとして比較した。
In addition, the photoreceptor was charged for 20 seconds with a charging current of 10 μA in an atmosphere of the measurement environment temperature, air temperature (20'C) and 35°C, and the difference in charging potential between air temperature and 35°C was charged. Comparison was made as N potential change ΔV.

次に同使用感光体を剥離して、パラローザニリンを用い
た吸光光度法により溶存酸素量を、蛍光X線および放射
化分析でclのドープの量を測定した。
Next, the same photoreceptor was peeled off, and the amount of dissolved oxygen was measured by spectrophotometry using pararosaniline, and the amount of Cl dope was measured by fluorescent X-ray and activation analysis.

以上の結果を第1表に示す。The above results are shown in Table 1.

第1表 17二〒≦ 注)従来使用Se、丁eはN028で酸素含有量は各1
0および+ooppiである。
Table 1 172〒≦ Note) Conventionally used Se and Dice are N028 and the oxygen content is 1 each.
0 and +ooppi.

上記第1表の結果から、C1のドープ旧が従来の13〜
20ppH+レベルでは、酸素含有量が0、2E)E)
111以上になると残留電位増加VF?が高くて、C1
のドープ−量をざらにふヤざないと実用的でないことが
判る。酸素ドープjlo、2〜10ppmは従来感光体
品質であるが、残留電位増加(疲労)は零に近い方が望
ましく、改善しなければならないレベルである。酸素含
有量が0.lppm以下のレベルでは、残留電位増加V
Rは低くて良好であるが、帯電電位の変化は大きく低下
するので、実用的に使用できないことが判る。
From the results in Table 1 above, it can be seen that the doped C1 is the conventional 13~
At 20 ppH+ level, the oxygen content is 0,2E)E)
When it becomes 111 or more, the residual potential increases VF? is high and C1
It can be seen that it is not practical unless the doping amount is changed roughly. Oxygen doping jlo of 2 to 10 ppm is the quality of a conventional photoreceptor, but it is desirable that the increase in residual potential (fatigue) be close to zero, and this is a level that must be improved. Oxygen content is 0. At levels below lppm, the residual potential increases V
It can be seen that although R is low and good, the change in charging potential is greatly reduced, so that it cannot be used practically.

実施例2 酸素ドープ量の少ない99.999%の3eとTeを用
い、C1ドープ量を少なくした合金を製造し、実施例1
と同様に蒸着し、感光体の特性の測定および酸素濃度、
C1ドープ■を分析した。
Example 2 Using 99.999% 3e and Te with a small amount of oxygen doping, an alloy with a reduced amount of C1 doping was produced, and Example 1
Measurement of photoreceptor properties and oxygen concentration,
C1 dope ■ was analyzed.

その結果を第2表に示す。The results are shown in Table 2.

第2表 上記第2表の結果、酸素ドープ量の少ない感光体に対し
てC1ドープ量が15ppm以上では帯電電位変化が大
きくて不適であり、2ppm以下では残留電位増加が大
き過ぎて不適となり、酸素量が0.lppm以下の感光
体ではC1ドープ量は2〜15ppm特に5〜12pp
mで最適となることが判る。
Table 2 As a result of the above Table 2, for a photoreceptor with a small amount of oxygen doping, a C1 doping amount of 15 ppm or more causes a large change in charging potential, which is unsuitable, and a C1 doping amount of 2 ppm or less causes a too large increase in residual potential, making it unsuitable. The amount of oxygen is 0. For photoreceptors with lppm or less, the C1 doping amount is 2 to 15 ppm, especially 5 to 12 ppm.
It can be seen that the optimum value is m.

実施例3 酸素ドープ量の違う各種3e (99,999%)にC
1を25ppmおよび15ppmドープした2種類の母
合金群を作成し、上記実施例2と同品位のTeを蒸発源
を別々に共蒸着して、実施例1.2と同じTe組成比に
なる膜厚50μの3e−Te感光体を作成して、実施例
1と同様に特性および濃度を測定した。その結果を第3
表に示す。
Example 3 Various types of 3e (99,999%) with different oxygen doping amounts
Two types of master alloy groups doped with 1 and 25 ppm and 15 ppm of Te are prepared, and the same grade of Te as in Example 2 is separately co-evaporated using an evaporation source to form a film having the same Te composition ratio as in Example 1.2. A 3e-Te photoreceptor having a thickness of 50 μm was prepared, and its properties and density were measured in the same manner as in Example 1. The result is the third
Shown in the table.

第3表 この結果、感光体中の酸素量によって、実施例1.2同
様の結果が1昇られた。
Table 3 As a result, the same results as in Example 1.2 were increased by 1 depending on the amount of oxygen in the photoreceptor.

実施例4 酸素ドープ量の異なる各種Teと酸素ドープmの少ない
SeにC1を25ppmおよびi5ppm5ppした2
種類の母合金を蒸発源を別々にして共蒸着して実施例1
.2と同じTe組成比になる膜厚50μの5e−Te感
光体を作成して実施例1と同様に特性および濃度を測定
した。その結果を第4表に示す。
Example 4 25 ppm of C1 and 5 ppm of i5ppm were added to various types of Te with different amounts of oxygen doping and Se with a small amount of oxygen doping.
Example 1 Co-depositing different types of master alloys using different evaporation sources
.. A 5e-Te photoreceptor having a film thickness of 50 μm and having the same Te composition ratio as Example 2 was prepared, and its characteristics and concentration were measured in the same manner as in Example 1. The results are shown in Table 4.

第4表 この結果も感光体中の酸素量によって実施例1.2と同
様の結果が得られた。
Table 4 Results The same results as in Example 1.2 were obtained depending on the amount of oxygen in the photoreceptor.

実施例5 酸素ドープ損の少ないSeおよびTeにCC115pp
含有の5e−Te−CI合金を製造し、蒸着前に蒸着釜
を酸素ガスで置換し、各種真空度で蒸着して50μmの
感光体を得て、実施例1と同様に特性および濃度を測定
した。結果を第5表に示す。
Example 5 CC115pp for Se and Te with low oxygen doping loss
A 5e-Te-CI alloy containing 5e-Te-CI was produced, and before vapor deposition, the vapor deposition pot was replaced with oxygen gas, and the vapor deposition was performed at various degrees of vacuum to obtain a 50 μm photoreceptor, and the characteristics and concentration were measured in the same manner as in Example 1. did. The results are shown in Table 5.

第5表 この結果、酸素分圧が高い条件で蒸着した感光体中には
酸素量が多く含まれ、疲労特性も悪くなることが判る。
Table 5 The results show that photoreceptors deposited under conditions of high oxygen partial pressure contain a large amount of oxygen and have poor fatigue characteristics.

これは通常蒸着の際、真窄装置にリークが起り、異常な
状態でつくられた感光体が疲労特性を引き起すことと一
致している。
This is consistent with the fact that during normal vapor deposition, leakage occurs in the true thinning device, causing fatigue characteristics in photoreceptors manufactured under abnormal conditions.

また以上の実施例から感光体中のC1ドープ量は母合金
中の5〜7割、酸素量は1/10〜1/100レベルに
減少しており、特に酸素量は蒸着中の雰囲気にも左右さ
れることが判り、蒸着母材てのCI、酸素量のみてなく
、感光体中のCI、酸素はを規定した方が、感光体の品
質特性はよく維持できることが判る。
Furthermore, from the above examples, the amount of C1 doped in the photoreceptor was reduced to 50 to 70% of that in the master alloy, and the amount of oxygen was reduced to 1/10 to 1/100. It can be seen that the quality characteristics of the photoreceptor can be better maintained by specifying not only the CI and oxygen content of the vapor deposition base material but also the CI and oxygen content in the photoreceptor.

[効  果1 この発明は、3e−Te系感光体の残昭電位蓄積(疲労
特性)を改良し、かつ帯電電位の減少も防止することが
できる。そして原材料中のClドープ最も減らすことが
できコストダウンすることかできる。
[Effect 1] The present invention can improve residual potential accumulation (fatigue characteristics) of a 3e-Te photoreceptor and also prevent a decrease in charging potential. In addition, the Cl doping in the raw materials can be reduced to the greatest extent and costs can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 酸素ドープ量が0.1ppm以下で、塩素ドープ量が2
〜15ppmの範囲であるセレン−テルル−塩素系合金
からなることを特徴とする電子写真用感光体。
Oxygen doping amount is 0.1 ppm or less and chlorine doping amount is 2
An electrophotographic photoreceptor comprising a selenium-tellurium-chlorine alloy having a content of selenium in the range of 15 ppm to 15 ppm.
JP6473886A 1986-03-25 1986-03-25 Electrophotographic sensitive body Pending JPS62222259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6473886A JPS62222259A (en) 1986-03-25 1986-03-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6473886A JPS62222259A (en) 1986-03-25 1986-03-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62222259A true JPS62222259A (en) 1987-09-30

Family

ID=13266789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6473886A Pending JPS62222259A (en) 1986-03-25 1986-03-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62222259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269875A (en) * 1989-10-05 1993-12-14 Shin-Etsu Handotai Company, Limited Method of adjusting concentration of oxygen in silicon single crystal and apparatus for use in the method
CN109850856A (en) * 2018-12-18 2019-06-07 广东先导稀材股份有限公司 Chlorine doping method for high-purity selenium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269875A (en) * 1989-10-05 1993-12-14 Shin-Etsu Handotai Company, Limited Method of adjusting concentration of oxygen in silicon single crystal and apparatus for use in the method
CN109850856A (en) * 2018-12-18 2019-06-07 广东先导稀材股份有限公司 Chlorine doping method for high-purity selenium
CN109850856B (en) * 2018-12-18 2022-05-03 广东先导稀材股份有限公司 Chlorine doping method for high-purity selenium

Similar Documents

Publication Publication Date Title
DE1522711B2 (en) ELECTROPHOTOGRAPHIC RECORDING MATERIAL
GB2051392A (en) Electrophotographic photoconductor
JPS62222259A (en) Electrophotographic sensitive body
US4601965A (en) Photosensitive material for use in electrophotography
US3966470A (en) Photo-conductive coating containing Ge, S, and Pb or Sn
US3498835A (en) Method for making xerographic plates
JPS5819B2 (en) Selenium japonica
JPS5944053A (en) Electrophotographic receptor
JPS616655A (en) Manufacture of electrophotographic sensitive body
US4418136A (en) Electrophotographic element comprises arsenic selenide doped with Bi
JPS6236675A (en) Electrophotographic sensitive body
US4415642A (en) Electrophotographic member of Se-Te-As with halogen
JPS60252353A (en) Electrophotographic sensitive senlenium and selenium photosensitive film and its manufacture
US3816116A (en) N-type photosensitive member for electrophotography
KR960010180B1 (en) Laminated type photosensitive material for electrophotography
JPS61156134A (en) Electrophotographic sensitive body
JPS59166960A (en) Electrophotographic sensitive material
JPS61132956A (en) Electrophotographic sensitive body
JP2574485B2 (en) Method for controlling crystallization of chalcogenide alloys
JPS59172649A (en) Electrophotographic sensitive body
JPS61156135A (en) Electrophotographic sensitive body
JPS61156133A (en) Electrophotographic sensitive body
JPS60252354A (en) Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture
JPS60102641A (en) Vapor deposited selenium film improved in electrophotographic characteristics and its manufacture
JPS60250358A (en) Electrophotographic sensitive body