JPS62222017A - Heat treatment with laser - Google Patents

Heat treatment with laser

Info

Publication number
JPS62222017A
JPS62222017A JP6461986A JP6461986A JPS62222017A JP S62222017 A JPS62222017 A JP S62222017A JP 6461986 A JP6461986 A JP 6461986A JP 6461986 A JP6461986 A JP 6461986A JP S62222017 A JPS62222017 A JP S62222017A
Authority
JP
Japan
Prior art keywords
laser
water film
heat treatment
laser beam
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6461986A
Other languages
Japanese (ja)
Inventor
Masashi Takaso
正志 高祖
Minoru Miura
実 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6461986A priority Critical patent/JPS62222017A/en
Publication of JPS62222017A publication Critical patent/JPS62222017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To enhance a cooling effect after heat treatment with a simple apparatus by forming a water film on the surface of a material, carrying out the irradiation or laser beams and the jetting of an inert gas and forming a water film again by the relative movement of a torch to cool the heat treated part. CONSTITUTION:A water film 5 is formed on the surface of a material 3 to be heat treated by retention or other method. Laser beams 1 are then irradiated on part of the surface of the material 3 from the concentric nozzle 4 of a torch. At the same time, an inert gas 6 such as Ar is jetted from the nozzle 4 to remove the water film 5 at the irradiated part. Since the torch is moving relatively to the material 3 at a prescribed speed, a water film is formed again immediately after the movement to cool the heat treated part. By this method, heat treatment with laser followed by forced cooling is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 近年レーザの金属加工への適用は急速に進みつつあり、
レーザ加工の適用範囲は表面硬化、表面合金化、溶接、
切断等に及んでいるが、本発明はその中、レーザ熱処理
、レーザ焼入技術に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) In recent years, the application of lasers to metal processing has been rapidly progressing.
The scope of application of laser processing is surface hardening, surface alloying, welding,
Among these, the present invention relates to laser heat treatment and laser hardening technology.

(従来技術) 従来、レーザ焼入れは、焼入対象材(3)の表面に照射
されたレーザビーム(1)により、表面温度を急激に上
昇させたのち、このビームを取り除くことにより対象材
内部への熱伝導のみで冷却硬化されるもので、いわゆる
自己冷却による熱処理のため焼入液が不要でクリーンな
熱処理ができるとされてきた(第6図)。
(Prior art) Conventionally, in laser hardening, a laser beam (1) is irradiated onto the surface of a material to be hardened (3) to rapidly raise the surface temperature, and then this beam is removed to heat the inside of the material. It is said that the heat treatment is carried out by cooling and hardening only by heat conduction, and as the heat treatment is performed by so-called self-cooling, a quenching liquid is not required and a clean heat treatment can be performed (Figure 6).

しかしながらこの自己冷却の場合、冷却速度に限界があ
る。すなわち、レーザビームの照射入熱量に対して限界
の板厚を越えると冷却速度は増加しない。また連続照射
の場合、照射に伴って被照射材料の温度が上昇して材料
が予熱された状態となり、冷却速度が低下する。
However, in the case of this self-cooling, there is a limit to the cooling rate. That is, if the thickness exceeds the limit for the amount of heat input by laser beam irradiation, the cooling rate will not increase. In addition, in the case of continuous irradiation, the temperature of the irradiated material rises with the irradiation, resulting in a preheated state of the material, and the cooling rate decreases.

この問題に対処して冷却能力を高めるため第7図に示す
如くレーザ(11照射後の部分へ冷却液を吹付ける方法
が提案された(特開昭59−200718)。しかしこ
の方法もレーザ照射を続ける中に被照射材(3)の温度
が上昇し材料が予熱されるおそれがあり、特に大型の材
料には効果が薄い。のみならずこの方法は冷却液がレー
ザ照射部に流入するのを防ぐため、別の位置からレーザ
照射部にむけて気体を吹きつけ液の流入を防止する装置
が必要であり、装置が複雑である。
In order to deal with this problem and increase the cooling capacity, a method was proposed (Japanese Patent Laid-Open No. 59-200718) in which a cooling liquid is sprayed onto the area after laser irradiation, as shown in Figure 7. However, this method also As the process continues, the temperature of the irradiated material (3) may rise and the material may be preheated, making it particularly ineffective for large materials.In addition, this method does not allow the cooling liquid to flow into the laser irradiation area. In order to prevent this, a device is required that blows gas toward the laser irradiation part from another position to prevent the liquid from flowing in, which makes the device complicated.

(発明が解決しようとする問題点) 上記問題点を解決するため本発明は、被熱処理材料表面
を所定厚みの水が覆うようにして、レーザビームと同心
にガス噴射ノズルを備えたトーチからレーザビーム照射
および不活性ガスの噴射を行い、其の部分の水を排除し
ながらレーザビームを照射し、その相対移動によってレ
ーザ照射部分が再び水で覆われ冷却されるレーザ熱処理
方法の提供を目的とするものである。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems, the present invention provides a laser beam from a torch equipped with a gas injection nozzle concentrically with the laser beam so that the surface of the material to be heat treated is covered with water of a predetermined thickness. The purpose of the present invention is to provide a laser heat treatment method in which beam irradiation and inert gas injection are performed, the laser beam is irradiated while removing water from the part, and the laser irradiated part is again covered with water and cooled by the relative movement of the laser beam. It is something to do.

(問題点を解決するための手段) すなわち、本発明はレーザにより材料表面を加熱または
溶融し熱処理する方法において、材料表面に水膜を形成
し、レーザビームと同方向に噴射する不活性ガスにより
水膜を排除しながらレーザを照射し、照射位置の移動に
よる水膜の再形成で冷却するレーザ熱処理方法を要旨と
する。
(Means for Solving the Problems) That is, the present invention is a method of heating or melting a material surface for heat treatment using a laser, in which a water film is formed on the material surface and an inert gas is injected in the same direction as the laser beam. The gist is a laser heat treatment method in which laser irradiation is performed while eliminating a water film, and cooling is achieved by re-forming the water film by moving the irradiation position.

材料表面を所定厚みの水が覆うようにする場合、材料の
表面に水を滞留させてもよいが、照射に伴って水温が上
昇し冷却能力が低下するのを防止するため第8図に示す
如く表面層流となるよう流してもよい。水が覆う領域は
材料表面全部がよいが、材料の形状等から制約がある場
合はレーザ照射点の付近のみ水没するようにしてもよい
If the surface of the material is to be covered with water of a predetermined thickness, water may be allowed to remain on the surface of the material, but in order to prevent the water temperature from increasing due to irradiation and reducing the cooling capacity, the method shown in Figure 8 is used. It may also be flowed to form a surface laminar flow. The area covered by water is preferably the entire surface of the material, but if there are restrictions due to the shape of the material, it may be possible to submerge only the vicinity of the laser irradiation point.

また丸棒状の材料を処理する場合は第9図に示すように
、丸棒を水中に埋没させ、丸棒を回転し、レーザ照射点
を移動することも可能である。
Furthermore, when processing a round rod-shaped material, it is also possible to immerse the round rod in water and rotate the rod to move the laser irradiation point, as shown in FIG.

レーザビームは水膜を通して材料表面を照射することも
出来るが、その場合レーザビームは水に吸収され材料へ
の伝達効率が悪化し、また水温が上昇する。そこでレー
ザビームと同方向に不活性ガスを流し、ガスの噴流によ
り照射点とその近傍から水を排除する。従ってレーザビ
ームは水膜が排除された部分に照射することになる。
It is also possible to irradiate the material surface with the laser beam through a water film, but in that case the laser beam is absorbed by the water, reducing the efficiency of transmission to the material and increasing the water temperature. Therefore, an inert gas is flowed in the same direction as the laser beam, and the gas jet eliminates water from the irradiation point and its vicinity. Therefore, the laser beam will irradiate the area where the water film has been removed.

(作   用) レーザビームと同心にガス流が出るトーチを材料に対し
て相対的に移動させれば、レーザビームにより加熱また
は溶融した表面に再び水膜が形成され、急冷される。
(Function) If the torch, which emits a gas flow concentrically with the laser beam, is moved relative to the material, a water film is again formed on the surface heated or melted by the laser beam, and the material is rapidly cooled.

水膜の厚みは薄すぎると冷却効果がないため2龍以上必
要である。
If the thickness of the water film is too thin, there will be no cooling effect, so two or more dragons are required.

使用ガスは加熱部の大気による酸化防止の点から不活性
ガスAr、Ntガス等が望ましい、ガス噴流により水膜
を排除する範囲はレーザビームの照射領域により異なる
が、レーザビームが直接水膜に当たることを防止し、且
つ水腹による冷却効果を確保するため、レーザビームの
照射領域の周囲に1龍〜lO額拡大した領域の水膜を排
除する。l鶴未満ではレーザビームが水膜に当たる危険
性があり、10龍を越えると加熱後水膜が再形成される
迄に時間がかかり急冷できない。
The gas to be used is preferably an inert gas such as Ar or Nt gas in order to prevent oxidation caused by the atmosphere in the heating part.The range in which the water film is removed by the gas jet varies depending on the area irradiated with the laser beam, but the laser beam directly hits the water film. In order to prevent this and to ensure the cooling effect of the water belly, a water film in an area enlarged by 1 to 10 degrees is removed around the laser beam irradiation area. If the temperature is less than 1, there is a risk that the laser beam will hit the water film, and if it exceeds 10, it will take time for the water film to re-form after heating, and rapid cooling will not be possible.

レーザ照射部は円でもその他の形状でもよい。The laser irradiation part may be circular or may have another shape.

線状に照射する場合は、スリット状のノズルを備えたト
ーチを用いレーザビームおよびガス流を流せば同様に急
冷可能である。
In the case of linear irradiation, rapid cooling can be similarly achieved by using a torch equipped with a slit-shaped nozzle and flowing the laser beam and gas flow.

(実 施 例) 次に図面に基づいて実施例を述べる。(Example) Next, examples will be described based on the drawings.

第1図は末法によるレーザ照射条件の1例を模式図で示
すもので、レーザ(11はCO□レーザ4kWを用いた
、集光レンズ(2)は焦点距離7.5”で焦点位置は被
照射材料(3)面上20flに調整した。レーザビーム
の透孔と同心に設けたガス噴射ノズル(4)の内径は4
龍、ノズルの先端位置は材料表面上20mmである。ト
ーチは1m/分の速度で移動させた。
Figure 1 is a schematic diagram showing an example of laser irradiation conditions using the final method.The laser (11 is a 4kW CO It was adjusted to 20fl on the surface of the irradiated material (3).The inner diameter of the gas injection nozzle (4) installed concentrically with the through hole of the laser beam was 4.
The tip position of the nozzle is 20 mm above the material surface. The torch was moved at a speed of 1 m/min.

第2図に被照射材料(3)面上に水膜を形成する一例を
示す。この例は滞留形式で水膜(5)を材料上5鶴とな
るように形成した。
FIG. 2 shows an example of forming a water film on the surface of the irradiated material (3). In this example, the water film (5) was formed in a stagnation manner so that it formed five layers on the material.

第3図はレーザ(11照射と同時に同心のノズル(4)
からガス(6)噴射を行い、照射位置付近の水膜を排除
している状態の模式図で、ガスはArガスを30117
分の割合で噴射し、レーザ照射領域5龍φに対して水膜
排除の領域は約10龍φとなった。トーチが上記移動速
度で材料(3)に対して相対移動しているので移動後は
直ちに水■りが形成され冷却された。
Figure 3 shows the concentric nozzle (4) at the same time as the laser (11 irradiation)
This is a schematic diagram showing a state in which gas (6) is injected from the irradiation position to remove a water film near the irradiation position.
The area where the water film was removed was approximately 10 mm for the laser irradiation area of 5 mm. Since the torch was moving relative to the material (3) at the above-mentioned movement speed, a water hole was formed immediately after the movement and the material was cooled.

(発明の効果) 第1表に示す供試鋼板上に上記の条件でレーザビームを
照射し、形成された溶融部の中央(×点)の硬さをビッ
カース硬度計で測定し焼入れの程度を検討した(第4図
)。
(Effect of the invention) A laser beam is irradiated on the test steel plate shown in Table 1 under the above conditions, and the hardness of the center (x point) of the formed molten zone is measured using a Vickers hardness tester to determine the degree of hardening. We considered this (Fig. 4).

溶融部の巾は約3籠、深さは約0.5鴎である。The width of the melted area is about 3 cages, and the depth is about 0.5 cages.

第   1   表 第5図は上記試験の結果第1表各試料のclと溶融部の
硬さの関係を示すもので同図に明らかなように従来の自
己冷却(・)に較べて末法(0)では硬さが増大し焼き
が入りやすいことを示している。実験例では溶融部につ
いて結果を示したが、熔融せずに加熱のみの場合も効果
は同様である。
Table 1 and Figure 5 show the relationship between the Cl and the hardness of the molten zone for each sample in Table 1 as a result of the above test. ) indicates that the hardness increases and it is easy to burn. In the experimental example, the results were shown for the melted part, but the effect is similar when only heating is performed without melting.

このように本発明は容易に強制冷却によるレーザ熱処理
が可能である。
As described above, the present invention allows easy laser heat treatment by forced cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法におけるレーザ照射条件の一例を示
す模式図、第2図は同じく被照射材料表面上に水膜を形
成する一例を示す模式図、第3図は同じく末法の実施態
様の一例を示す模式図、第4図は溶融部硬度測定点の説
明図、第5図は本発明方法と従来法における焼入試料の
(jlと溶融部の硬さの関係比較図、第6図は従来の自
己冷却によるレーザ焼入性斜視図、第7図は従来の強制
冷却によるレーザ焼入法の模式説明図、第8図は層流に
よる部分的な水膜形成を示す斜視図、第9図は丸棒状の
材料を処理する場合の模式図である。 l:レーザビーム 2:レンズ 3:被照射材料4:ノ
ズル 5:水膜 6:ガス流 第  2 図 第3図 第4図 C(%) C+ン溶融8P辰々の聞イ系 第5図 第  6  図 47図
FIG. 1 is a schematic diagram showing an example of laser irradiation conditions in the method of the present invention, FIG. 2 is a schematic diagram showing an example of forming a water film on the surface of the irradiated material, and FIG. 3 is a schematic diagram showing an example of the method of the present invention. A schematic diagram showing an example, FIG. 4 is an explanatory diagram of the measurement points of molten zone hardness, FIG. 5 is a comparison diagram of the relationship between (jl and hardness of the molten zone) of quenched samples in the method of the present invention and the conventional method, and FIG. 7 is a schematic explanatory diagram of the conventional laser hardening method using forced cooling. FIG. 8 is a perspective view showing partial water film formation by laminar flow. Figure 9 is a schematic diagram when processing a round bar-shaped material. 1: Laser beam 2: Lens 3: Irradiated material 4: Nozzle 5: Water film 6: Gas flow 2 Figure 3 Figure 4 C (%) C+n melting 8P Tatsuna's listening system Fig. 5 Fig. 6 Fig. 47

Claims (2)

【特許請求の範囲】[Claims] (1)レーザにより材料の表面を加熱または溶融し熱処
理する方法において、材料表面に水膜を形成しレーザビ
ームと同方向に噴出する不活性ガスにより水膜を排除し
ながらレーザを照射し、照射位置の移動による水膜の再
形成で冷却することを特徴とするレーザ熱処理方法。
(1) In a method of heat treatment by heating or melting the surface of a material with a laser, a water film is formed on the material surface and the water film is removed by an inert gas ejected in the same direction as the laser beam, while the laser is irradiated. A laser heat treatment method characterized by cooling by re-forming a water film by moving the position.
(2)レーザビームと同心にガス噴射ノズルを備えたこ
とを特徴とするレーザ熱処理用トーチ。
(2) A torch for laser heat treatment characterized by having a gas injection nozzle concentrically with the laser beam.
JP6461986A 1986-03-22 1986-03-22 Heat treatment with laser Pending JPS62222017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6461986A JPS62222017A (en) 1986-03-22 1986-03-22 Heat treatment with laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6461986A JPS62222017A (en) 1986-03-22 1986-03-22 Heat treatment with laser

Publications (1)

Publication Number Publication Date
JPS62222017A true JPS62222017A (en) 1987-09-30

Family

ID=13263453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6461986A Pending JPS62222017A (en) 1986-03-22 1986-03-22 Heat treatment with laser

Country Status (1)

Country Link
JP (1) JPS62222017A (en)

Similar Documents

Publication Publication Date Title
CA1230933A (en) Method and apparatus for laser gear hardening
US3294599A (en) Method and apparatus for heat treating low carbon steel
US20160076115A1 (en) Method and apparatus for laser quenching
US4507538A (en) Laser hardening with selective shielding
IL46078A (en) Method of case-alloying metals such as steel or cast iron
CN105624669A (en) Sectioned laser cladding remanufacturing method with preheating and heat treatment for complex parts
JP3079902B2 (en) Welding repair method for reactor internals
JPS6254577B2 (en)
JPS62222017A (en) Heat treatment with laser
DE4123577A1 (en) Deep laser hardening of component - using three-dimensional high intensity heat extn. to assist self-quenching
US3923561A (en) Method of heat treating saw
JPH01316416A (en) Heat treating method for partial surface by laser beam and apparatus thereof
JPH04289154A (en) Turbine blade made of ti alloy and surface modifying method therefor
KR100553260B1 (en) continuous welding apparatus of stainless steel pipe and welding method of the same
US4531983A (en) Method of deep hardening of workpieces
JP3230822B2 (en) Gear quenching method
JPH06330156A (en) Laser quenching method
JPS6350417A (en) Method and apparatus for laser heat treatment
SU1617007A1 (en) Method of heat treatment of articles
JPS61221330A (en) Laser post heat treatment
JP3230823B2 (en) Gear quenching method
SU1752784A1 (en) Heat treatment method
JPS62176696A (en) Metal cutting method using laser beam
JP2696632B2 (en) Method of preventing corrosion of machining flow of stainless steel
JPH0578731A (en) Hardening treatment of martensitic stainless steel