JPS62221285A - Transmission signal reproducing device - Google Patents

Transmission signal reproducing device

Info

Publication number
JPS62221285A
JPS62221285A JP6403186A JP6403186A JPS62221285A JP S62221285 A JPS62221285 A JP S62221285A JP 6403186 A JP6403186 A JP 6403186A JP 6403186 A JP6403186 A JP 6403186A JP S62221285 A JPS62221285 A JP S62221285A
Authority
JP
Japan
Prior art keywords
signal
circuit
carrier wave
carrier
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6403186A
Other languages
Japanese (ja)
Other versions
JPH07105940B2 (en
Inventor
Tsutomu Noda
勉 野田
Takao Arai
孝雄 荒井
Hiromichi Tanaka
田中 弘道
Shigeo Matsuura
松浦 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61064031A priority Critical patent/JPH07105940B2/en
Publication of JPS62221285A publication Critical patent/JPS62221285A/en
Publication of JPH07105940B2 publication Critical patent/JPH07105940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To multitransmit sound signals with high quality at the same time by permitting a carrier to hold orthogonal relation with video and signals to modulate and transmit and detecting the synchronization of a reception signal with the aid of a signal synchronizing with the carrier so as to reproduce the sound signal. CONSTITUTION:A television signal inputted from an antenna 1 is amplified by a high frequency amplifier circuit 2 and converted into a demodulating intermediate frequency by a frequency converting circuit 3. In terms of the frequency band of a video signal among the output signals of the circuit 3, finally signals R, G and B are obtained and projected on a cathode ray tube 9. The frequency band of a sound signal PCM multitransmitted by a band-pass filter 13 from the output of the circuit 3 is selected and amplified. Then a synchronizing detection circuit 14 detects the synchronization with the aid of the signal synchronizing with the carrier reproduced by a carrier reproduction circuit 15. The sound signal subjected to the PCM transmission is obtained from the obtained signal through a code identifying circuit 16, a digital signal processing circuit 18 and a digital/analog converting circuit 19.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多重伝送システムに係り1%に映像信号にP
CM音声音声型多重伝送するに有効な伝送方式を受信す
る再生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multiplex transmission system, and relates to a video signal with P
The present invention relates to a playback device that receives a transmission method effective for multiplex transmission of CM audio and audio.

〔従来の技術〕[Conventional technology]

ディジタル符号化されたPCM音声と映像信号を多重す
る方法については、昭和58年6月発行財団法人を波技
術協会編の衛星放送受信技術調査会報告第1部「衛星放
送受信機」などで報告されているが、現行NT8Cの映
像信号に5.7272MHzの副搬送波を用いてPCM
音声を多重しているため、現行の地上テレビジョン放送
の帯域を満足せず、地上テレビジ冒ン放送に用いること
は困難である。
The method of multiplexing digitally encoded PCM audio and video signals is reported in the report of the Satellite Broadcasting Reception Technology Study Group, Part 1, "Satellite Broadcasting Receiver", edited by the Wave Technology Association, published in June 1981. However, PCM is applied to the current NT8C video signal using a 5.7272MHz subcarrier.
Since the audio is multiplexed, it does not meet the bandwidth of current terrestrial television broadcasting, making it difficult to use for terrestrial television broadcasting.

一方、現行地上テレビジッン放送への多重伝送の可能性
を昭和58年1月に日本放送出版協会より発行された日
本放送協会編の放送技術双書2「放送方式」の205頁
から208頁に記載されているが、高品質音声2チヤネ
ルを伝送するための約IMビット/秒σ〕伝送容量を確
保できる方式についてはHピ載されていなかった。
On the other hand, the possibility of multiplex transmission for current terrestrial television broadcasting is described on pages 205 to 208 of Broadcasting Technology Book 2, "Broadcasting Systems," edited by the Japan Broadcasting Corporation, published by the Japan Broadcasting Publishing Association in January 1981. However, a method that can secure a transmission capacity of approximately IM bits/second σ for transmitting two channels of high-quality audio was not included in the H-Pi.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術でシエ、現行地上テレビジ覆ン放送に高品
質の音声信号を多重伝送する方式が無かった0 本発明の目的は、振幅変調された信号に他の信号を多重
伝送する場合の再生装置を提供することKあり、特に現
行地上テレビジョン放送に高品質なディジタル符号化し
た音声信号などの1ぎ号を多・重伝送する伝送方式を受
信するに有効な伝送15号再生装置を提供することにあ
る。
In contrast to the above conventional technology, there was no method for multiplex transmission of high quality audio signals in the current terrestrial television broadcasting.An object of the present invention is to provide a playback device for multiplex transmission of other signals on an amplitude modulated signal. To provide a transmission number 15 reproducing device that is particularly effective for receiving a transmission system that multiplexes and multiplexes single signals such as high-quality digitally encoded audio signals in current terrestrial television broadcasting. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、振幅変調された搬送波に直交関係を持たし
て他の信号を変調することで達成される。
The above object is achieved by modulating another signal in an orthogonal relationship to the amplitude modulated carrier wave.

特に残留側波帯振幅変調する映像信号の場合には、搬送
波の両側波帯の伝送される帯域内で、ディジタル符号化
された音声信号などの倍号により搬送波の映像4M号と
は直交関係を持たせて変調して伝送し、受信された信号
から搬送波に同期した復調用信号で受信したイぎ号を同
期検波して音声信号を再生することにより達成される。
In particular, in the case of a video signal that undergoes vestigial sideband amplitude modulation, within the transmission band of both sidebands of the carrier wave, the multiplication factor of the digitally encoded audio signal etc. creates an orthogonal relationship with the video 4M number of the carrier wave. This is achieved by modulating and transmitting the signal, and reproducing the audio signal by synchronously detecting the received signal using a demodulation signal synchronized with the carrier wave from the received signal.

〔作用〕[Effect]

残留側波帯振幅変調する映像信号搬送波において両側波
帯を有している一般的な振幅変調されている帯域内に限
定して、搬送波を映像信号と音声18号とを直交関標を
持たして変調するりで再生した映像18号への音声信号
の影−f!を少なくできる。
Residual Sideband Amplitude modulated video signal carrier wave has both sidebands.Limited to a general amplitude modulated band, the carrier wave has orthogonal relationship between the video signal and audio No. 18. The shadow of the audio signal on video No. 18 played back by modulating it - f! can be reduced.

音声信号の変調度を映像信号より低くすることにより、
ざらに包絡線検波で再生された映像信号へも音声信号の
影響を少なくできる。また1声信号は同期検波して再生
されるため直交して変調された映像信号を復調しないた
め影響は低減される。
By making the degree of modulation of the audio signal lower than that of the video signal,
The influence of the audio signal on the video signal reproduced by rough envelope detection can also be reduced. Furthermore, since the single-voice signal is reproduced through synchronous detection, the orthogonally modulated video signal is not demodulated, so the influence is reduced.

現行地上テレビジ璽ン放送では、残留側波帯振幅変fA
り両側波帯な有する帯域は約1.5MHzあり約IMビ
ット/秒のディジタル符号化された高品質音声2チヤネ
ルを伝送可能とできる。
In current terrestrial television broadcasting, residual sideband amplitude variation fA
The band having both side bands is about 1.5 MHz, and it is possible to transmit two channels of digitally encoded high-quality audio at about IM bits/second.

〔冥施例〕[Metal practice]

以下1本発明の一実施例として現状の地上伝送テレビジ
璽ンにディジタル符号化したPCM音声18号を多重伝
送した場合の受信機の例を第1図に示ず。
Below, as an embodiment of the present invention, an example of a receiver in which digitally encoded PCM audio No. 18 is multiplexed and transmitted to a current terrestrial transmission television channel is not shown in FIG.

1はアンテナ、2は高周波増幅回路、3は周波数変換回
路、4は中間周波増幅回路、5は映像信号検波(ロ)路
、6は映像信号増幅回路、7は色差信号復調回路、8は
原色信号復調回路、9はブラウン管、10は音声中間周
波増幅回路、11は音声FM検波回路、12は音P信号
出力端子、13は帯域通過フィルタ、 14は同期検波
回路、15は搬送波再生回路、16は符号識別回路、1
7はクロック再生回路、18はディジタル信号処理回路
、19はディジタル・7°ナログ変換回路(以下DAC
と略す)、2oはPCM伝送された音声信号の出力端子
である。
1 is an antenna, 2 is a high frequency amplification circuit, 3 is a frequency conversion circuit, 4 is an intermediate frequency amplification circuit, 5 is a video signal detection (b) path, 6 is a video signal amplification circuit, 7 is a color difference signal demodulation circuit, 8 is a primary color Signal demodulation circuit, 9 is a cathode ray tube, 10 is an audio intermediate frequency amplification circuit, 11 is an audio FM detection circuit, 12 is an audio P signal output terminal, 13 is a band pass filter, 14 is a synchronous detection circuit, 15 is a carrier wave regeneration circuit, 16 is a code identification circuit, 1
7 is a clock regeneration circuit, 18 is a digital signal processing circuit, and 19 is a digital/7° analog conversion circuit (hereinafter referred to as DAC).
2o is an output terminal for the PCM-transmitted audio signal.

アンテナ1より入力したテレビジ田ン信号を高周波増幅
回路2で増幅し、周波数変換回路3で復開用の中間周波
に周波数変換し、中間周波増幅回路4で増幅する。選局
は周波数変換回路30局部発振周波数を変えることで行
なわれろ。中間周波増幅回路4で増幅された信号から映
1廖信号帯域については、映像信号検波回路5で検波し
、映像信号増幅回路6の出力の4に信号と色差1百号復
調回路7の出力の色差g1号とから原色信号復調回路8
でル、G、Bの三原色を得、ブラウン管9に映し出す。
A television signal inputted from an antenna 1 is amplified by a high frequency amplifier circuit 2, frequency-converted by a frequency conversion circuit 3 to an intermediate frequency for restoration, and amplified by an intermediate frequency amplifier circuit 4. Tuning is performed by changing the local oscillation frequency of the frequency conversion circuit 30. The video signal band from the signal amplified by the intermediate frequency amplification circuit 4 is detected by the video signal detection circuit 5, and the signal is output from the output of the video signal amplification circuit 6 and the output of the color difference demodulation circuit 7. Primary color signal demodulation circuit 8 from color difference g1
The three primary colors of blue, G, and B are obtained and projected onto a cathode ray tube 9.

一方、音声信号帯域については、音声中間周波増幅回路
lOで増幅し、音声FM検波回路11で検波復調して音
声信号出力端子12に音声信号を得る。
On the other hand, the audio signal band is amplified by the audio intermediate frequency amplification circuit IO, and detected and demodulated by the audio FM detection circuit 11 to obtain an audio signal at the audio signal output terminal 12.

以上は従来のテレビジ望ン受1M機と同一である。The above is the same as the conventional 1M television receiver.

以上に加えてディジタル符号化したPCM音声′信号を
復調するために、周波数変換回繕3 u)出力から帯域
通過フィルタ13により多重伝送されたPCM音声信号
帯域を選択して増幅し、同期検波回路14において、キ
ャリア再生回$15で再生された搬送波に同期した信号
を用い゛CW1送波り振l111!変調成分に直交した
成分で変調された信号を検波復調する。その結果得られ
た信号を符号識別回路16を用いて誤り率の少ない点で
ディジタル符号にし、ディジタル信号処理回路18で伝
送途中で生じた誤りを誤り検出訂正符号を用いて検出訂
正する。クロック再生回路17は同期検波回路14の出
力の信号から伝送りロックを抽出する回路で、同期検波
回路14の出力の信号の誤り率の少ない点(いわゆるア
イパターンの最大開口部)でディジタル符号化するため
に必要である。誤り検出訂正された後のディジタル信号
をDAC19でアナログ信号に変換して音声信号に戻し
てPCM伝送された音声15号の出力端子20に得る。
In addition to the above, in order to demodulate the digitally encoded PCM audio signal, frequency conversion and repair 3 u) select and amplify the PCM audio signal band multiplexed from the output by the band pass filter 13, and 14, using a signal synchronized with the carrier wave regenerated at carrier regeneration times $15, ``CW1 transmission wave l111! A signal modulated with a component orthogonal to the modulation component is detected and demodulated. The resulting signal is converted into a digital code using a code identification circuit 16 at a point with a low error rate, and a digital signal processing circuit 18 detects and corrects errors occurring during transmission using an error detection and correction code. The clock recovery circuit 17 is a circuit that extracts a transmission lock from the output signal of the synchronous detection circuit 14, and digitally encodes the output signal of the synchronous detection circuit 14 at a point where the error rate is low (the so-called maximum opening of the eye pattern). It is necessary to do so. The digital signal subjected to error detection and correction is converted into an analog signal by the DAC 19 and returned to an audio signal, which is then obtained at the output terminal 20 of audio No. 15 transmitted by PCM.

上記実施例で伝送した15号を生成する送信機のー実施
例なWJ2図に示す。21は音声信号入力端子、22は
FM変調器、23は音声信号搬送波発生器、24・〜2
6は映像信号入力端子、27はマトリックス回路、28
は輝度信号処理回路、29は色差信号処理回路、30は
加算回路、31は映像変調器、32は映像信号搬送波発
生器、33はPCM伝送する音声信号の入力端子、34
はアナログ・ディジタル変換器(以下ADCと略す)、
35はディジタル信号処理回路、36は低域通過フィル
タ、37は90度移相器、38はPCM音声イぎ号用の
変調器、39は加算器、40は残留側波帯振幅変調用の
V8Bフィルタ、41は加算器、42はアンテナである
An example of the transmitter that generates No. 15 transmitted in the above example is shown in Fig. WJ2. 21 is an audio signal input terminal, 22 is an FM modulator, 23 is an audio signal carrier generator, 24.~2
6 is a video signal input terminal, 27 is a matrix circuit, 28
29 is a luminance signal processing circuit, 29 is a color difference signal processing circuit, 30 is an addition circuit, 31 is a video modulator, 32 is a video signal carrier generator, 33 is an input terminal for an audio signal to be transmitted by PCM, 34
is an analog-to-digital converter (hereinafter abbreviated as ADC),
35 is a digital signal processing circuit, 36 is a low-pass filter, 37 is a 90-degree phase shifter, 38 is a modulator for PCM audio signal, 39 is an adder, and 40 is a V8B for residual sideband amplitude modulation. 41 is an adder, and 42 is an antenna.

音声信号入力端子21からの音声信号で音声信号搬送波
発生器23からの音声用搬送波をFM変調器22におい
てFM変調する。映像入力端子24〜26に入力された
l(、GBの三原色信号をマトリックス27で輝度イI
!号と色差信号とに分けおのおの輝度信号処理回路28
と色差信号処理回路29で処理しf後、加算器30で加
算する。加算後の信号で映像信号搬送波発生器32から
の搬送波を映像変調器31を用いて、変調しVSBフィ
ルタ40でテレビジ1ン放送帯域に帯域制限して加算器
41で音声信号と加算してアンテナ42より送信する。
An audio carrier wave from an audio signal carrier generator 23 is FM-modulated by an audio signal from an audio signal input terminal 21 in an FM modulator 22 . The three primary color signals of l(, GB) input to the video input terminals 24 to 26 are
! The luminance signal processing circuit 28 is divided into a luminance signal and a color difference signal.
After processing f in the color difference signal processing circuit 29, the adder 30 adds them. The carrier wave from the video signal carrier generator 32 is modulated by the signal after the addition using the video modulator 31, band-limited to the television broadcasting band by the VSB filter 40, and added to the audio signal by the adder 41 to be sent to the antenna. 42.

以上については、従来の地上伝送のテレビジ璽ン放送と
同一である。以上の18号に高品質な音声を伝送するた
めに以下を追加する。
The above is the same as conventional terrestrial television broadcasting. The following is added to the above No. 18 in order to transmit high quality audio.

多重する音声信号を入力端子33に加え、音声信号をA
DC34でディジタル信号に変換し、ディジタル信号処
理回路35で伝送中に生じる誤りを検出訂正するための
符号を追加したり、インタリーブ処理などをほどこし、
ディジタル符号の伝送レートに適した低域通過フィルタ
36を介して不要を高域成分を削除する。このディジタ
ル符号化した音声で、90i移相器377に介して90
度移相された映116号搬送波ftPCM音声g!号用
の変調器3Bで変調し、加算器39で映像1ぎ号で変v
I4された搬送波と加算する。その結果、映像用の搬送
波は、映像信号とPCM音声信号と直交関係で変調され
ることとなる。
Add the audio signal to be multiplexed to the input terminal 33, and send the audio signal to A.
The DC 34 converts it into a digital signal, and the digital signal processing circuit 35 adds a code to detect and correct errors that occur during transmission, and performs interleaving processing.
Unnecessary high frequency components are removed through a low pass filter 36 suitable for the transmission rate of the digital code. This digitally encoded audio is passed through a 90i phase shifter 377 to a 90i
Degree phase shifted video 116 carrier wave ftPCM audio g! The modulator 3B for the video signal modulates the video signal, and the adder 39 modulates the video signal by the video signal modulator 3B.
It is added to the I4 carrier wave. As a result, the video carrier wave is modulated in an orthogonal relationship with the video signal and the PCM audio signal.

変調されるスペクトラムを第3図と第4図に示し、映像
の搬送波の映像信号とPCM音声信号との変調状態のベ
クトル図を第5図に示す。第3図)43は映像信号のV
8Bフィルタ後のスペクトラム、44はF’M変v4さ
れた音声信号のスペクトラム。
The modulated spectrum is shown in FIGS. 3 and 4, and a vector diagram of the modulation state of the video signal of the video carrier wave and the PCM audio signal is shown in FIG. Figure 3) 43 is the V of the video signal
8B is the spectrum after filtering, 44 is the spectrum of the F'M modified v4 audio signal.

第4図の45にディジタル化されたPCM音声信号のス
ペクトラムを示す。ここでPCM f 声(ii go
iスペクトラムは伝送レート1量ビツトフ秒のロールオ
フ率0.5の信号の搬送波を変調した場合のスペ。
45 shows the spectrum of the digitized PCM audio signal. Here, PCM f voice (ii go
The i-spectrum is the spectrum obtained when the carrier wave of a signal with a transmission rate of 1 bitf second and a roll-off rate of 0.5 is modulated.

クトラムを示している。ctram is shown.

第3図において、映像搬送波に対して−0,75MHz
 p 下’Jスペクトラムについては残留側波帯振幅変
調とするV8Bフィルタによって真状されている。4.
2 M Hzまでは映像信号が4.5 MHz近傍には
音声搬送波がFM変調されたスペクトラムが存在してい
る。映1線搬送波に対して±0.75 MHzについて
は両側波帯が送信されるため、一般の振幅変調(08B
)と考えて良い。その両側波帯な有している搬送波に直
交して第4図のよう罠±Q、75MH1以内の信号をデ
ィジタル符号の1と0に相当させて振幅Aと一人とで変
調すると、搬送波のベクトルは映像信号を1とした場合
In Figure 3, -0.75MHz for the video carrier
The lower J spectrum is trued by a V8B filter with residual sideband amplitude modulation. 4.
For video signals up to 2 MHz, there is a spectrum in the vicinity of 4.5 MHz where the audio carrier wave is FM modulated. Since both sidebands are transmitted for ±0.75 MHz with respect to the video 1-line carrier wave, general amplitude modulation (08B
). If a signal within ±Q, 75MH1 is orthogonal to the carrier wave having both side bands and is modulated with an amplitude A and one signal corresponding to digital codes 1 and 0 as shown in Fig. 4, the carrier wave vector is when the video signal is set to 1.

(2)ωct−1zA顕ωct      (1)とな
る。ここでωCは搬送波の角周波数である。
(2) ωct-1zA actual ωct (1). Here, ωC is the angular frequency of the carrier wave.

(1)式を展開すると、 である。Expanding equation (1), we get It is.

ここで受信された映像信号へのPCM音声信号からの妨
害を考える。映像信号検波回路がJωctで同期検波し
ているものについてはAの値にかかわらず3ωclの係
数σ)み(すなわち映像信号Q)み)が再生され妨害と
はならない。また映像信号検波回路が包絡線検波をして
いるものについてはAの値を1より下げることで妨害を
@減できる。例えばAfjI:0.1とすると、J「「
マ中1.005  となり。
Let us now consider interference from a PCM audio signal to a received video signal. When the video signal detection circuit performs synchronous detection using Jωct, the coefficient σ) of 3ωcl (that is, the video signal Q) is reproduced and does not cause interference, regardless of the value of A. In addition, if the video signal detection circuit performs envelope detection, interference can be reduced by lowering the value of A below 1. For example, if AfjI:0.1, J""
Machu 1.005.

1に比べて0.005  の信号(約−46dB)が影
響するが、映像信号の8N比は40cfB以上あれば実
用上問題ないと考える。
Although a signal of 0.005 (approximately -46 dB) compared to 1 has an effect, it is considered that there is no practical problem as long as the 8N ratio of the video signal is 40 cfB or more.

一万、映像信号からのPCM音声の検波回路への妨害は
、第1図に示すように同期検波回路14で搬送波に直交
した成分のみを復調することで排除できる。信号レベル
対雑音の比(以下SN比と呼ぶ)について考えると、映
像信号のSN比が40dBが実用レベルとすると、帯域
幅がPCM音声信号の伝送帯域幅IMHzに比べ約4倍
であるため、PCM音声信号のSN比は46dBどなる
が、PCM音声信号の変調レベル人を0.1とすると8
N比は2ωB程度となる。
However, interference with the PCM audio detection circuit from the video signal can be eliminated by demodulating only the component orthogonal to the carrier wave in the synchronous detection circuit 14, as shown in FIG. Considering the signal level to noise ratio (hereinafter referred to as the SN ratio), if the SN ratio of the video signal is a practical level of 40 dB, the bandwidth is about 4 times the transmission bandwidth of the PCM audio signal, IMHz. The S/N ratio of the PCM audio signal is 46 dB, but if the modulation level of the PCM audio signal is 0.1, it is 8.
The N ratio is approximately 2ωB.

一方ディジタル信号のSN比とピットエラーレートとの
関係を一般的な二値信号で考えてもSN比が17.4d
Bで10  である。映像信号のSN比が40dBの場
合にはPCM音声信号のSN比は26dBであり、ディ
ジタル信号の伝送として実用上充分な値である。
On the other hand, even if we consider the relationship between the SN ratio of a digital signal and the pit error rate using a general binary signal, the SN ratio is 17.4d.
B is 10. When the S/N ratio of the video signal is 40 dB, the S/N ratio of the PCM audio signal is 26 dB, which is a practically sufficient value for digital signal transmission.

本発明の他の実施例を第6図に示す。受信15号は第1
図の場合と同一であり、第1図と同一符号のものは同一
様能を示す。3は周波数変換回路、46は混合回路、4
7は電圧制御形の局部発揚器、48は同期検波器、49
は基準信号発生器、50は低域通過フィルタ、51G工
48〜50で構成される搬送波再生用回路、52は加算
器、53は選局回路である。
Another embodiment of the invention is shown in FIG. Received number 15 is the first
This is the same as in the figure, and the same reference numerals as in FIG. 1 indicate the same functions. 3 is a frequency conversion circuit, 46 is a mixing circuit, 4
7 is a voltage controlled local oscillator, 48 is a synchronous detector, 49
50 is a reference signal generator, 50 is a low-pass filter, 51 is a carrier wave regeneration circuit composed of G components 48 to 50, 52 is an adder, and 53 is a channel selection circuit.

第1図と異なる点は、第1図では搬送波再生回路15で
凋:生され搬送波の映像16号と直交さKlて変調され
たP CM音声信号に同期して同期検波回路14で検波
しているのに比べ、第6図ではPCM音声信号の変調が
差動PSK旧号などの直流成分が少ない場合特に有効で
ある。PCM音声イ=号変調と映像信号の搬送波とが直
交関係にあることを利用して、基準信号発生器49と搬
送波を含む中間周波信号との位相差を同期検波器48で
検知し、低域成分を加算器52を介して電圧制御形の局
部発振器に、帰還することで、中間周波数の1ii込波
な基準信号発生器の出力と同期させて同期検波器48の
出力を検波出力としている。なお1選局回路53は選局
時に直流電圧を変化させて、局部発振器47の発振周波
数を変化さセ°るものである。
The difference from FIG. 1 is that in FIG. 1, the carrier wave regenerating circuit 15 generates a signal and detects it in the synchronous detection circuit 14 in synchronization with the PCM audio signal that is modulated orthogonally to the carrier wave image No. 16. In contrast, the modulation of the PCM audio signal in FIG. 6 is particularly effective when the DC component is small, such as in the old model of differential PSK. Utilizing the orthogonal relationship between the PCM audio signal modulation and the carrier wave of the video signal, the synchronous detector 48 detects the phase difference between the reference signal generator 49 and the intermediate frequency signal including the carrier wave, and By feeding back the component to the voltage-controlled local oscillator via the adder 52, the output of the synchronous detector 48 is made into a detected output in synchronization with the output of the reference signal generator which is a mixed wave of intermediate frequency. Note that the first channel selection circuit 53 changes the oscillation frequency of the local oscillator 47 by changing the DC voltage at the time of channel selection.

第1図〜第6図に示す実施例によれば、第2図に示すよ
うな送信機で第3〜5因に示すようなスペクトラムとベ
クトル関係でIMビット/秒のディジタル化した音F’
 ig gを従来のテレビジ目ンの映像および音P信′
/:fK妨害を与えずに伝送でき、第1および6図に示
す受信機を用いてそれらの信号を再生で@る。
According to the embodiments shown in FIGS. 1 to 6, the transmitter shown in FIG.
ig to traditional television-based video and audio communications.
/: can be transmitted without causing fK interference, and these signals can be reproduced using the receivers shown in FIGS. 1 and 6.

第7図に本発明の別の実施例を示す。第7図において、
54は映像同期検波回路、55は移相器であり、第1図
と同一符号のものは同一機能を示す。
FIG. 7 shows another embodiment of the invention. In Figure 7,
54 is a video synchronous detection circuit, 55 is a phase shifter, and the same symbols as in FIG. 1 indicate the same functions.

搬送波再生回路15に2いて、搬送波に同期したイ6号
を得るので、その信号を用いて映像信号を同期検波する
ものである。搬送波再生回路15の出力は同期検波器1
4で搬送波の直交成分で変調された信号を復調するため
に用いられるため、映像信号を同期検波するには約90
度の移相をすれば艮い。そのための移相器55ヲ介して
映像同期検波回路54で検波する。なお、中間周波増幅
回路4と帯域通過フィルタ13との遅延時間差にともな
う位相差を問題とする場合には移相器55の移相蓋ン設
定値を90度から変えれば良い。
Since the signal A6 synchronized with the carrier wave is obtained in the carrier wave reproducing circuit 15, the video signal is synchronously detected using this signal. The output of the carrier regeneration circuit 15 is transmitted to the synchronous detector 1
4 is used to demodulate the signal modulated by the orthogonal component of the carrier wave, so it takes approximately 90 to synchronously detect the video signal.
If you do a degree phase shift, it will work. The signal is detected by the video synchronous detection circuit 54 via the phase shifter 55 for this purpose. Note that if the phase difference due to the delay time difference between the intermediate frequency amplification circuit 4 and the bandpass filter 13 is a problem, the phase shift cover setting value of the phase shifter 55 may be changed from 90 degrees.

同様な考えを第6図にほどこした実施例を第8図に示す
。第7図、第8図ともこの実施例によれば映像信号の検
波にも同期検波を用いることができるので、直交成分の
映像再生信号への影響をさらに低減できる効果がある。
FIG. 8 shows an embodiment similar to that shown in FIG. 6. According to this embodiment in both FIGS. 7 and 8, synchronous detection can also be used for detecting the video signal, which has the effect of further reducing the influence of orthogonal components on the video reproduction signal.

第9図に本発明のさら九個の実施例を示す。FIG. 9 shows nine further embodiments of the present invention.

56は移相器、57は帯域通過フィルタ、58はPLL
回路であり、第7図と同一符号のものに同一機能を示す
。周波数変換回W63の出力を帯域通過フィルタ57を
用いて搬送波を抽出し、PLL1路58で搬送波に同期
した信号、を得、移相器55および56を用いて同期検
波回路14および映像同期検波回路54に送る。その他
は第7図と同様であるが1本実施例によれば帯域通過フ
ィルタ57とPLL回路58を用いて、搬送波に同期し
た1g号を再生するためだけに用いるため、他信号への
影響を少なく設計できるので、さらに安定で映像と音声
の各再生信ぢ間の影響を低減できる効果がある。
56 is a phase shifter, 57 is a band pass filter, 58 is a PLL
The same functions are indicated by the same reference numerals as in FIG. 7. A carrier wave is extracted from the output of the frequency conversion circuit W63 using a band pass filter 57, a signal synchronized with the carrier wave is obtained using a PLL 1 path 58, and a signal synchronized with the carrier wave is obtained using the phase shifters 55 and 56. Send to 54. The rest is the same as in FIG. 7, but according to this embodiment, a bandpass filter 57 and a PLL circuit 58 are used only to reproduce the 1g signal synchronized with the carrier wave, so that the influence on other signals is reduced. Since it can be designed with a smaller number, it is more stable and has the effect of reducing the influence between each reproduction signal of video and audio.

なお、直交変調をディジタル値1と0に対してAと−へ
のように2値に対応させたが、伝送容量を考えて多値で
伝送することも可能である。
Note that although the orthogonal modulation is made to correspond to binary values such as digital values 1 and 0 to A and -, it is also possible to transmit multi-values in consideration of transmission capacity.

また、直交変調の基本側帯波成分を残留側波帯振幅変調
の両側波帯の伝送される帯域内で記述したが、ディジタ
ル伝送での誤り率の少々の劣化を許容すれば帯域外に一
部はずれた伝送も可能である。
In addition, although the fundamental sideband components of orthogonal modulation are described within the transmission band of both sidebands of vestigial sideband amplitude modulation, if a slight deterioration of the error rate in digital transmission is allowed, some parts may be outside the band. Out-of-line transmission is also possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、振幅変調する搬送波に、前記変調とは
直交関係に有る変調をして伝送し、受信された搬送波に
同期した信号で再生できるので、前記変調とは別の信号
を受信できる効果がある。
According to the present invention, a carrier wave that is amplitude modulated can be modulated in an orthogonal relationship to the modulation and transmitted, and can be reproduced as a signal synchronized with the received carrier wave, so that a signal different from the modulation can be received. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は本発明を
実施するための送信側の一実施例のia構成図第3図は
本発明の説明用のスペクトラム図、第4図は本発明の説
明用のスペクトラム図、第5図は本発明の説明用のベク
トル図、第6図は本発明の他の実施例の構成図、第7図
は本発明のざらに他の実施例の構成図、第8図は本発明
の別の実施例の構成図、第9図は本発明のさらに別の実
施例の構成図である。 13 、57・・・帯域通過フィルタ 14・・・同期検波回路   15・・・搬送波再生回
路16・・・データストローブ回路 17・・・クロック再生回路 18・・・ディジタル信号処理回路 19・・・DAC46・・・混合回路 47・・・局部発振器    48・・・同期検波器4
9・・・基準信号発生器  5o・・・低域通過フィル
タ52・・・加算器      53・・・選局回路5
4・・・映像同期検波回路 55.56・・・移相器5
8・・・PLL回路 代理人弁理士 小 川 勝 男− も づ 口 名 4 図 項動影改 周波−& (MHI) 発5に
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an IA configuration diagram of an embodiment of the transmitting side for implementing the present invention, FIG. 3 is a spectrum diagram for explaining the present invention, and FIG. The figure is a spectrum diagram for explaining the present invention, FIG. 5 is a vector diagram for explaining the present invention, FIG. 6 is a block diagram of another embodiment of the present invention, and FIG. FIG. 8 is a block diagram of another embodiment of the present invention, and FIG. 9 is a block diagram of still another embodiment of the present invention. 13 , 57...Band pass filter 14...Synchronized detection circuit 15...Carrier recovery circuit 16...Data strobe circuit 17...Clock recovery circuit 18...Digital signal processing circuit 19...DAC46 ... Mixing circuit 47 ... Local oscillator 48 ... Synchronous detector 4
9... Reference signal generator 5o... Low pass filter 52... Adder 53... Tuning circuit 5
4... Video synchronous detection circuit 55.56... Phase shifter 5
8...PLL circuit representative patent attorney Katsuo Ogawa - Mozu Name 4 Figure item motion image reform frequency - & (MHI) Issue 5

Claims (1)

【特許請求の範囲】 1、搬送波を振幅変調して伝送する方式において、前記
搬送波を、前記振幅変調信号以外の信号で前記搬送波の
直交成分を変調して伝送される信号を受信することを特
徴とする伝送信号再生装置。 2、特許請求の範囲第1項において、前記振幅変調信号
以外の信号をディジタル符号化した信号とすることを特
徴とする伝送信号再生装置。 3、特許請求の範囲第1項において、前記搬送波を映像
信号で残留側波帯振幅変調し、前記残留側波帯内で両側
波帯を有する帯域内に基本両側帯波が存在するように、
前記映像信号以外の信号で前記搬送波の直交成分に変調
して伝送される信号を受信することを特徴とする伝送信
号再生装置。 4、特許請求の範囲第3項において、前記搬送波を復調
する中間周波に変換する周波数変換回路、前記周波数変
換回路の出力信号を振幅検波して映像信号を復調する映
像信号復調回路、前記周波数変換手段の出力信号の前記
残留側波帯内の両側波帯を有する帯域以内を通過させる
帯域通過フィルタ、前記帯域通過フィルタの出力信号の
搬送波に同期した再生用の搬送波成分を得る搬送波再生
回路、前記帯域通過フィルタの出力信号を前記搬送波再
生回路の出力信号で同期検波して直交成分に変調された
信号を復調する同期検波回路、前記同期検波回路の出力
信号を誤り率の少ない点でディジタル波形に変換する波
形整形回路、前記波形整形回路の出力信号を誤り検出訂
正し前記ディジタル符号化した前記映像信号以外の信号
を再生するディジタル信号処理回路を設けたことを特徴
とする伝送信号再生装置。 5、特許請求の範囲第4項において、前記周波数変換回
路の周波数変換に用いる局部発振器を電圧制御発振器と
し、前記搬送波再生回路を位相検波器と基準信号発振器
とで構成して前記基準信号発振器と前記搬送波再生回路
の入力信号との位相差を前記位相検波器で検出し、前記
位相検波器の出力信号で前記局部発振器を制御すること
を特徴とする伝送信号再生装置。
[Claims] 1. In a method of amplitude modulating and transmitting a carrier wave, a signal transmitted by modulating an orthogonal component of the carrier wave with a signal other than the amplitude modulation signal is received. Transmission signal regeneration device. 2. A transmission signal reproducing device according to claim 1, characterized in that a signal other than the amplitude modulation signal is a digitally encoded signal. 3. In claim 1, the carrier wave is modulated in vestigial sideband amplitude with a video signal, so that fundamental double-sideband waves exist in a band having both sidebands within the vestigial sideband,
A transmission signal reproducing device characterized in that a signal other than the video signal is modulated into an orthogonal component of the carrier wave and transmitted. 4. In claim 3, there is provided a frequency conversion circuit that converts the carrier wave into an intermediate frequency to be demodulated, a video signal demodulation circuit that amplitude-detects the output signal of the frequency conversion circuit and demodulates the video signal, and the frequency conversion circuit. a bandpass filter for passing an output signal of the means within a band having both sidebands within the vestigial sideband; a carrier regeneration circuit for obtaining a carrier wave component for reproduction synchronized with a carrier wave of the output signal of the bandpass filter; A synchronous detection circuit that synchronously detects the output signal of the band-pass filter with the output signal of the carrier regeneration circuit and demodulates the signal modulated into orthogonal components, and converts the output signal of the synchronous detection circuit into a digital waveform at a point with a low error rate. A transmission signal reproducing device comprising: a waveform shaping circuit for converting; and a digital signal processing circuit for detecting and correcting errors in the output signal of the waveform shaping circuit and reproducing signals other than the digitally encoded video signal. 5. In claim 4, the local oscillator used for frequency conversion of the frequency conversion circuit is a voltage controlled oscillator, and the carrier wave regeneration circuit is configured with a phase detector and a reference signal oscillator, and the reference signal oscillator and A transmission signal regeneration device, characterized in that the phase difference between the signal and the input signal of the carrier regeneration circuit is detected by the phase detector, and the local oscillator is controlled by the output signal of the phase detector.
JP61064031A 1986-03-24 1986-03-24 Transmission signal reproducing method and transmission signal reproducing apparatus Expired - Lifetime JPH07105940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064031A JPH07105940B2 (en) 1986-03-24 1986-03-24 Transmission signal reproducing method and transmission signal reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064031A JPH07105940B2 (en) 1986-03-24 1986-03-24 Transmission signal reproducing method and transmission signal reproducing apparatus

Publications (2)

Publication Number Publication Date
JPS62221285A true JPS62221285A (en) 1987-09-29
JPH07105940B2 JPH07105940B2 (en) 1995-11-13

Family

ID=13246350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064031A Expired - Lifetime JPH07105940B2 (en) 1986-03-24 1986-03-24 Transmission signal reproducing method and transmission signal reproducing apparatus

Country Status (1)

Country Link
JP (1) JPH07105940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990018817A (en) * 1997-08-28 1999-03-15 신윤식 Communication method and device for WLL and IMT-2000 signals using broadband subscriber line subscriber system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186088A (en) * 1985-02-13 1986-08-19 Matsushita Electric Ind Co Ltd Signal multiplex system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186088A (en) * 1985-02-13 1986-08-19 Matsushita Electric Ind Co Ltd Signal multiplex system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990018817A (en) * 1997-08-28 1999-03-15 신윤식 Communication method and device for WLL and IMT-2000 signals using broadband subscriber line subscriber system

Also Published As

Publication number Publication date
JPH07105940B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP4012534B2 (en) Device to maintain signal level
EP0144770A2 (en) CATV Signal Transmitting System and Related Receiving System
US4882725A (en) Multiplex transmission method and apparatus
US7170950B2 (en) DRM/AM simulcast
JP2515809B2 (en) Digital transmission system
JP2501713B2 (en) Receiver for signal distribution system
JPS6376592A (en) Multiplex transmission signal reproducing device
JPS62221285A (en) Transmission signal reproducing device
JPS62221286A (en) Transmission signal generator
JP2702912B2 (en) Transmission signal transmission method and apparatus
JPS6346084A (en) Transmission system for television signal
JP2976922B2 (en) Transmission signal receiving device
JPS6331240A (en) Transmission signal reproducing device
RU2317644C2 (en) Method for simultaneous transmission of amplitude-modulated signal
JPS6376590A (en) Transmisson signal reproducer
JP2821116B2 (en) Transmission signal transmission method and apparatus
JP2723889B2 (en) Multiplex signal transmission method and multiple signal generation device thereof
JPS6376589A (en) Multiplex signal reproducer
JP2695777B2 (en) Multiplex transmission signal regeneration device
JP2575385B2 (en) Multiplex transmission method and transmission / reception apparatus therefor
JPS6376593A (en) Signal transmission system and its generating device
JP2976921B2 (en) Transmission signal receiving device
JP2986800B2 (en) Multiplex transmission signal regeneration device
JPH02113780A (en) Sending equipment for television signal with digital voice
JPH07255016A (en) Compatible receiver for analog and digital broadcast