JP2515809B2 - Digital transmission system - Google Patents

Digital transmission system

Info

Publication number
JP2515809B2
JP2515809B2 JP62159612A JP15961287A JP2515809B2 JP 2515809 B2 JP2515809 B2 JP 2515809B2 JP 62159612 A JP62159612 A JP 62159612A JP 15961287 A JP15961287 A JP 15961287A JP 2515809 B2 JP2515809 B2 JP 2515809B2
Authority
JP
Japan
Prior art keywords
signal
digital
transmission
bits
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159612A
Other languages
Japanese (ja)
Other versions
JPS645135A (en
Inventor
勉 野田
信孝 尼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62159612A priority Critical patent/JP2515809B2/en
Publication of JPS645135A publication Critical patent/JPS645135A/en
Application granted granted Critical
Publication of JP2515809B2 publication Critical patent/JP2515809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 本発明は、ディジタル伝送方式に係り、特に、ディジ
タル符号化した音声を高品質で伝送するのに好適な伝送
方式に関する。
The present invention relates to a digital transmission system, and more particularly to a transmission system suitable for transmitting digitally encoded voice with high quality.

〔従来の技術〕[Conventional technology]

現在、オーディオ専用放送として、中波帯を用いたAM
放送および超短波帯を用いたFM放送が実施されている。
一方、コンパクト・ディスク・プレーヤの普及が進み、
ディジタル・オーディオ・テープレコーダが実用化され
ようとしている今日、このオーディオ専用放送の分野に
おいてもディジタル化の要望が強まってきている。
Currently, AM using the medium wave band as audio-only broadcasting
Broadcasting and FM broadcasting using the ultra-high frequency band are carried out.
On the other hand, with the spread of compact disc players,
Now that digital audio tape recorders are being put to practical use, there is an increasing demand for digitization in the field of audio-only broadcasting.

このような時代において、音声をディジタル符号化し
て放送する方式については、昭和58年6月発行財団法人
電波技術協会編の衛星放送受信技術調査会報告第1部
「衛星放送受信機」などで報告されているが、衛星放送
受信には直径1m程度のパラボラアンテナを必要とするの
で超短波帯を用いたFM放送のように手軽に受信できるデ
ィジタル・オーディオ放送が望まれる。
In such an era, the method of digitally encoding audio and broadcasting is reported in "Satellite Broadcast Receiver", Part 1 of the Satellite Broadcasting Receiving Technology Study Group Report published by the Institute of Radio Engineers of Japan, published in June 1983. However, satellite broadcasting requires a parabolic antenna with a diameter of about 1 m, so digital audio broadcasting that can be easily received like FM broadcasting using the ultra-high frequency band is desired.

また、上記「衛星放送受信機」にも示されているよう
に、ディジタル音声において伝送信号CN比の劣化など伝
送中の誤りに対しては重畳して伝送された誤り検出訂正
符号を用いて訂正し、訂正しきれないものについては前
後の音声サンプル値から平均値補間したり前の音声サン
プル値を前値保持したりする。さらに伝送中の誤りが多
くなると音声信号出力をしゃ断することが知られてい
る。
In addition, as shown in the above "Satellite Broadcast Receiver", errors in transmission such as deterioration of the transmission signal CN ratio in digital audio are corrected using superposed error detection and correction codes. However, for those that cannot be completely corrected, the average value is interpolated from the preceding and following voice sample values, or the previous voice sample value is held as the previous value. Further, it is known that when the number of errors during transmission increases, the audio signal output is cut off.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、伝送情報をディジタル符号化した後
の上位ビットし下位ビットととの誤り率の配分について
全く配慮がされていないため、伝送路のCNが小さくなり
伝送ディジタル符号の誤り率が多くなると異常音を発生
したり再生音を遮断したりするので、伝送情報内容を理
解できない問題があった。
In the above prior art, since no consideration is given to the distribution of the error rate between the high-order bit and the low-order bit after digitally encoding the transmission information, the CN of the transmission line becomes small and the error rate of the transmission digital code is high. In this case, an abnormal sound is generated or a reproduced sound is cut off, so that there is a problem that the content of the transmission information cannot be understood.

本発明は、直交する2つの搬送波を2組のディジタル
符号で振幅変調する直交振幅変調ディジタル伝送方式に
おいて、上記の問題を解決するためになされたものであ
る。すなわち、本発明者は、この問題について研究を進
めた結果、伝送CN比の低下による誤り率の発生は、多値
化の程度の大きい程多くなること、並びに、比較的重要
なビットすなわち上位のビットは、比較的重要でないビ
ットすなわち下位ビットに比べて誤り率の発生をより少
くする必要があることに着目して、その解決を図ったも
のである。
The present invention has been made to solve the above problems in a quadrature amplitude modulation digital transmission system in which two orthogonal carrier waves are amplitude-modulated by two sets of digital codes. That is, the present inventor has conducted research on this problem, and as a result, the occurrence of an error rate due to a decrease in the transmission CN ratio increases as the degree of multi-value quantization increases, and relatively significant bits, that is, higher order bits. Bits are intended to be solved by paying attention to the fact that it is necessary to reduce the occurrence of an error rate as compared with relatively unimportant bits, that is, lower bits.

従って、本発明の目的は、直交振幅変調ディジタル伝
送方式において、伝送CN比が大きく伝送ディジタル符号
の誤り率が少ない場合には高品質な状態でもとの情報を
再生し、伝送CN比が低下して伝送ディジタル符号の誤り
率が全体として多くなった場合でも、再生情報に重要な
影響を与えるディジタル符号部分の誤りの発生を極力抑
えるようにして、伝送情報内容が理解できる程度の再生
を可能とするものである。
Therefore, an object of the present invention is to reproduce the original information in a high quality state and reduce the transmission CN ratio in the quadrature amplitude modulation digital transmission system when the transmission CN ratio is large and the error rate of the transmission digital code is small. Therefore, even if the error rate of the transmitted digital code increases as a whole, it is possible to reproduce the transmitted information so that the content of the transmitted information can be understood by suppressing the occurrence of errors in the digital code part that have a significant effect on the reproduced information. To do.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明の直交振幅変調ディ
ジタル伝送方式においては、直交した2軸の搬送波をそ
れぞれ変調する多値化の程度を異ならしめ、多値化の程
度の少ない軸の多値信号として所要ビット数にアナログ
ディジタル変換された符号の上位ビットを割り当て、多
値化の程度の多い軸の多値信号として上記符号の残りの
下位ビットを割り当てるように構成する。
In order to achieve the above object, in the quadrature amplitude modulation digital transmission system of the present invention, the multilevel signals for modulating orthogonal two-axis carriers are made different, and the multilevel signal of the axis having a low multilevel value is reduced. The upper bits of the analog-to-digital converted code are assigned to the required number of bits, and the remaining lower bits of the code are assigned as the multi-valued signal of the axis that is highly multivalued.

〔作用〕[Action]

伝送信号の伝送CN比が小さくなると、多い多値化で伝
送される下位ビットの誤り率が多くなるが、少ない多値
化で伝送される上位ビットの誤り率は少ない。
When the transmission CN ratio of the transmission signal is small, the error rate of the lower bits transmitted by the multi-valued conversion is high, but the error rate of the high-order bits transmitted by the low multi-valued is small.

上位ビットの誤り率が少ないため、アナログ信号で振
幅を大きく誤ることが少なく、ひどい異常音を発生する
ことが少ないため、再生音を遮断する必要もなく、伝送
情報の内容を理解できる再生音を得られる。
Since the error rate of the high-order bits is low, the amplitude is not greatly mistaken in the analog signal, and a terrible abnormal sound is rarely generated. can get.

〔実施例〕〔Example〕

以下、本発明の一実施例として直交振幅変調(以下QA
Mと略す)の伝送ビット数を4ビットの16QAMのQ軸を2
値化にした3ビット伝送を例にとり説明する。第1図に
本発明の受信再生装置の一実施例であり、1はアンテ
ナ、2は選局回路、3は第1の同期検波回路、4は第2
の同期検波回路、5は搬送波再生回路、6は移相器、7,
8はLPF(低域通過フィルタ)、9は第1の識別回路、10
は第2の識別回路(4値−2値変換回路)、12は第1の
受信側ディジタル信号処理回路、13は第2の受信側ディ
ジタル信号処理回路、14はディジタル・アナログ変換回
路(以下DACと略す)、15は音声出力である。第2図は
本発明の送信側の伝送信号発生装置の一実施例であり、
21は音声入力、22はアナログ・ディジタル変換回路(以
下ADCと略す)、23は第1の送信側ディジタル信号処理
回路、24は第2の送信側ディジタル信号処理回路、25は
2値−4値変換回路、26,27はLPF、28は搬送波発生回
路、29は移相器、30は第1の変調回路、31は第2の変調
回路、32は加算回路、33は増幅器、34はアンテナであ
る。第3図は本発明の伝送信号の符号配置例、第4図は
本発明の伝送信号のビット配分例を示す。
Hereinafter, as one embodiment of the present invention, quadrature amplitude modulation (hereinafter referred to as QA
(Abbreviated as M) The number of transmission bits is 4 bits, and the Q axis of 16QAM is 2
A description will be given by taking digitized 3-bit transmission as an example. FIG. 1 shows an embodiment of the receiving and reproducing apparatus of the present invention, in which 1 is an antenna, 2 is a tuning circuit, 3 is a first synchronous detection circuit, and 4 is a second.
Synchronous detection circuit, 5 is a carrier recovery circuit, 6 is a phase shifter, 7,
8 is an LPF (low pass filter), 9 is a first identification circuit, 10
Is a second identification circuit (four-value / two-value conversion circuit), 12 is a first reception side digital signal processing circuit, 13 is a second reception side digital signal processing circuit, and 14 is a digital / analog conversion circuit (hereinafter DAC). Abbreviated), 15 is a voice output. FIG. 2 shows an embodiment of the transmission signal generator on the transmitting side of the present invention,
21 is a voice input, 22 is an analog / digital conversion circuit (hereinafter abbreviated as ADC), 23 is a first transmission side digital signal processing circuit, 24 is a second transmission side digital signal processing circuit, and 25 is a binary-4 value. Conversion circuits, 26 and 27 LPFs, 28 carrier wave generation circuits, 29 phase shifters, 30 first modulation circuits, 31 second modulation circuits, 32 addition circuits, 33 amplifiers, 34 antennas is there. FIG. 3 shows an example of code arrangement of the transmission signal of the present invention, and FIG. 4 shows an example of bit allocation of the transmission signal of the present invention.

都合により、まず、受信側から動作を説明する。 For convenience, first, the operation will be described from the receiving side.

伝送された電波を第1図のアンテナ1で受け、選局回
路2で放送局を選局する。選局された後の中間周波信号
を搬送波再生回路5の出力と移相器6の出力により第1
の同期検波回路3と第2の同期検波回路4とでおのおの
直交関係で同期検波し、LPF7および8で不要信号を除去
する。その出力として、Q軸は2値、I軸は4値のアイ
パターンを得ている。そのアイパターンからクロック再
生回路11の出力と第1の識別回路9および第2の識別回
路10により2値のディジタル符号を得る。その後、第1
のディジタル信号処理回路12および第2のディジタル信
号処理回路13で伝送中に生じた誤りの検出訂正やデイン
タリーブなどディジタル伝送を復調するディジタル信号
処理を行い、DAC14でアナログ信号にして音声出力15を
得る。
The transmitted radio waves are received by the antenna 1 shown in FIG. 1, and the channel selection circuit 2 selects a broadcasting station. The intermediate frequency signal after being tuned is output to the first by the output of the carrier recovery circuit 5 and the output of the phase shifter 6.
The synchronous detection circuit 3 and the second synchronous detection circuit 4 are synchronously detected in an orthogonal relationship, and LPFs 7 and 8 remove unnecessary signals. As its output, an eye pattern having a binary value on the Q axis and a quaternary value on the I axis is obtained. A binary digital code is obtained from the output of the clock recovery circuit 11 and the first discrimination circuit 9 and the second discrimination circuit 10 from the eye pattern. Then the first
The digital signal processing circuit 12 and the second digital signal processing circuit 13 perform digital signal processing for demodulating digital transmission such as detection and correction of errors occurring during transmission, deinterleaving, etc. obtain.

次に、第2図により、送信側の動作を説明する。第2
図は、以上の受信再生装置で再生するための伝送信号を
発生する装置のブロック図である。音声入力21からのア
ナログ信号をADC22で2値のディジタル符号化し、第1
のディジタル信号処理回路23および第2のディジタル信
号処理回路24により、伝送中に生じる誤りを検出訂正す
るための符号を追加し、また、バースト誤りをさけるた
めインターリーブなどをほどこす。その後、I軸では第
2のディジタル処理回路24の2値出力は4値化するた
め、2値−4値変換回路25に印加され、LPF27を通って
不要帯域が除去され、搬送波発生回路28の出力を移相器
29を介して90°移相した信号を用いて第2の変調回路31
で変調される。一方、Q軸では第1のディジタル処理回
路23の2値出力が直接LPF26に印加されて不要帯域が除
去され、搬送波発生回路28の出力を用いて第1の変調回
路30で変調される。なお、この実施例では、Q軸の多値
化の程度を2値そのままとしたため、I軸のような2値
−多値変換回路は省略されている。それらの変調回路3
0,31の出力を加算器32で加算し、増幅回路33で増幅して
アンテナ34から電波として伝送する。
Next, the operation of the transmitting side will be described with reference to FIG. Second
The figure is a block diagram of an apparatus for generating a transmission signal to be reproduced by the above receiving and reproducing apparatus. The analog signal from the voice input 21 is binary-coded by the ADC 22 and the first
By the digital signal processing circuit 23 and the second digital signal processing circuit 24, a code for detecting and correcting an error occurring during transmission is added, and interleaving is applied to avoid a burst error. After that, on the I-axis, the binary output of the second digital processing circuit 24 is converted into four values, so that it is applied to the binary-to-four-value conversion circuit 25, the unnecessary band is removed through the LPF 27, and the carrier wave generation circuit 28 outputs. Output phase shifter
The second modulation circuit 31 using the signal phase-shifted by 90 via 29
Is modulated by On the other hand, on the Q axis, the binary output of the first digital processing circuit 23 is directly applied to the LPF 26 to remove the unnecessary band, and is modulated by the first modulation circuit 30 using the output of the carrier generation circuit 28. In this embodiment, since the degree of multi-valued Q-axis is binary, the binary-multivalued conversion circuit like the I-axis is omitted. Those modulation circuits 3
The outputs of 0 and 31 are added by an adder 32, amplified by an amplifier circuit 33, and transmitted as an electric wave from an antenna 34.

このようにI軸を4値、Q軸を2値で変調したQAM信
号の符号配置を第3図に示す。第3図の横軸がQ軸であ
り0と1の2値、I軸は00,01,10,11の4値となり3ビ
ットのデータを同時に同一タイムスロットで伝送でき
る。これを(Q,I1,I2)の順で第3図に示す。ここでQ
軸の符号間距離とI軸の符号間距離には3倍の差があ
り、ビット誤り率が同一となる伝送信号CN比はQ軸の方
が10dB少なくて良い。逆に言えばあるCN比で伝送された
信号の場合Q軸の方が誤り率が少ないことになる。
FIG. 3 shows the code arrangement of the QAM signal in which the I-axis is 4-valued and the Q-axis is 2-valued. The horizontal axis of FIG. 3 is the Q axis, which is a binary value of 0 and 1, and the I axis is a quaternary value of 00, 01, 10, and 11, and 3-bit data can be transmitted simultaneously in the same time slot. This is shown in FIG. 3 in the order of (Q, I 1 , I 2 ). Where Q
There is a three-fold difference between the inter-symbol distance on the axis and the inter-symbol distance on the I-axis, and the transmission signal CN ratio at which the bit error rate is the same may be 10 dB less on the Q axis. Conversely, in the case of a signal transmitted at a certain CN ratio, the Q axis has a smaller error rate.

今、第4図に示すように、伝送する音声信号を1サン
プル当りNビット例えば12ビットで量子化したと仮定
し、そのデータを上位ビット(MSB)から順にD1,D2,
D3,…D12とし、上位Mビット例えば3ビットD1〜D3
ついてE1,D4〜D6についてE2,D7〜D9についてE3の誤り検
出訂正符号とする。このときタイムスロットT1〜T5の時
間において、QにD1〜D4とE1を、I1,I2にD5〜D12とE2
E3を配分することにより、伝送信号のCN比が劣化した場
合上位ビット側はQ軸に割り当てられているため誤り率
は少なく、下位ビット側はI軸に割り当てられているた
め誤り率が多くなる。その結果、極端に伝送信号のCN比
が劣化して、下位ビットのほとんどが誤りとなったとし
ても、上位ビットの誤り率が少なく、ある程度の音声信
号を再生できる。
Now, as shown in FIG. 4, it is assumed that the audio signal to be transmitted is quantized with N bits, for example, 12 bits per sample, and the data is sequentially D 1 , D 2 ,
D 3, ... and D 12, and error detection correction code E 3 for E 2, D 7 ~D 9 for E 1, D 4 ~D 6 for the top M bits, for example 3 bits D 1 to D 3. At this time, in the time of time slots T 1 to T 5 , Q is D 1 to D 4 and E 1 , and I 1 and I 2 are D 5 to D 12 and E 2 .
When the CN ratio of the transmission signal deteriorates by allocating E 3 , the error rate is low because the upper bit side is assigned to the Q axis, and the error rate is high because the lower bit side is assigned to the I axis. Become. As a result, even if the CN ratio of the transmission signal is extremely deteriorated and most of the lower bits are erroneous, the error rate of the upper bits is small and a voice signal can be reproduced to some extent.

なお、E1〜E3の誤り検出訂正符号を1サンプルについ
てのパリティのように示したが、数サンプルの上位3ビ
ットをまとめて数ビットの誤り検出訂正符号をつけても
良い。
Although the error detection / correction codes of E 1 to E 3 are shown as the parity for one sample, the upper 3 bits of several samples may be put together and the error detection / correction code of several bits may be added.

以上説明したように、本実施例によれば、伝送CNが大
きく伝送ディジタル符号の誤り率が大きい場合には、12
ビットの再生音が得られ、CN比が小さくなり悪くなった
場合でも上位3〜4ビットは誤り少なく得られるので、
音声として理解できる程度の再生音が得られる効果があ
る。
As described above, according to this embodiment, when the transmission CN is large and the error rate of the transmission digital code is large, 12
Bit reproduction sound is obtained, and even if the CN ratio becomes smaller and worse, the upper 3 to 4 bits can be obtained with few errors,
There is an effect that a reproduced sound that can be understood as voice is obtained.

ここで、3ビットで伝送した場合の伝送必要帯域幅を
計算する。量子化ビット数12ビット、サンプリング周波
数32KHz、音声2チャネル(ステレオ)、誤り訂正符号
重畳分を30%とすると、 12bit×32K/S×2ch×1.3=998.4Kbps 998.4Kbps(Kビット/秒)となり同時3ビット伝送す
るので332.8Kbpsとなり332.8KHzの帯域幅で伝送可能と
なる。この帯域幅は現行FM放送と同程度であり、超短波
帯で伝送可能である。
Here, the required transmission bandwidth when transmitting with 3 bits is calculated. 12 bits × 32K / S × 2ch × 1.3 = 998.4Kbps 998.4Kbps (Kbits / sec), assuming that the number of quantization bits is 12 bits, the sampling frequency is 32KHz, the audio is 2 channels (stereo), and the error correction code superimposition is 30%. Since 3 bits are transmitted at the same time, 332.8 Kbps is achieved, and it is possible to transmit with a bandwidth of 332.8 KHz. This bandwidth is about the same as current FM broadcasting, and it can be transmitted in the ultra-high frequency band.

一方、搬送波再生回路5は再生直交軸を得るために重
要であり、データ(0,0,0),(0,1,1),(1,0,0)お
よび(1,1,1)の4値の場合のみを基準としてI軸,Q軸
への振幅が同一となるように負帰還する方法が考えられ
る。この回路は、16QAMの場合には、昭和59年5月に株
式会社企画センター発行の「ディジタルマイクロ波通
信」のpp134〜135に示した基準搬送波再生回路に説明さ
れている。
On the other hand, the carrier recovery circuit 5 is important for obtaining a reproduction orthogonal axis, and includes data (0,0,0), (0,1,1), (1,0,0) and (1,1,1). A method of performing negative feedback so that the amplitudes on the I-axis and the Q-axis are the same can be considered based on only the case of four values. In the case of 16QAM, this circuit is explained in the reference carrier recovery circuit shown in pp134 to 135 of "Digital Microwave Communication" published by Planning Center Co., Ltd. in May, 1984.

以上、音声信号で説明したが、画像信号など上位ビッ
トが重要情報を有するものについても同様な効果があ
る。
Although the audio signal has been described above, the same effect can be obtained even when the upper bit has important information such as an image signal.

また、今までの説明では16QAMの4ビットを8状態の
3ビットにして伝送したが、64QAMの6ビットのI軸を
8値としQ軸を4値とした32状態の5ビットにした伝送
など他のQAMでも同様な効果が得られる。なお、この場
合には、送信側で、I軸に2値−8値変換回路、Q軸に
2値−4値変換回路が必要になる。受信側でも同様な逆
変換回路が必要である。
In the above explanation, 4 bits of 16QAM are transmitted as 3 bits of 8 states, but transmission of 6 bits of 64QAM is changed to 5 bits of 32 states with an I axis of 8 values and a Q axis of 4 values. Similar effects can be obtained with other QAMs. In this case, the transmitting side needs a binary-to-eight-value conversion circuit for the I-axis and a binary-to-four-value conversion circuit for the Q axis. A similar inverse conversion circuit is required on the receiving side.

〔発明の効果〕〔The invention's effect〕

以上実施例により詳述したように、本発明の直交振幅
変調ディジタル伝送方式によれば、直交2軸の搬送波を
それぞれ変調する多値信号の多値化の程度を異ならし
め、多値化の程度の少ない軸の多値信号としてA/D変換
された符号の上位ビットを配分し、多値化の程度の多い
軸の多値信号としてA/D変換された符号の残りの下位ビ
ットを配分したので、伝送CN比が大きくて良質な伝送条
件のときには高品質な再生ができ、伝送CN比が低下した
悪条件においても、下位ビットに比べて上位ビットの誤
り率の増加を極力抑えることができ、その結果、伝送情
報内容が理解できる程度の再生を可能とする等、優れた
効果を奏するものである。
As described above in detail with reference to the embodiments, according to the quadrature amplitude modulation digital transmission system of the present invention, the degree of multi-value conversion of the multi-valued signals respectively modulating the carrier waves of the two orthogonal axes is made different, and the degree of multi-value conversion. The high-order bits of the A / D-converted code are allocated as the multi-valued signal of the axis with few values, and the remaining low-order bits of the A / D-converted code are allocated as the multi-valued signal of the axis with the high degree of multi-value conversion. Therefore, high quality reproduction is possible when the transmission CN ratio is large and the transmission conditions are good, and even under bad conditions where the transmission CN ratio is low, the increase in the error rate of the upper bits compared to the lower bits can be suppressed as much as possible. As a result, an excellent effect is obtained such that reproduction can be performed to such an extent that the transmission information content can be understood.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる受信再生装置の一実施例のブロ
ック図、第2図は本発明の送信側の伝送信号発生装置の
一実施例のブロック図、第3図は本発明に用いる伝送信
号の符号配置の一例を示す図、第4図は本発明に用いる
伝送信号のビット配分の一例を示す図である。 3,4……同期検波器 9,10……多値符号識別回路(4値−2値変換回路) 11……クロック再生回路 12,13,23,24……ディジタル信号処理回路 14……ディジタル・アナログ変換回路 21……音声入力端子 22……アナログ・ディジタル変換回路 25……2値−4値変換回路 30,31……直交変調回路 32……加算回路。
FIG. 1 is a block diagram of an embodiment of a receiving and reproducing apparatus used in the present invention, FIG. 2 is a block diagram of an embodiment of a transmission signal generating apparatus on the transmitting side of the present invention, and FIG. 3 is a transmission used in the present invention. FIG. 4 is a diagram showing an example of code arrangement of signals, and FIG. 4 is a diagram showing an example of bit allocation of transmission signals used in the present invention. 3,4 …… Synchronous detector 9,10 …… Multi-level code identification circuit (4 level-binary conversion circuit) 11 …… Clock recovery circuit 12,13,23,24 …… Digital signal processing circuit 14 …… Digital・ Analog conversion circuit 21 …… Voice input terminal 22 …… Analog / digital conversion circuit 25 …… Binary-four-value conversion circuit 30,31 …… Quadrature modulation circuit 32 …… Adding circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ディジタル符号の上位所定数のビットを比
較的多値化の程度の少ない多値信号として取出すと共
に、該ディジタル符号の残りのビット数を比較的多値化
の程度の大きい多値信号として取出す符号変換手段と、
前記比較的多値化の程度の少ない多値信号及び比較的多
値化の程度の大きい多値信号により直交した2軸の搬送
波をそれぞれ振幅変調して合成する直交振幅変調手段と
該直交振幅変調手段の出力を伝送路に向けて送出する手
段とを備えたディジタル伝送方式。
1. A high-order predetermined number of bits of a digital code is taken out as a multilevel signal having a relatively low degree of multilevel conversion, and the remaining number of bits of the digital code is a multilevel signal having a relatively high level of multilevel conversion. Code conversion means for extracting as a signal,
Quadrature amplitude modulation means for amplitude-modulating and synthesizing two orthogonal carrier waves orthogonal to each other by the multilevel signal having a relatively low level and the multilevel signal having a high level. And a means for sending the output of the means to a transmission line.
【請求項2】前記伝送路からの信号を受信する手段、受
信された直交振幅変調ディジタル信号を2軸について復
調する手段と、復調された比較的多値化の程度の少ない
多値信号及び比較的多値化の程度の大きい多値信号をそ
れぞれ2値ディジタル符号として取出す符号逆変換手段
と、該2値ディジタル符号をアナログ信号に変換するデ
ィジタルアナログ変換回路とを備えてなる特許請求の範
囲第1項記載のディジタル伝送方式。
2. A means for receiving a signal from the transmission line, a means for demodulating a received quadrature amplitude modulation digital signal about two axes, a demodulated multi-valued signal having a relatively low degree of multi-valued and comparison. A code reverse conversion means for extracting a multi-valued signal having a large degree of dynamic multi-valued conversion as a binary digital code, and a digital-analog conversion circuit for converting the binary digital code into an analog signal. The digital transmission method according to item 1.
【請求項3】前記2値ディジタル符号中の、伝送中に生
じた誤りを検出訂正するディジタル信号処理回路を前記
ディジタルアナログ変換回路の前に設けてなる特許請求
の範囲第3項記載のディジタル伝送方式。
3. The digital transmission according to claim 3, wherein a digital signal processing circuit for detecting and correcting an error occurring during transmission in the binary digital code is provided before the digital-analog conversion circuit. method.
JP62159612A 1987-06-29 1987-06-29 Digital transmission system Expired - Lifetime JP2515809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62159612A JP2515809B2 (en) 1987-06-29 1987-06-29 Digital transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159612A JP2515809B2 (en) 1987-06-29 1987-06-29 Digital transmission system

Publications (2)

Publication Number Publication Date
JPS645135A JPS645135A (en) 1989-01-10
JP2515809B2 true JP2515809B2 (en) 1996-07-10

Family

ID=15697516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159612A Expired - Lifetime JP2515809B2 (en) 1987-06-29 1987-06-29 Digital transmission system

Country Status (1)

Country Link
JP (1) JP2515809B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032099C (en) 1992-03-26 1996-06-19 松下电器产业株式会社 System of communication
US6724976B2 (en) 1992-03-26 2004-04-20 Matsushita Electric Industrial Co., Ltd. Communication system
USRE38513E1 (en) 1992-03-26 2004-05-11 Matsushita Electric Industrial Co., Ltd. Communication system
US5892879A (en) 1992-03-26 1999-04-06 Matsushita Electric Industrial Co., Ltd. Communication system for plural data streams
JPH05276211A (en) * 1992-03-26 1993-10-22 Yuseisho Tsushin Sogo Kenkyusho Hierarchized modulation system for digital signal
US6728467B2 (en) 1992-03-26 2004-04-27 Matsushita Electric Industrial Co., Ltd. Communication system
JP2000201132A (en) 1998-11-06 2000-07-18 Matsushita Electric Ind Co Ltd Transmitter-receiver
JP2003060608A (en) * 1998-11-06 2003-02-28 Matsushita Electric Ind Co Ltd Transmitter/receiver
JP3252820B2 (en) 1999-02-24 2002-02-04 日本電気株式会社 Demodulation and modulation circuit and demodulation and modulation method
JP6546467B2 (en) * 2015-06-30 2019-07-17 日本放送協会 Transmitter, receiver and chip

Also Published As

Publication number Publication date
JPS645135A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
KR100195365B1 (en) Hierarchical quadrature frequency multiplex signal format and apparatus for transmission and reception thereof
US4805014A (en) Signal transmission system for a CATV system
EP1617613B1 (en) OFDM communication devices using pseudo random modulated reference symbols
US5642384A (en) Trellis coded modulation scheme with low envelope variation for mobile radio by constraining a maximum modulus of a differential phase angle
EP0738064B1 (en) Modulator and method of modulation and demodulation
JPH09503114A (en) Diversity π / 4-DQPSK demodulation
JPH05347736A (en) Receiver device for multi-system
GB2102660A (en) Community aerial arrangement for digital audio signals
JP2515809B2 (en) Digital transmission system
US6160855A (en) Digital modulation method and digital communication system
EP0788262A2 (en) Combined equalizer and decoder
US4979052A (en) Digital signal magnetic recording/reproducing apparatus
EP0735712B1 (en) Multicarrier modulation receiver using remodulation
JPH0879325A (en) Transmission reception method for qam signal and transmitter-receiver
KR100811570B1 (en) An in-band-on-channel broadcast system for digital data
US5062007A (en) Digital signal magnetic recording/reproducing apparatus
JP3870170B2 (en) Communication method and communication device using a carrier method using independent polarization planes
JPH05167633A (en) Digital transmission system
JPH0750698A (en) Circuit and method for error detection
JP2979455B2 (en) Digital transmission equipment
JP2548932B2 (en) Multilevel QAM communication system
US6788751B1 (en) Frequency diversity digital wireless system
JP2820092B2 (en) Frequency hopping communication device and transmission device and reception device therefor
US20120076240A1 (en) Apparatus and method for data communication using radio frequency
JPS63272147A (en) Audio signal transmitting receiving system