JPS62221269A - Image conversion system - Google Patents

Image conversion system

Info

Publication number
JPS62221269A
JPS62221269A JP61064487A JP6448786A JPS62221269A JP S62221269 A JPS62221269 A JP S62221269A JP 61064487 A JP61064487 A JP 61064487A JP 6448786 A JP6448786 A JP 6448786A JP S62221269 A JPS62221269 A JP S62221269A
Authority
JP
Japan
Prior art keywords
picture
pattern
pixels
pixel
enlargement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61064487A
Other languages
Japanese (ja)
Inventor
Kuniaki Saito
齋藤 邦彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61064487A priority Critical patent/JPS62221269A/en
Publication of JPS62221269A publication Critical patent/JPS62221269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To comparatively easily, and accurately convert an image by converting an actual picture element by quantizing and patternizing the proportion that a picture element before conversion occupies in a picture element after the conversion when the image is enlarged or reduced. CONSTITUTION:Respective right-side, downward, and right downward picture elements are read from a picture memory as an attended picture element p (n, m) to before enlarging picture element, and set in a register 10. These four picture elements are selected by a selector 12 in accordance with the content of a ROM 18, and supplied to corresponding one of proportion quantization level arithmetic circuits 21, 22...2l. In the ROM 18, the pattern for the relevant picture element corresponding to a picture after enlargement is stored. This pattern is read out and inputted to the selector 12 in order to output the luminance levels of the four picture elements in the register 10 to one of the circuits 21-2l that corresponds to this pattern. As a result, the enlargement and reduction of a picture is executed by collecting by the prescribed amounts of data from upward, downward, right and left picture elements, and the deterioration of the picture is reduced.

Description

【発明の詳細な説明】 〔1既  要〕 画像を縮小拡大する場合、変換前画素が変換原画素に占
める割合を量子化し、パターン化しておき、これにより
実際の画素を変換して比較的容易に正確な画像変換を行
なう。
[Detailed Description of the Invention] [1] When reducing or enlarging an image, the proportion of pixels before conversion to the original pixels to be converted is quantized and patterned, and the actual pixels can be converted relatively easily. Perform accurate image conversion.

〔産業上の利用分野〕[Industrial application field]

本発明は、画素群で表わされる画像の拡大縮小を行なう
画像変換方式に関する。
The present invention relates to an image conversion method for enlarging or reducing an image represented by a group of pixels.

〔従来の技術〕[Conventional technology]

ファクシミリなどでは画像を画素群で表わす。 In facsimiles, images are represented by groups of pixels.

例えば走査線はミリ8本、1走査線データのサンプル数
もミリ8個、従って1龍2内のドツト(画素)数は64
個とし、このような画素群で画像を表わす。原稿の画像
を走査して得られる各画素の輝度(濃度)レベルはアナ
ログ量であるが、サンプリングの段階で4ビツト、16
段階にする。これは信号処理後、1.0の2値データに
され、送信後の記録はこれで行なわれる。
For example, the number of scanning lines is 8 mm, and the number of samples of 1 scanning line data is also 8 mm, so the number of dots (pixels) in 1 dragon 2 is 64.
An image is represented by a group of pixels like this. The brightness (density) level of each pixel obtained by scanning the original image is an analog quantity, but it is converted into 4 bits and 16 bits at the sampling stage.
Make it into stages. After signal processing, this is converted into binary data of 1.0, and this is used for recording after transmission.

原稿サイズにはA3.A4.B4などがあり、A3原稿
をA4原稿に縮小して伝送したい、又はこの逆に拡大し
て伝送したい要求がある。
The manuscript size is A3. A4. B4, etc., and there is a request to reduce an A3 document to an A4 document and transmit it, or conversely, to enlarge it and transmit it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来画面縮小には画素を間引くという方法が−般にとら
れている。例えばB4原稿の1走査線のドツト数は20
4811M、A4原稿のそれは1728個とすると、6
IlI又は7個に1つの割合で画素を除いて行けばB4
原稿をA4原稿に縮小できる。
Conventionally, a method of thinning out pixels has been generally used to reduce screen size. For example, the number of dots in one scanning line of a B4 original is 20.
4811M, A4 manuscript has 1728 pieces, 6
If you remove pixels at a ratio of IlI or 1 in 7, it becomes B4
You can reduce the original to A4 original.

しかしこの方法では画質が劣化し、光学系で縮小した場
合のように良質の画面は得られない。
However, with this method, the image quality deteriorates and it is not possible to obtain a high-quality screen as in the case of reducing the size using an optical system.

本発明は画質をあまり劣化することなく、そして光学系
は使用せずデータ処理だけで、画面の縮小拡大をしよう
とするものである。
The present invention attempts to reduce or enlarge the screen without significantly deteriorating the image quality, and without using an optical system and only by data processing.

〔問題点を解決するための手段〕[Means for solving problems]

第2図に示すように本発明では縮小重み付けをパターン
化する。縮小は第3図に示すように実線小矩形A目、A
I2.・・・・・・A21 、A22 、・・・・・・
を鎖線小矩形Bll 、B10.・・・・・・B11゜
B22.・・・・・・に拡大することにより行なわれる
As shown in FIG. 2, the present invention patterns the reduction weighting. As shown in Figure 3, the reduction is made by solid line small rectangle A,
I2. ...A21, A22, ...
The chain line small rectangle Bll, B10. ...B11°B22. This is done by enlarging it to...

即ち実線小矩形All 、Al1.・・・・・・は84
版の原稿の1走査線上の画素とすると20481[1j
あり、これを鎖線小矩形Bll 、B10.・・・・・
・に拡大して同じ長さ上の個数1728個にし、これで
印字(tIii画)ta構を動作させると、印字機構は
同じ(ドツトのピッチは不変)であるから(ライン17
28ドツトのA4版画像1ライン分が出来上る。
That is, solid line small rectangles All, Al1. ...is 84
The number of pixels on one scanning line of the original is 20481[1j
Yes, this is a chain line small rectangle Bll, B10.・・・・・・
If you enlarge the dots to 1728 on the same length and operate the printing (tIiii) ta mechanism, the printing mechanism is the same (the pitch of the dots remains unchanged), so (line 17)
One line of 28-dot A4 size image is completed.

この第3図はB4原積上にA4原稿を、両者のサイズが
同じになるようにA4原稿を拡大して重ねたものと考え
てよく、このためA4原稿は画素が拡大されて1728
個でB4の2048個と同じ長さになり、また走査線(
横方向の行)も1728本でB4の2048本と同じ長
さく縦方向幅)になっている。従って鎖線小矩形で印字
すれば走査線も1728本となり、縦、横共にB4−A
4の縮小がなされる。
This figure 3 can be thought of as an A4 original stacked on top of a B4 original stack, with the A4 original enlarged so that both are the same size.For this reason, the pixels of the A4 original are enlarged to 1728 pixels.
The length is the same as 2048 pieces of B4, and the scanning line (
There are also 1728 rows (horizontal rows), the same length and vertical width as B4's 2048 rows. Therefore, if you print small rectangles with chain lines, the number of scanning lines will be 1728, and both vertical and horizontal B4-A
A reduction of 4 is made.

実線小矩形を鎖線小矩形に拡大すると、拡大後の小矩形
は拡大前の小矩形の複数個からなる。例えばBllはA
llの全部と、Al1.A21 。
When a solid line small rectangle is enlarged to a chain line small rectangle, the small rectangle after enlargement is made up of a plurality of small rectangles before enlargement. For example, Bll is A
All of ll and Al1. A21.

A22の各一部からなり、B12はAl1.A13゜A
22.A23の各一部からなる。拡大前の小矩形が拡大
後の小矩形に関与する割合は微妙に変るが、これを量子
化すると第2図の16種のパターンにすることができる
。パターン(0,0)は画素Aijの寄与が大きく、そ
の横方向の画素Δi j+1及び下方A I+ I J
の寄与が小さく、斜め下方の画素A、、、1の寄与が最
小であるケースを示す。第3図では小矩形Bllがこれ
に相当する。パターン(0,1)はAijとAij+1
の寄与が大きくかつ同程度、そしてA 1+14と八i
ll j+1の寄与が小さくかつ同程度のケースであり
、これは第3図では小矩形B23が該当する。以下同様
で、第3図の拡大後手矩形は第2図の16種のパターン
のいずれかに近(以させることができる。
A22 consists of each part, and B12 consists of each part of Al1. A13゜A
22. Consists of each part of A23. The proportion of the small rectangles before enlargement and the small rectangles after enlargement varies slightly, but if this is quantized, the 16 patterns shown in FIG. 2 can be obtained. The pattern (0,0) has a large contribution from the pixel Aij, and its horizontal pixel Δi j+1 and the lower A I+ I J
A case is shown in which the contribution of the diagonally downward pixels A, . In FIG. 3, the small rectangle Bll corresponds to this. Pattern (0,1) is Aij and Aij+1
The contribution of is large and similar, and A 1+14 and 8i
This is a case where the contribution of ll j+1 is small and of the same degree, and this corresponds to the small rectangle B23 in FIG. Similarly, the enlarged rectangle shown in FIG. 3 can be made to resemble any of the 16 patterns shown in FIG. 2.

第2図のパターンは拡大後手矩形を縦横に4分割、全体
で16分割した折目で量子化したもので、第3図に現わ
れるパターンにつき該量子化をして得たものである。現
われるパターンには反復性があり、例えばB10はB1
1 と類似のパターンになっている。これは横方向だけ
でなく、縦方向でも同様な繰り返し性が見られる。また
第2図のように量子化すると、寄与する拡大前小矩形は
4個、2(囚、1(囚のいずれかになる。パターン(3
,3)は該1個の特異なケースであるが、これは第3図
の小矩形B66などに見られる。
The pattern shown in FIG. 2 is obtained by quantizing the enlarged rectangle by dividing it into four parts vertically and horizontally, and dividing it into 16 parts in total.The pattern shown in FIG. 3 was obtained by quantizing the pattern shown in FIG. The pattern that appears is repetitive, for example B10 is B1
The pattern is similar to 1. Similar repeatability can be seen not only in the horizontal direction but also in the vertical direction. Also, when quantized as shown in Figure 2, the contributing small rectangles before expansion are either 4, 2 (contractor) or 1 (contractor).Pattern (3
, 3) is one unique case, which can be seen in the small rectangle B66 in FIG.

拡大前の各画素の輝度レベルは4ビツト、16段階であ
るが、これを寄与率に応じて加重加算し、平均をとると
、拡大後の画素の輝度レベルを得ることができる。寄与
率は、実際のそれを計測しなくても、その画素の位置に
より定まり、第2図のパターンのいずれかを割当てるこ
とができるから、第2図の各パターンにつき各拡大前画
素の寄与率を求めておけば、それを用いて直ちに当該拡
大後画素の輝度レベルを算出することができる。例えば
パターン(0,0)については図面から明らかなように
Aijの寄与率は9、A i j+ lとA、+目の寄
与率は3、A、    の寄与率はlであるから、パ+
lJ+1 ターン(0,0)の画素の輝度レベルBijはBij=
 (9Aij+3A、、  +3A、   +A   
 )/IJ+1       ++1j     i+
1j+116となる。なおこ−では画素とその輝度レベ
ルは同じ符号で示す。
The brightness level of each pixel before enlargement is 4 bits and has 16 steps, but by weighting and adding them according to the contribution rate and taking the average, the brightness level of the pixel after enlargement can be obtained. The contribution rate is determined by the position of the pixel without actually measuring it, and any of the patterns in Figure 2 can be assigned, so the contribution rate of each pixel before enlargement for each pattern in Figure 2 can be determined by the position of the pixel. If , the brightness level of the enlarged pixel can be immediately calculated using it. For example, for pattern (0,0), as is clear from the drawing, the contribution rate of Aij is 9, the contribution rate of A i j+ l and A, the +th eye is 3, and the contribution rate of A, is l, so
lJ+1 The brightness level Bij of the pixel at turn (0,0) is Bij=
(9Aij+3A,, +3A, +A
)/IJ+1 ++1j i+
It becomes 1j+116. Note that pixels and their luminance levels are indicated by the same symbols here.

拡大後画素がどのパターンをとるかはその位置により決
定でき、例えばBll とB10はパターン(0,0)
 、B13はパターン(0,1)、B10とB10はパ
ターン(0,2) 、B、6はパターン(0,3) 、
B墓7はB11  と同じ、・・・・・・である。2行
目B2+、B22.・・・・・・も同様であり、3行目
はB31 と832はパターン(1゜0)、B33はパ
ターン(1,1) 、B34と835はパターン(1,
2)、・・・・・・である。以下これに準する。従って
カウンタを用意し、該カウンタで拡大後画素に対応する
クロックを計数して画素番号を発生させ、これをアドレ
スとしてROMをアクセスし、パターン番号ひいては拡
大前各画素の寄与率を得ることが可能である。
The pattern that a pixel takes after enlargement can be determined by its position. For example, Bll and B10 have a pattern (0,0).
, B13 is pattern (0,1), B10 and B10 are pattern (0,2), B,6 is pattern (0,3),
Grave B 7 is the same as B11. 2nd line B2+, B22. The same goes for .
2),... The following shall apply accordingly. Therefore, it is possible to prepare a counter, use the counter to count the clocks corresponding to the pixels after enlargement, generate a pixel number, use this as an address to access the ROM, and obtain the pattern number and thus the contribution rate of each pixel before enlargement. It is.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す、10はレジスタで、図
示しない画像メモリから拡大前画素を、注目画素P(n
、m)、その右側の画素P (n、 re÷1)、下方
の画素P (n+1+ m) 、右斜め下の画素P (
n+1 。
An embodiment of the present invention is shown in FIG.
, m), the pixel P (n, re÷1) on the right, the pixel P (n+1+ m) below, the pixel P (diagonally below the right)
n+1.

m+1)の4画素読出し、これらをセットされる。4 pixels of m+1) are read out and these are set.

このレジスタ10に対しては、画像メモリ上の走査に用
いるウィンドウを連想してよい。12,14はセレクタ
、16は前記のカウンタ、18はROM(読取り専用メ
モリ)である。21,22゜・・・・・・21は割合量
子化レベル1用、同2用、・・・・・・各演算回路で、
これらの回路21.22.・・・・・・は前記パターン
(0,0)、  (0,1)、・・・・・・に従う重み
付けで入力画素を加算し、平均をとる。
This register 10 may be associated with a window used for scanning on an image memory. 12 and 14 are selectors, 16 is the aforementioned counter, and 18 is a ROM (read-only memory). 21, 22゜...21 is for ratio quantization level 1, ratio 2, . . . for each arithmetic circuit,
These circuits 21.22. . . . adds input pixels with weights according to the patterns (0, 0), (0, 1), . . . and takes an average.

動作を説明すると、拡大後画素のクロックnがカウンタ
16に入力し、該カウンタの計数値はリセットされた0
の状態から1.2.・・・・・・とインクリメントして
行く。拡大後側素数は前記の1728として簡単にはカ
ウンタ16は1728進とすればよく、そして信号mは
該カウンタのオーバフローパルスを図示しないカウンタ
で計数したもの(走査線数は同じ1728本として該図
示しないカウンタは簡単には1728進とする)とする
と、この信号mとカウンタ16の計数値をアドレスとし
てROM18をアクセスし、該ROM1Bには拡大後各
画素対応で当該画素に対する前記パターンを格納してお
けば、該ROM18より当該画素の前記パターンを読出
すことができる。このROM18の出力はセレクタ12
に入ってレジスタIOの4画素輝度レベルを該読出した
パターンに対する演算回路に入力し、またセレクタ14
に入力して該演算回路の出力を当該拡大R素輝度レベル
として出力する。
To explain the operation, the clock n of the pixel after enlargement is input to the counter 16, and the count value of the counter is reset to 0.
From the state of 1.2. ...... and so on. The post-expansion prime number is 1728 as described above, and the counter 16 can simply be set to 1728 base, and the signal m is the overflow pulse of the counter counted by a counter (not shown) (the number of scanning lines is the same 1728 as shown in the figure). 1728), the ROM 18 is accessed using this signal m and the count value of the counter 16 as an address, and the ROM 1B stores the pattern for each pixel after enlargement. If it is set, the pattern of the pixel can be read from the ROM 18. The output of this ROM18 is the selector 12
inputs the four pixel brightness levels of the register IO to the arithmetic circuit for the read pattern, and also inputs the brightness levels of the four pixels in the register IO to the selector 14
and outputs the output of the arithmetic circuit as the expanded R element luminance level.

例えばm=1.そしてカウンタ16の計数値も1であれ
ば、これは画素B目が演算対象ということであり、RO
M1Bはパターン(0,O)を出力する。これはセレク
タ12にレジスタ10の内容Az 、Al1.A2+ 
、A22をパターン(0,0)用の演算回路21に入力
させ、該演算回路は(9A1.+3A、2 +3A2.
+A22)/16=Bzを計算し、セレクタ14はこの
演算回路の算出値B11を出力させる。
For example, m=1. If the count value of the counter 16 is also 1, this means that pixel B is the calculation target, and the RO
M1B outputs a pattern (0, O). This causes the selector 12 to contain the contents of the register 10 Az, Al1. A2+
, A22 are input to the arithmetic circuit 21 for pattern (0,0), and the arithmetic circuit inputs (9A1.+3A, 2 +3A2.
+A22)/16=Bz is calculated, and the selector 14 outputs the calculated value B11 of this arithmetic circuit.

次はクロックnが1個入ってカウンタ16の計数値は2
になり、これとm=1がアドレスとなってROM18を
アクセスし、パターン(0,O)を出力させる。またレ
ジスタIOの内容は画像メモリ上で1つ右ヘシフトされ
てA12.A13゜A22.A23になる。従ってセレ
クタ12は再び演算回路21を選択するが演算対象のデ
ータは異なり、その演算結果はB12 = (9A12
 +3A13 +3A22 +A23 )/16になる
。このB10はセレクタ14により出力される6次に再
びクロックnが入るとカウンタ16の計数値は3、mは
1、ROM18の出力はパターン(0,1)になる、ま
たレジスタ10の内容はAl1.A14゜A23.A2
4になり、演算回路22が813=(6A13 +6A
+4 +2A23 +2A24 )/16を計算し、セ
レクタ14が該BI3を出力する。以下同様である。
Next, one clock n enters and the count value of counter 16 is 2.
This and m=1 serve as an address to access the ROM 18 and output the pattern (0, O). Also, the contents of register IO are shifted one place to the right on the image memory and A12. A13゜A22. It becomes A23. Therefore, the selector 12 selects the calculation circuit 21 again, but the data to be calculated is different, and the calculation result is B12 = (9A12
+3A13 +3A22 +A23 )/16. This B10 is outputted by the selector 14. When the clock n enters again next time, the count value of the counter 16 becomes 3, m becomes 1, the output of the ROM 18 becomes the pattern (0, 1), and the contents of the register 10 become Al1. .. A14゜A23. A2
4, and the arithmetic circuit 22 calculates 813=(6A13 +6A
+4 +2A23 +2A24 )/16, and the selector 14 outputs the BI3. The same applies below.

カウンタ16は、パターンの繰゛り返し性を利用すると
、その1サイクルまでの少数進カウンタとすることがで
き、つれてROM18のアドレス数も少数でよい。
By utilizing the repeatability of the pattern, the counter 16 can be a decimal counter up to one cycle, and accordingly, the number of addresses in the ROM 18 may be small.

以上ではB4をA4に縮小するケースを挙げたが、A3
をA4に縮小する等の他の縮小例も同様にして処理でき
る。またこの逆のA4を84にする等の拡大も同じ要領
で処理できる。即ちこの拡大では鎖線小矩形B11.8
+2.・・・・・・B21゜B22.・・・・・・をA
4の画素、実線小知形A11゜A12.・・・・・・A
21.八22.・・・・・・をB4の画素とすればよい
。このBij→Aijの変換を行なえば、1走査線上の
Bijの数は1728、Aijのそれは2048、印字
(描画)機構は不変、であるからA4原稿はB4原稿に
拡大される。この場合の演算要領は、All =Bll
 、Al1 =(3B11+9812 ) /12. 
A13 = (3812+9813 )/12、Al1
 = (B 13 +814 ) /2.・・・・・・
であることは第3図から明らかである。
Above, we have mentioned the case of reducing B4 to A4, but A3
Other reduction examples, such as reducing the size of the image to A4 size, can be processed in the same way. The reverse enlargement, such as increasing A4 to 84, can also be processed in the same manner. That is, in this enlargement, the chain line small rectangle B11.8
+2. ...B21°B22.・・・・・・A
4 pixels, solid line Kochi-shape A11°A12.・・・・・・A
21. 822. . . . may be taken as a B4 pixel. If this conversion from Bij to Aij is performed, the number of Bij on one scanning line is 1728, the number of Aij is 2048, and the printing (drawing) mechanism remains unchanged, so the A4 original is enlarged to a B4 original. The calculation procedure in this case is All = Bll
, Al1 = (3B11+9812) /12.
A13 = (3812+9813)/12, Al1
= (B 13 +814) /2.・・・・・・
It is clear from FIG.

〔発明の効果〕〔Effect of the invention〕

本発明の拡大、縮小は画素を間引いて縮小、同じ@素を
付加して拡大ではなく、上下左右の画素から所定量ずつ
持寄って拡大、縮小するので、画質の劣化が少ない利点
がある。上下左右の画素が持寄る量は画素の位置により
定まり、予め用意しておくことができるので変換後画素
の輝度(濃度)計算は容易である。上下左右の画素が持
寄る量(寄与率)は量子化し、パターン化することがで
き、このパターンには反復性があるので16パターンな
ど比較的少数のパターンでよく、演算回路の個数、RO
M容量などを低減、簡単化することができる。
The enlargement and reduction of the present invention does not involve thinning out pixels to reduce the size or adding the same @ element to enlarge the image, but instead of increasing or reducing pixels by adding a predetermined amount from the upper, lower, left, and right pixels, there is an advantage that there is little deterioration in image quality. The amount by which the pixels on the upper, lower, left, and right sides are brought together is determined by the position of the pixel, and can be prepared in advance, so it is easy to calculate the luminance (density) of the converted pixel. The amount (contribution rate) of the top, bottom, left, and right pixels can be quantized and patterned. Since this pattern has repeatability, a relatively small number of patterns such as 16 patterns is sufficient, and the number of arithmetic circuits and RO
M capacity etc. can be reduced and simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は縮
小重み付はパターンの説明図、第3図は画面縮小拡大の
説明図である。 第1図、第3図でAll 、A12.・・・・・・Bl
l。 B12.・・・・・・P(n、n+)・・・・・・は画
素又はその輝度レベル、18は画素のパターンを出力す
るROM。 21.22.・・・・・・は各パターンにつき各々の寄
与率に応じた演算を行なう回路である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of a reduction weighting pattern, and FIG. 3 is an explanatory diagram of screen reduction/enlargement. In FIGS. 1 and 3, All, A12. ...Bl
l. B12. . . . P(n, n+) . . . is a pixel or its brightness level, and 18 is a ROM that outputs a pixel pattern. 21.22. . . . is a circuit that performs calculations according to each contribution rate for each pattern.

Claims (1)

【特許請求の範囲】 画素で表わされる画像を画素数基、減で拡大、縮小する
画像変換方式において、 画面サイズは同じとして変換前、後の画面を重ねて得ら
れる、変換後画素(B_1_1)に対する変換前複数画
素(A_1_1、A_1_2、A_2_1、A_2_2
)の各寄与率を量子化しパターン化しておき、該パター
ン及び寄与率に従って変換後画素の輝度レベルを、変換
前画素の輝度レベルより算出、決定することを特徴とす
る画像変換方式。
[Claims] In an image conversion method that enlarges or reduces an image represented by pixels by decreasing the number of pixels, the converted pixels (B_1_1) obtained by overlapping the pre-conversion and post-conversion screens assuming the same screen size. Multiple pixels before conversion (A_1_1, A_1_2, A_2_1, A_2_2
) is quantized and patterned, and the brightness level of the pixel after conversion is calculated and determined from the brightness level of the pixel before conversion according to the pattern and the contribution rate.
JP61064487A 1986-03-22 1986-03-22 Image conversion system Pending JPS62221269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064487A JPS62221269A (en) 1986-03-22 1986-03-22 Image conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064487A JPS62221269A (en) 1986-03-22 1986-03-22 Image conversion system

Publications (1)

Publication Number Publication Date
JPS62221269A true JPS62221269A (en) 1987-09-29

Family

ID=13259616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064487A Pending JPS62221269A (en) 1986-03-22 1986-03-22 Image conversion system

Country Status (1)

Country Link
JP (1) JPS62221269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277057A (en) * 1988-04-28 1989-11-07 Fujitsu Ltd Device and method for converting picture element density
JPH0311478A (en) * 1989-06-09 1991-01-18 Canon Inc Picture element density converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277057A (en) * 1988-04-28 1989-11-07 Fujitsu Ltd Device and method for converting picture element density
JP2691559B2 (en) * 1988-04-28 1997-12-17 富士通株式会社 Pixel density conversion device and method thereof
JPH0311478A (en) * 1989-06-09 1991-01-18 Canon Inc Picture element density converter

Similar Documents

Publication Publication Date Title
JPH0737082A (en) Method and device for rotating multilevel picture 90 degrees
JP2615625B2 (en) Image processing device
JPH011074A (en) Image processing device
US4949282A (en) Device for calculating the moments of image data
JPS62221269A (en) Image conversion system
JPH04190466A (en) Limited color representation device for color image
JPH03157060A (en) Intermediate tone estimate system for dither picture
JP3006522B2 (en) Color reduction processing device
CN100380920C (en) Jitter algorithm for image display
JP2654713B2 (en) How to enlarge the image
JP3584662B2 (en) Image conversion device
JPS60229765A (en) Dot interpolation control system
JPH0793528A (en) High speed processing method for continuous data using parallel picture processors
JP2002056385A (en) Image correcting method and image correcting device
EP0177058A2 (en) A method and a device for calculating a histogram
KR100289157B1 (en) Image processing apparatus and method
JPH0721362A (en) High contrast processor
JPH02254864A (en) Image input device
JP2934971B2 (en) Image binarization processing device
JPH04335477A (en) Image converting system
JP2636396B2 (en) Image reduction conversion method
JP3262880B2 (en) Waveform judgment method
JP2714141B2 (en) Pixel density converter
JPS6226632B2 (en)
JPH08221566A (en) Device and method for processing image