JPS6222109B2 - - Google Patents

Info

Publication number
JPS6222109B2
JPS6222109B2 JP55165708A JP16570880A JPS6222109B2 JP S6222109 B2 JPS6222109 B2 JP S6222109B2 JP 55165708 A JP55165708 A JP 55165708A JP 16570880 A JP16570880 A JP 16570880A JP S6222109 B2 JPS6222109 B2 JP S6222109B2
Authority
JP
Japan
Prior art keywords
doppler
frequency
phase
filter bank
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165708A
Other languages
Japanese (ja)
Other versions
JPS5790179A (en
Inventor
Natsuki Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55165708A priority Critical patent/JPS5790179A/en
Publication of JPS5790179A publication Critical patent/JPS5790179A/en
Publication of JPS6222109B2 publication Critical patent/JPS6222109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は符号化パルス圧縮レーダにおけるド
ツプラ周波数補償方式に関するもので、各々のド
ツプラ・フイルタの出力信号にそのドツプラ・フ
イルタの中心周波数に応じた一定の位相補償量を
掛けることによりドツプラ・フイルタ・バンクの
周波数分解能の1/2以下の周波数精度で目標のド
ツプラ周波数を補償すると共に、ドツプラ周波数
の異なる複数の目標への対処をも可能にしたパル
ス圧縮レーダのドツプラ周波数補償方式を提案す
るものである。
Detailed Description of the Invention The present invention relates to a Doppler frequency compensation method in a coded pulse compression radar, in which the output signal of each Doppler filter is multiplied by a constant phase compensation amount according to the center frequency of that Doppler filter. Doppler frequency compensation for pulse compression radar enables the target Doppler frequency to be compensated for with a frequency accuracy of less than 1/2 of the frequency resolution of the Doppler filter bank, and also makes it possible to deal with multiple targets with different Doppler frequencies. This paper proposes a method.

ところで、パルス圧縮レーダでは、目標とレー
ダとの相対速度により生じる受信信号のドツプラ
周波数シフトは圧縮率の低下並びにレンジ・サイ
ドロープの上昇等の悪影響を生じる原因となる。
By the way, in a pulse compression radar, the Doppler frequency shift of the received signal caused by the relative speed between the target and the radar causes adverse effects such as a decrease in compression ratio and an increase in range side lobes.

通常のドツプラ周波数補償方式は、受信信号に
ドツプラ周波数補償及び相関処理を施すことによ
りパルス圧縮処理が完了した後にドツプラ・フイ
ルタ・バンクで目標のドツプラ周波数を検出する
ものである。したがつて、ドツプラ周波数を補償
する段階では補償すべき目標のドツプラ周波数が
未知であるためそのレーダ装置が対象とする代表
的な目標のドツプラ周波数を用いて補償を行う等
の方法をとつていることにより、目標のドツプラ
周波数が上記代表的な値と異なるとパルス圧縮率
の低下等の悪影響が発生する。また、同一のレン
ジ・ビン内に存在するドツプラ周波数の異なる複
数目標に対して各々の目標に応じたドツプラ周波
数補償を行うことは処理チヤンネルの複数化等ハ
ードウエアの増大なしには困難であり、特に高速
で移動する目標を対象とする航空機搭載用レーダ
及び対空監視レーダで問題となる。
A typical Doppler frequency compensation method performs Doppler frequency compensation and correlation processing on a received signal, and then detects a target Doppler frequency using a Doppler filter bank after pulse compression processing is completed. Therefore, at the stage of compensating the Doppler frequency, since the Doppler frequency of the target to be compensated is unknown, a method such as performing compensation using the Doppler frequency of a representative target targeted by the radar device is used. Therefore, if the target Doppler frequency differs from the above-mentioned representative value, an adverse effect such as a decrease in pulse compression ratio will occur. In addition, it is difficult to perform Doppler frequency compensation for multiple targets with different Doppler frequencies within the same range bin without increasing hardware such as increasing the number of processing channels. This is particularly a problem for aircraft-mounted radars and anti-aircraft surveillance radars that target targets moving at high speed.

この発明は、ドツプラ・フイルタ・バンクの後
段で各ドツプラ・フイルタの出力信号にそのドツ
プラ・フイルタの中心周波数に応じた一定の位相
補償量を掛けることにより、このような従来の問
題点の改善を計つたものである。以下第1図、第
2図及び第3図を用いてこの発明を詳述する。
This invention improves these conventional problems by multiplying the output signal of each Doppler filter by a fixed amount of phase compensation according to the center frequency of that Doppler filter at the subsequent stage of the Doppler filter bank. It was calculated. This invention will be explained in detail below using FIGS. 1, 2, and 3.

第1図において、送信機1で送信パルス幅τ、
送信繰返し周期TなるRFパルスを発生し、位相
変調器2で第2図aに示すように なる符号系列で送信パルス幅内を位相変調する。
この信号をサーキユレータ3を介してアンテナ4
より目標に向けて放射する。
In FIG. 1, the transmitter 1 has a transmission pulse width τ,
An RF pulse with a transmission repetition period T is generated, and the phase modulator 2 generates an RF pulse as shown in Fig. 2a. Phase modulation is performed within the transmission pulse width using a code sequence.
This signal is sent to the antenna 4 via the circulator 3.
Radiates more towards the target.

受信信号は受信機5でIF周波数に変換された
後、増幅され、さらに基準発振器6の出力信号を
基準にして位相検波器7で位相検波される。この
位相検波波形は第2図bに示すように目標のドツ
プラ角周波数ωdで振幅変調されている。
The received signal is converted into an IF frequency by a receiver 5, amplified, and then phase-detected by a phase detector 7 using the output signal of a reference oscillator 6 as a reference. This phase detection waveform is amplitude modulated at the target Doppler angular frequency ω d as shown in FIG. 2b.

次に、この信号をサンプル・ホールダ、A/D
変換器8で量子化しFFTプロセツサとメモリで
構成されるドツプラ・フイルタ・バンク9に入力
される。ところで、受信信号fotは次式で表わ
される連続波をパルス幅Δγ、パルス繰返し周期
Tでパルス変調したものである。
Next, this signal is transferred to the sample holder, A/D
The signal is quantized by a converter 8 and input to a Doppler filter bank 9 consisting of an FFT processor and memory. Incidentally, the received signal f o t is obtained by pulse modulating a continuous wave expressed by the following equation with a pulse width Δγ and a pulse repetition period T.

ot=Aej(ωdt+θn) ………(2) θn=ψ+nωdΔγ+ψn ………(3) ここで、nはサブビツト(第2図aで示される
パルス幅Δγなる各々パルス)番号、ψはn=0
のときの初期位相、Δγはサブビツト幅、Aは振
幅、tは時間であり、式(2)及び式(3)で表わされる
N個のパルス列をフーリエ変換すると、 となる。
f o t = Ae j (ωdt + θn) ...... (2) θn = ψ + nωdΔγ + ψn ...... (3) Here, n is the sub-bit number (each pulse with a pulse width Δγ shown in Figure 2 a) number, and ψ is n =0
The initial phase when becomes.

ドツプラ・フイルタ・バンク9を構成する上記
メモリはサンプル・ホールダ、A/D変換器8で
量子化された受信信号を格納するものであり、上
記FFTプロセツサはフーリエ変換を離散的に高
速で行うものである。NポイントのFFTでは0
から1/Tなる周波数範囲内に1/NTなる周波
数間隔で帯域幅がほぽ1/NTなる帯域通過フイ
ルタをN個並べたものと等価になり、ドツプラ周
波数の分析を目的として使用する場合には上記帯
域通過フイルタをドツプラ・フイルタ、一方、
FFTプロセツサと上記メモリで構成される装置
をドツプラ・フイルタ・バンクと呼ぶ。
The memory constituting the Doppler filter bank 9 is a sample holder and stores the received signal quantized by the A/D converter 8, and the FFT processor performs Fourier transform discretely at high speed. It is. 0 for N point FFT
It is equivalent to arranging N bandpass filters with a bandwidth of almost 1/NT at a frequency interval of 1/NT within a frequency range of 1/T from converts the above bandpass filter into a Doppler filter, while
A device consisting of an FFT processor and the above memory is called a Doppler filter bank.

また、式(4)から明らかなようにω=ωdのとき
式(4)の絶対値は最大になるため、目標のドツプラ
周波数は出力振幅が最も大きいドツプラ・フイル
タの中心周波数であるものとして検出される。と
ころが、上記のようにドツプラ・フイルタ・バン
ク9は各ドツプラ・フイルタが1/NTなる周波
数間隔で並んでいるものと等価であるため任意の
周波数を分析し得る能力は1/NTになり、これ
をドツプラ・フイルタ・バンク9の周波数分解能
と呼ぶ。
Also, as is clear from equation (4), the absolute value of equation (4) is maximum when ω = ωd, so the target Doppler frequency is detected as the center frequency of the Doppler filter with the largest output amplitude. be done. However, as mentioned above, the Doppler filter bank 9 is equivalent to Doppler filters arranged at a frequency interval of 1/NT, so the ability to analyze any frequency is 1/NT, and this is called the frequency resolution of the Doppler filter bank 9.

以上より、ドツプラ・フイルタ・バンク9で各
サブビツトに対応するレンジビン毎にNポイント
のFFT演算を行うと、目標のドツプラ周波数に
合致したドツプラ・フイルタの出力信号Fn(ω
d)は式(4)においてω=ωdとしたものであり、 Fn(ωd)=Kej{〓+nd〓〓+(n)}
………(5) K=ANΔγ ………(6) で表わされる。このドツプラ・フイルタの出力信
号は第3図aに示されるように目標のドツプラ周
波数の影響により各レンジビン毎に一定量(nω
dΔγ)の位相シフトを受けている。この位相シ
フトを位相補償回路10で各レンジビン毎にe-j
〓〓なる位相量を掛けることにより補償する
と位相補償回路10の出力信号Fno(ωd)は、 Fno(ωd)=Kej{〓+(n)} ………(7) となる。この信号波形を第3図bに示す。
From the above, when an N-point FFT operation is performed for each range bin corresponding to each sub-bit in the Doppler filter bank 9, the Doppler filter output signal Fn(ω
d) is obtained by setting ω=ωd in equation (4), and Fn(ωd)=Ke j {〓 +nd 〓〓 +(n) }
………(5) K=ANΔγ ………(6) It is expressed as follows. As shown in Figure 3a, the output signal of this Doppler filter is a certain amount (nω) for each range bin due to the influence of the target Doppler frequency.
d Δγ). The phase compensation circuit 10 converts this phase shift into e -j for each range bin.
When compensated by multiplying the phase amount nd 〓〓, the output signal Fno (ω d ) of the phase compensation circuit 10 becomes Fno (ω d )=Ke j {〓 +(n) } ………(7) becomes. This signal waveform is shown in FIG. 3b.

そして、相関器11で相関処理を行うと第3図
cに示すようなパルス圧縮波形が得られる。
Then, when correlation processing is performed by the correlator 11, a compressed pulse waveform as shown in FIG. 3c is obtained.

なお、以上の説明では目標のドツプラ周波数と
一つのドツプラ・フイルタの中心周波数が一致し
ているものとしたが、FFTを用いて構成したド
ツプラ・フイルタ・バンクは離散的な周波数選択
特性を有するためドツプラ周波数の補償における
最大位相補償誤差はドツプラ・フイルタ・バンク
の周波数分解能の1/2になる。
In the above explanation, it is assumed that the target Doppler frequency and the center frequency of one Doppler filter match, but since Doppler filter banks constructed using FFT have discrete frequency selection characteristics, The maximum phase compensation error in Doppler frequency compensation is 1/2 of the frequency resolution of the Doppler filter bank.

以上に述べたようにこの発明の方式によれば、
ドツプラ・フイルタ・バンクの周波数分解能の1/
2以下の周波数精度で目標のドツプラ周波数を補
償することができ、さらにドツプラ・フイルタ・
バンクの後段でドツプラ周波数の補償を行うため
ドツプラ周波数の異なる目標への対処をも可能と
なる。
As described above, according to the method of this invention,
1/ of the frequency resolution of the Dotsupura filter bank
The target Doppler frequency can be compensated with a frequency accuracy of 2 or less, and the Doppler filter
Since Doppler frequency compensation is performed at the subsequent stage of the bank, it is also possible to deal with targets with different Doppler frequencies.

なお、実施例として第1図に構成例を示した
が、この発明の要旨を逸脱しない範囲において
種々の変形がある。又、説明の中でパルス圧縮の
符号系列を7ビツト・バーカー・コードとしたが
他のビツト数あるいはM系列等を用いてもこの発
明が適用できることは言うまでもない。
Although a configuration example is shown in FIG. 1 as an embodiment, various modifications may be made without departing from the gist of the present invention. Further, in the explanation, a 7-bit Barker code is used as the code sequence for pulse compression, but it goes without saying that the present invention can be applied to other bit numbers, M sequences, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成例を示す図、第2図a
は位相変調器の出力信号を示す図、第2図bは位
相検波器の出力信号を示す図、第3図aはドツプ
ラ・フイルタ・バンクの出力信号を示す図、第3
図bは位相補償回路の出力信号を示す図、第3図
cはパルス圧縮波形を示す図である。 図において1は送信機、2は位相変調器、3は
サーキユレータ、4はアンテナ、5は受信機、6
は基準発振器、7は位相検波器、8はサンプル・
ホールダ、A/D変換器、9はドツプラ・フイル
タ・バンク、10は位相補償回路、11は相関器
である。
Fig. 1 is a diagram showing an example of the configuration of this invention, Fig. 2a
2 shows the output signal of the phase modulator, FIG. 2b shows the output signal of the phase detector, FIG. 3a shows the output signal of the Doppler filter bank,
FIG. 3b is a diagram showing the output signal of the phase compensation circuit, and FIG. 3c is a diagram showing the pulse compression waveform. In the figure, 1 is a transmitter, 2 is a phase modulator, 3 is a circulator, 4 is an antenna, 5 is a receiver, 6
is the reference oscillator, 7 is the phase detector, and 8 is the sample oscillator.
A holder, an A/D converter, 9 a Doppler filter bank, 10 a phase compensation circuit, and 11 a correlator.

Claims (1)

【特許請求の範囲】[Claims] 1 送信機の出力信号に符号化位相変調を施しそ
れを目標へ送信する送信手段と、レーダ受信機
と、位相検波器と、この位相検波器の出力を量子
化する手段と、この手段により量子化された信号
のうち目標のドツプラ周波数に相当する信号を出
力するドツプラ・フイルタ・バンクと、このドツ
プラ・フイルタ・バンクの出力信号に一定の位相
補償量を掛ける位相補償回路及び相関器とを備
え、受信信号を各レンジビン毎に上記のドツプ
ラ・フイルタ・バンクに入力し、そのドツプラ・
フイルタ・バンクの出力信号に上記の位相補償回
路で各ドツプラ・フイルタの中心周波数に応じた
一定の位相補償量を掛けた後、上記の相関器で相
関処理を行うことによりドツプラ周波数を補償
し、さらにドツプラ周波数の異なる複数の目標へ
の対処をも可能にしたことを特徴とするパルス圧
縮レーダのドツプラ周波数補償方式。
1. A transmitter that performs encoded phase modulation on the output signal of a transmitter and transmits it to a target, a radar receiver, a phase detector, a means for quantizing the output of the phase detector, and a means for quantizing the output of the phase detector. A Doppler filter bank that outputs a signal corresponding to a target Doppler frequency among the converted signals, and a phase compensation circuit and a correlator that multiply the output signal of the Doppler filter bank by a certain amount of phase compensation. , the received signal is input to the above Doppler filter bank for each range bin, and the Doppler filter is
After multiplying the output signal of the filter bank by a constant phase compensation amount according to the center frequency of each Doppler filter in the above phase compensation circuit, the Doppler frequency is compensated by performing correlation processing in the above correlator, Furthermore, the Doppler frequency compensation method for pulse compression radar is characterized by making it possible to deal with multiple targets having different Doppler frequencies.
JP55165708A 1980-11-25 1980-11-25 Doppler frequency compensation system for pulse compression radar Granted JPS5790179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55165708A JPS5790179A (en) 1980-11-25 1980-11-25 Doppler frequency compensation system for pulse compression radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55165708A JPS5790179A (en) 1980-11-25 1980-11-25 Doppler frequency compensation system for pulse compression radar

Publications (2)

Publication Number Publication Date
JPS5790179A JPS5790179A (en) 1982-06-04
JPS6222109B2 true JPS6222109B2 (en) 1987-05-15

Family

ID=15817539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55165708A Granted JPS5790179A (en) 1980-11-25 1980-11-25 Doppler frequency compensation system for pulse compression radar

Country Status (1)

Country Link
JP (1) JPS5790179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100218U (en) * 1985-12-16 1987-06-26
JPS62100217U (en) * 1985-12-16 1987-06-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212781A (en) * 1985-03-18 1986-09-20 Nec Corp Pulse doppler radar system
JPH0566268A (en) * 1991-09-06 1993-03-19 Mitsubishi Electric Corp Digital pulse compression device
JP2009198232A (en) * 2008-02-20 2009-09-03 National Institute Of Information & Communication Technology Passive distance measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100218U (en) * 1985-12-16 1987-06-26
JPS62100217U (en) * 1985-12-16 1987-06-26

Also Published As

Publication number Publication date
JPS5790179A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
US4176351A (en) Method of operating a continuous wave radar
US4620192A (en) Continuous wave radar with ranging capability
US6646587B2 (en) Doppler radar apparatus
US8203481B2 (en) Radar system for detecting the surroundings with compensation of interfering signals
US4443799A (en) Spread spectrum radar
US6191726B1 (en) Procedure for the elimination of interference in a radar unit of the FMCW type
US4618863A (en) Continuous wave radar with ranging capability
US5977905A (en) Target detection method and device for wideband unambiguous pulse Doppler radar
US4333080A (en) Signal processor
US5731782A (en) Ranging systems
US6184820B1 (en) Coherent pulse radar system
EP0425006B1 (en) FM-CW radar apparatus
CA2513883A1 (en) Technique for non-coherent integration of targets with ambiguous velocities
JP5656505B2 (en) Radar equipment
US4723125A (en) Device for calculating a discrete moving window transform and application thereof to a radar system
US6624783B1 (en) Digital array stretch processor employing two delays
CA2253235A1 (en) Radar/sonar system concept for extended range-doppler coverage
JPS6222109B2 (en)
US5175552A (en) Optimum matched illumination-reception radar
US7864097B1 (en) Radar transponder operation with compensation for distortion due to amplitude modulation
RU2596229C1 (en) Method for increasing range resolution of radar station
JP3438409B2 (en) Radar equipment
US5061933A (en) Short-range radar system
JPH0155433B2 (en)
JP3303862B2 (en) Pulse compression radar device