JPH0155433B2 - - Google Patents

Info

Publication number
JPH0155433B2
JPH0155433B2 JP56068567A JP6856781A JPH0155433B2 JP H0155433 B2 JPH0155433 B2 JP H0155433B2 JP 56068567 A JP56068567 A JP 56068567A JP 6856781 A JP6856781 A JP 6856781A JP H0155433 B2 JPH0155433 B2 JP H0155433B2
Authority
JP
Japan
Prior art keywords
doppler
frequency
radar
target
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56068567A
Other languages
Japanese (ja)
Other versions
JPS57182669A (en
Inventor
Natsuki Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56068567A priority Critical patent/JPS57182669A/en
Publication of JPS57182669A publication Critical patent/JPS57182669A/en
Publication of JPH0155433B2 publication Critical patent/JPH0155433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明な符号化パルス圧縮レーダにおけるド
ツプラ周波数補償方式に関するもので、目標のド
ツプラ周波数を検出するために用いられる帯域幅
が等しく且つ互いに中心周波数が異なる複数の帯
域通過フイルタ(以下、この帯域通過フイルタ及
びこの複数の帯域通過フイルタの集合体をそれぞ
れ「ドツプラ・フイルタ」及び「ドツプラ・フイ
ルタ・バンク」と呼ぶ。)の出力信号に、そのド
ツプラ・フイルタの中心周波数に応じた位相補償
を行うことにより、レーダのPRF(Pulse
Repetition Frequency)より高いドツプラ周波
数を持つた目標に対しても、上記ドツプラ・フイ
ルタの帯域幅の1/2以下の周波数精度で、その目
標のドツプラ周波数を補償する符号化パルス圧縮
レーダのドツプラ周波数補償方式を提案するもの
である。
Detailed Description of the Invention This invention relates to a Doppler frequency compensation method in a coded pulse compression radar, in which a plurality of bandpass filters with equal bandwidths and different center frequencies are used to detect a target Doppler frequency. (Hereinafter, this band-pass filter and an aggregate of a plurality of band-pass filters are referred to as a "Doppler filter" and a "Doppler filter bank," respectively.) By performing phase compensation, the radar's PRF (Pulse
Doppler frequency compensation of coded pulse compression radar that compensates for the target Doppler frequency even for targets with higher Doppler frequency (Repetition Frequency) with a frequency accuracy of less than 1/2 of the bandwidth of the Doppler filter mentioned above. This paper proposes a method.

ところで、符号化パルス圧縮レーダでは、目標
とレーダとの相対速度により生じる受信信号のド
ツプラ周波数シフトは圧縮率の低下、並びにレン
ジ・サイドロープの上昇等の悪影響を生じる原因
となる。
By the way, in a coded pulse compression radar, the Doppler frequency shift of the received signal caused by the relative velocity between the target and the radar causes adverse effects such as a reduction in compression ratio and an increase in range side lobes.

通常のドツプラ周波数補償方式は上記ドツプ
ラ・フイルタ・バンクの前にある相関器の前段で
ドツプラ周波数を混合するものであるが、補償量
を自由に設定することやドツプラ周波数の異なる
複数の目標への対処が困難であり、特に、対象と
する目標の速度範囲が広い航空機搭載用レーダ及
び対空監視レーダでは問題となる。
The normal Doppler frequency compensation method mixes the Doppler frequencies at the front stage of the correlator in front of the Doppler filter bank, but it is possible to freely set the amount of compensation and to handle multiple targets with different Doppler frequencies. This is difficult to deal with, and is particularly problematic for aircraft-mounted radars and anti-aircraft surveillance radars whose targets have a wide speed range.

この発明は、上記ドツプラ・フイルタ・バンク
の後段で各々の上記ドツプラ・フイルタの中心周
波数に応じた一定の位相補償量を掛けるという手
段により、このような問題点の改善を計つたもの
である。
The present invention aims to solve these problems by multiplying the Doppler filter bank by a fixed amount of phase compensation corresponding to the center frequency of each Doppler filter at the subsequent stage of the Doppler filter bank.

以下、第1図、第2図及び第3図を用いて詳述
する。
This will be explained in detail below with reference to FIGS. 1, 2, and 3.

第1図において、送信機1で送信パルス幅τ、
送信繰返し周期Tなる高周波パルスを発生し、位
相変調器2で第2図aに示すように (n)=0 n=0,1,2,5 π n=3,4,6 …(1) なる位相変調コードで送信パルス幅内をサブ・パ
ルス幅Δτ毎に位相変調する。ここで、nはサ
ブ・パルス番号である。この信号をサーキユレー
タ3を介してアンテナ4より目標に向けて放射す
る。
In FIG. 1, the transmitter 1 has a transmission pulse width τ,
A high-frequency pulse with a transmission repetition period T is generated, and the phase modulator 2 generates a high-frequency pulse as shown in Fig. 2a. The phase modulation code is used to perform phase modulation within the transmission pulse width for each sub-pulse width Δτ. Here, n is the sub-pulse number. This signal is radiated from the antenna 4 via the circulator 3 toward the target.

受信信号は受信機5で中間周波数に変換された
後、増幅され、さらに基準発振器6の出力信号を
基準にして位相検波器7で位相検波される。この
位相検波形を第2図bに示す。ここで図中イは目
標のドツプラ角周波数ωdである。第2図bに示
したように、上記の位相検波波形は目標のドツプ
ラ角周波数ωdで振幅変調を受けている。次に、
この信号をA/D(Analog―to―Digital)変換
器8で量子化し、FFT(Fast Fourier
Transform)プロセツサとメモリで構成される
ドツプラ・フイルタ・バンク9に入力される。こ
こでサブ・パルス幅に等しいレンジ・ビン毎にN
ポイントのFFT演算が行われ、目標のドツプラ
周波数に対応する上記ドツプラ・フイルタの出力
信号Fo(ωdp)は Fo(ωdp)=Kej{φ+ωdnΔτ+(n)} =Kej{φ+(mωp+ωdo)nΔτ+(n)} …(2) で表わされる。ここでKは定数、φは初期位相、
ωpはレーダの送信パルス繰返し角周波数、ωdp
サンプリングにより折り返えされた見かけ上のド
ツプラ周波数、mは整数である。このドツプラ・
フイルタの出力信号は第3図aに示すように目標
のドツプラ周波数の影響により、各レンジ・ビン
毎に(mωp+ωdp)nΔτなる一定値の位相シフト
を受けている。この位相シフトを位相補償回路1
0で、受信信号の各サブ・パルスに対応するレン
ジ・ビン毎に θ(m)=e-j(mp+do)n〓〓 なる位相補償量を掛けることにより目標のドツプ
ラ周波数による振幅変調成分を除去することがで
き、位相補償回路10の出力信号Fop(ωdp)は、 Fop(ωdp)=Kej{φ+(n)} …(3) となる。この信号波形を第3図bに示す。
The received signal is converted to an intermediate frequency by a receiver 5, then amplified, and then phase-detected by a phase detector 7 using the output signal of a reference oscillator 6 as a reference. This phase detection waveform is shown in FIG. 2b. Here, A in the figure is the target Doppler angular frequency ω d . As shown in FIG. 2b, the above phase detection waveform is amplitude modulated at the target Doppler angular frequency ω d . next,
This signal is quantized by an A/D (Analog-to-Digital) converter 8 and FFT (Fast Fourier
(Transform) processor and memory. where N for each range bin equal to the sub-pulse width
The FFT calculation of the points is performed, and the output signal F odp ) of the above Doppler filter corresponding to the target Doppler frequency is F odp ) = Kej{φ + ωdnΔτ + (n)} = Kej{φ + (mωp + ωdo) nΔτ+(n)}...(2) where K is a constant, φ is the initial phase,
ω p is the transmission pulse repetition angular frequency of the radar, ω dp is the apparent Doppler frequency folded back by sampling, and m is an integer. This dotsupura
The output signal of the filter is subjected to a constant phase shift of (mω pdp )nΔτ for each range bin due to the influence of the target Doppler frequency, as shown in FIG. 3a. The phase compensation circuit 1
0, the amplitude according to the target Doppler frequency can be calculated by multiplying each range bin corresponding to each sub-pulse of the received signal by the phase compensation amount θ(m)=e -j(mp+do)n 〓〓 The modulation component can be removed, and the output signal F opdp ) of the phase compensation circuit 10 becomes F opdp )=Kij{φ+(n)} (3). This signal waveform is shown in FIG. 3b.

次に、位相補償量の設定法について述べる。 Next, a method for setting the amount of phase compensation will be described.

位相補償量θ(m)は上述のとおり θ(m)=e-j(mp+do)n〓〓 ……(4) で表わされる。NポイントFFTの周波数選択特
性、すなわち隣接するドツプラ・フイルタの周波
数間隔Bを用いてωpを書き直すと、 ωp=2πNB …(5) となる。又、サンプリングにより折り返えされた
目標のドツプラ角周波数ωdpに合致するドツプ
ラ・フイルタ番号、すなわちNポイントFFTの
出力信号に直流成分から順に付与した番号をMと
すると、 ωdp=2πMB …(6) となる。故に(5)、(6)式を用いて(4)式を書き直す
と、 となる。(7)式において2πMBΔτおよびN/Mは
上記ドツプラ・フイルタ・バンク9を構成する各
ドツプラ・フイルタに関して定数であるから、そ
れぞれC1およびC2とおくと、(7)式は、 θ(m)=e-jc 1 (mc 2 +1)n ……(8) となる。ここでmは未知の整数であり、対象とす
る目標の速度、レーダのPRFによりmの最大値
mpが決まる。そこで、mを0からmpまで変化さ
せながら相関器11で相関処理を行うと、mが目
標の真のドツプラ周波数ωdに対応したとき、第
3図cに示すような、パルス圧縮波形が得られ
る。
As mentioned above, the phase compensation amount θ(m) is expressed as θ(m)=e -j(mp+do)n 〓〓 ...(4). When ω p is rewritten using the frequency selection characteristic of the N-point FFT, that is, the frequency interval B of adjacent Doppler filters, ω p =2πNB (5). Also, if M is the Doppler filter number that matches the target Doppler angular frequency ω dp folded back by sampling, that is, the number assigned to the output signal of the N-point FFT in order from the DC component, ω dp = 2πMB...( 6) becomes. Therefore, if we rewrite equation (4) using equations (5) and (6), we get becomes. In equation (7), 2πMBΔτ and N/M are constants for each Doppler filter making up the Doppler filter bank 9, so if we set them as C 1 and C 2 , respectively, equation (7) becomes θ(m )=e -jc 1 (mc 2 +1)n ...(8). Here, m is an unknown integer, and the maximum value of m is determined by the speed of the target and the PRF of the radar.
m p is determined. Therefore, when correlation processing is performed in the correlator 11 while changing m from 0 to m p , when m corresponds to the target true Doppler frequency ω d , a pulse compression waveform as shown in Fig. 3c is obtained. can get.

以上に述べたように、この発明の方式によれば
レーダのPRFよりも高いドツプラ周波数を持つ
た目標に対しても、上記ドツプラ・フイルタの帯
域幅の1/2以下の周波数精度で、そのドツプラ周
波数を補償することができる。
As described above, according to the method of the present invention, even for a target having a Doppler frequency higher than the PRF of the radar, the Doppler filter can be detected with a frequency accuracy of 1/2 or less of the bandwidth of the Doppler filter. Frequency can be compensated.

さらに、上記ドツプラ・フイルタ・バンクの後
段でドツプラ周波数の補償を行うため、ドツプラ
周波数の異なる複数の目標に対しても同様にこの
ドツプラ周波数補償方式が適用できる。
Furthermore, since the Doppler frequency is compensated at the subsequent stage of the Doppler filter bank, this Doppler frequency compensation method can be similarly applied to a plurality of targets having different Doppler frequencies.

なお、実施例では符号化パルス圧縮の位相変調
コードを7ビツト・バーカー・コードとしたが、
他のビツト数あるいはM系列等を用いてもこの発
明が適用できることは言うまでもない。
In the example, the phase modulation code for encoded pulse compression was a 7-bit Barker code.
It goes without saying that the present invention can be applied to other numbers of bits or M sequences.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成例を示すブロツク図、
第2図aは位相変調器の出力信号を示す図、第2
図bは位相検波器の出力信号を示す図、第3図a
はドツプラ・フイルタ・バンクの出力信号を示す
図、第3図bは位相補償回路の出力信号を示す
図、第3図cは理想的なパルス圧縮波形を示す図
であり、図中1は送信機、2は位相変調器、3は
サーキユレータ、4はアンテナ、5は受信機、6
は基準発振器、7は位相検波器、8はA/D変換
器、9はドツプラ・フイルタ・バンク、10は位
相補償回路、11は相関器、イは目標のドツプラ
角周波数ωdである。
FIG. 1 is a block diagram showing an example of the configuration of this invention.
Figure 2a shows the output signal of the phase modulator;
Figure b shows the output signal of the phase detector, Figure 3 a
is a diagram showing the output signal of the Doppler filter bank, Figure 3b is a diagram showing the output signal of the phase compensation circuit, and Figure 3c is a diagram showing an ideal pulse compression waveform. 2 is a phase modulator, 3 is a circulator, 4 is an antenna, 5 is a receiver, 6
is a reference oscillator, 7 is a phase detector, 8 is an A/D converter, 9 is a Doppler filter bank, 10 is a phase compensation circuit, 11 is a correlator, and A is a target Doppler angular frequency ω d .

Claims (1)

【特許請求の範囲】 1 送信機の出力信号に符号化位相変調を施した
高周波パルスを目標へ送信する送信系と、レーダ
受信機、位相検波器、この位相検波器の出力を量
子化するA/D(Analog―to―Digital)変換器、
直流からレーダのPRF(Pulse Repetition
Frequency)の間に帯域幅が等しい複数のドツプ
ラ・フイルタが等間隔に並んだドツプラ・フイル
タ・バンク、位相補償回路及び相関器とを有し、
目標からの反射信号を処理する受信系とを備えた
符号化パルス圧縮レーダにおいて、その目標から
の反射信号を各レンジ・ビン毎に上記ドツプラ・
フイルタ・バンクに入力し、Nをドツプラ・フイ
ルタの総数、Mを各ドツプラ・フイルタに直流か
ら順に付与した番号、Δτを符号化位相変調のサ
ブパルス幅、Bを隣接するドツプラ・フイルタの
周波数間隔、nをサブパルス番号、mを整数とし
たときに次式で与えられる位相補償量θ(m) θ(m)=e-j2〓(mNM+1)nMBΔτ のmを0から対象とする目標速度とレーダの
PRFで決まる最大値まで変化させながら上記位
相補償回路でドツプラ・フイルタ・バンクの出力
信号に位相補償量θ(m)を掛けた後、上記相関
器で相関処理を行うことにより、レーダのPRF
より高いドツプラ周波数をも補償し得るようにし
たことを特徴とする符号化パルス圧縮レーダのド
ツプラ周波数補償方式。
[Claims] 1. A transmission system that transmits a high-frequency pulse obtained by performing encoded phase modulation on the output signal of a transmitter to a target, a radar receiver, a phase detector, and A that quantizes the output of the phase detector. /D (Analog-to-Digital) converter,
From DC to radar PRF (Pulse Repetition)
a Doppler filter bank in which a plurality of Doppler filters having the same bandwidth during the frequency) are arranged at equal intervals, a phase compensation circuit, and a correlator;
In a coded pulse compression radar equipped with a receiving system that processes reflected signals from a target, the reflected signals from the target are processed by the Doppler system for each range/bin.
Input into the filter bank, where N is the total number of Doppler filters, M is the number given to each Doppler filter in order from DC, Δτ is the sub-pulse width of the encoded phase modulation, B is the frequency interval of adjacent Doppler filters, When n is the sub-pulse number and m is an integer, the phase compensation amount θ(m) is given by the following formula: θ(m)=e -j2 〓(m N / M +1)nMB Target for m of Δτ from 0 speed and radar
After multiplying the output signal of the Doppler filter bank by the phase compensation amount θ (m) in the phase compensation circuit while changing it to the maximum value determined by the PRF, the radar's PRF is
A Doppler frequency compensation method for a coded pulse compression radar, characterized in that it is capable of compensating for higher Doppler frequencies as well.
JP56068567A 1981-05-07 1981-05-07 Doppler frequency compensation system of encoded pulse compression radar Granted JPS57182669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56068567A JPS57182669A (en) 1981-05-07 1981-05-07 Doppler frequency compensation system of encoded pulse compression radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56068567A JPS57182669A (en) 1981-05-07 1981-05-07 Doppler frequency compensation system of encoded pulse compression radar

Publications (2)

Publication Number Publication Date
JPS57182669A JPS57182669A (en) 1982-11-10
JPH0155433B2 true JPH0155433B2 (en) 1989-11-24

Family

ID=13377465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56068567A Granted JPS57182669A (en) 1981-05-07 1981-05-07 Doppler frequency compensation system of encoded pulse compression radar

Country Status (1)

Country Link
JP (1) JPS57182669A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212781A (en) * 1985-03-18 1986-09-20 Nec Corp Pulse doppler radar system
JPH0566268A (en) * 1991-09-06 1993-03-19 Mitsubishi Electric Corp Digital pulse compression device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222109A (en) * 1985-07-22 1987-01-30 Mitsubishi Electric Corp Machine tool with numerical controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222109A (en) * 1985-07-22 1987-01-30 Mitsubishi Electric Corp Machine tool with numerical controller

Also Published As

Publication number Publication date
JPS57182669A (en) 1982-11-10

Similar Documents

Publication Publication Date Title
US11639983B2 (en) Distributed radar sensor system
EP3165941B1 (en) Frequency modulation scheme for fmcw radar
US6646587B2 (en) Doppler radar apparatus
EP0932838B1 (en) Procedure for the elimination of interference in a radar unit of the fmcw type
US4176351A (en) Method of operating a continuous wave radar
JP2020067455A (en) Fmcw radar for suppressing disturbing signal
US8203481B2 (en) Radar system for detecting the surroundings with compensation of interfering signals
US4853904A (en) Apparatus for examining a moving object by means of ultrasound echography
US5977905A (en) Target detection method and device for wideband unambiguous pulse Doppler radar
JP4168475B2 (en) Distance ambiguity removal method and apparatus applied to frequency shift keying continuous wave radar
US6184820B1 (en) Coherent pulse radar system
US4766436A (en) Radar device for measuring the distance of the device to a surface
US20120280854A1 (en) Signal processing system and method
US4375641A (en) Method in a tracking radar to attain a large unambiguous range for detected targets by means of radar pulses with high repetition frequency
JP2001524207A (en) Sensor device operating method and sensor device
US5057845A (en) Radar apparatus employing different kinds of pulses
US5659320A (en) Method and device for determining the speed of a moving object by means of a pulse-compression radar or sonar
JP3720662B2 (en) Automotive radar equipment
US4972194A (en) Method and device for compensating for the speed of clutter in a coherent doppler radar with variable blind speed
JPH0155433B2 (en)
JPS6222109B2 (en)
JP7452310B2 (en) Radar equipment and its control method
JPH0131154B2 (en)
JP2656097B2 (en) Radar equipment
JP3060012B2 (en) Radar equipment