JPS6222044B2 - - Google Patents

Info

Publication number
JPS6222044B2
JPS6222044B2 JP53163467A JP16346778A JPS6222044B2 JP S6222044 B2 JPS6222044 B2 JP S6222044B2 JP 53163467 A JP53163467 A JP 53163467A JP 16346778 A JP16346778 A JP 16346778A JP S6222044 B2 JPS6222044 B2 JP S6222044B2
Authority
JP
Japan
Prior art keywords
waste liquid
furnace
inorganic salt
incineration
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53163467A
Other languages
Japanese (ja)
Other versions
JPS5592810A (en
Inventor
Noboru Okigami
Yoshimasa Miura
Kunio Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP16346778A priority Critical patent/JPS5592810A/en
Publication of JPS5592810A publication Critical patent/JPS5592810A/en
Publication of JPS6222044B2 publication Critical patent/JPS6222044B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は産業廃棄物である無機塩含有廃液の焼
却に関し、その焼却排ガスの熱回収を可能にする
無機塩含有の廃液の供給に関する。 従来技術 無機塩を含有する廃液の焼却処理には、多くの
場合は液中燃焼システムが採用され、焼却排ガス
からの熱回収は行なわれないのが通例である。し
かし、最近省エネルギー的見地から無機塩含有廃
液焼却排ガスから熱回収を行う必要性が生じてき
た。そこで廃液焼却炉から排出された排ガスを直
接熱回収装置に導入して熱回収する方法が考えら
れるが、廃液中の有機質の分解燃焼後に残つた無
機塩が排ガスと共に飛散し熱回収装置内に付着
し、熱回収効率を低下させることが考えられる。
無機塩の飛散防止策として特開昭49−10572号公
報には、廃液焼却サイクロン炉について一次焼却
室の天井部中央の旋回首振りノズルで一次焼却室
内壁に向けて廃液を噴霧し、焼却させ排ガスを一
次焼却室の漏斗状底部から二次焼却室へ排出し、
二次焼却室で空気ジエツトにより急冷し、排ガス
中の無機塩を固化、粉状にすることによつて、後
続の熱回収装置内に粘着、堆積することがないと
記載されている。 発明が解決しようとする問題点 しかし上記の方法においても熱回収装置内への
無機塩の飛散は免れず、さらに排ガスを冷却する
結果熱回収効率を低下させる問題がある。廃液を
焼却炉内壁面に無機塩含有廃液を噴射することも
考えられるが、燃焼壁面の廃液付着部の温度が低
下し、含有無機塩のスメルト塊が発生し、これが
はく離して炉底排出口を閉塞させ、廃液焼却炉の
正常な運転ができなくなり、またこのスメルト塊
には有機物も多量に含有し、排出口から未燃状態
で排出されるなど無機塩飛散とは別の問題があ
る。 問題を解決するための手段 上記の問題を解決するために本発明は、高温焼
却により発生した排ガスの熱回収を行うと共に炉
底から溶融無機塩を取り出すサイクロン型無機塩
含有廃液焼却炉において、この廃液焼却炉胴部炉
壁の周方向複数個所から炉内壁面に沿う方向であ
つて間欠的に炉内壁面に対して無機塩含有廃液を
粗粒子状として吹き付けることにより前記問題点
を解決することができた。 次にこの発明の方法とその装置を実施するため
の具体例を第1図ないし第4図に基づいて説明す
る。 1はサイクロン型焼却炉であり、その円筒状胴
部2の上壁3には図外の熱回収装置(ボイラ等)
に至る焼却排ガス導出管4が連通され、また逆円
錐状部5の底部には無機塩流出孔6が形成されて
いる。 逆円錐状部5は、密閉型液槽7にその大半が収
納され、かつ前記流出孔8を有するノズル部8
は、該液槽に貯留された液lに没入せしめられて
いる。液lは、液槽7底部の給水口7Aから入
り、排出口7Bから取り出される。さらに液槽7
の気相部9はブロワー10で一定圧力に吸引され
る。他方、円筒状胴部2の炉壁11には、その周
方向の等角度おき(図では90゜おき)に複数の廃
液ノズル12A〜12D(図では4箇)が設けら
れている。これらの廃液ノズル12A〜12Dは
炉内壁面11Aの軸心に対して直交する方向より
も稍々下方へ傾斜した方向で炉内壁面11Aに沿
う方向に向くように設けられている。廃液ノズル
12A〜12Dには電磁弁13A〜13Dの介装
された廃液供給管14A〜14Dが連通されてい
る。この供給管14A〜14Dは、第4図から明
らかなように、廃液主管15から分岐されたもの
である。16は制御器であり、これは前記各電磁
弁13A〜13Dを、それぞれについては一定時
間だけ間欠的に開放し、かつ複数の電磁弁13A
〜13D間では炉内壁面11Aの周方向dで順次
開放及び閉止すべく制御する。廃液ノズル12A
〜12Dの周囲には空気導管17A〜17Dが同
心状に設けられている。空気導管17Dについて
いえば、第3図に示したように、廃液冷却兼用の
燃焼用空気管18Dが連通される。そして廃液ノ
ズル12D及び空気導管17Dが一体となつてガ
イドパイプ19Dに取り付けられている。さらに
廃液供給管14D及び燃焼用空気管18Dには、
電磁弁20Dを有する送水管21Dがそれぞれ逆
止弁22D,23Dを介して連通せしめられてい
る。そして送水管21D中の電磁弁20Dは、廃
液供給管14D中の電磁弁13Dが閉じたとき開
放し、一定時間(たとえば十数秒間)だけその開
放状態が持続するように制御器24により制御さ
れる。他のものについても同様である。25はバ
ーナ装置であり、これは前記廃液ノズル12A〜
12D上部の炉壁11に、その炉壁面11Aに対
して接線方向でかつ前記周方向dに向くように設
置され、助燃料fを1次及び2次空気aで燃焼せ
しめる。 なお、廃液ノズル12A〜12Dの先端(炉内
側)には中心部に廃液ノズル12A〜12Dに連
通する廃液吹き付け孔26A〜26Dを、この吹
き付け孔の周囲に空気導管17A〜17Dに連通
する複数個の空気噴出孔27A〜27Dを穿設さ
れたノズルチツプ28A〜28Dが取り付けられ
ている。以上において、まずバーナ装置25を運
転し、炉壁11を昇温し、次に廃液ノズル12A
及び空気導管17Aより廃液Wを微粒子状ではな
く粗粒子状(0.3〜5mmφ)として一定時間だけ
吹き出し、これをその近傍の炉内壁11Aに吹き
付ける。なおこのとき空気導管17Aから空気a1
が噴射されている。これにより炉内壁11Aに付
着した廃液Wは加熱されるため、水分は蒸発し、
有機物は揮発燃焼し、そして無機塩が析出後溶融
し、生じた溶融塩が炉壁面11Aを螺線状に旋回
しつつ流下する。焼却炉底部に達した溶融塩は流
出孔6から流出して液l中に溶解する。このと
き、無機塩を流出孔6から容易に流出させ、かつ
流出孔6が無機塩析出によつて閉塞されるのを防
止するために、焼却排ガスの一部を流出孔6から
同時に噴出せしめる。この操作はブロワー10の
吸引力により容易に行なわれ、これによつてスメ
ルトの大きなかたまりが液中部へ直接落下するこ
とがないのでスメルト爆発の危険性も除去され
る。流出孔6から噴出させる焼却排ガス量は炉内
で生じる焼却排ガス総量の数%でよく、またこの
焼却排ガスが液1中を通過することから、無機塩
の同伴は全くない。一方、残りの焼却排ガスは前
記導出管4を通つて熱回収装置に至る。この焼却
排ガスは炉内で生じる焼却排ガス総量の大部分で
あるから、熱回収に供するに十分な量であり、し
かも廃液Wの壁燃焼で得られたものであるから、
無機塩はほとんど同伴していない。廃液ノズル1
2Aからの廃液吹き付けが停止してから、次は廃
液ノズル12Bから同様に廃液吹き付けを行な
う。この場合、廃液ノズル12Aでの吹き付け時
間は、廃液吹き付けにより炉壁に析出した塩のか
たまりが一定以上に大きくならない時間とする。
その制御は制御器16及び電磁弁13Aよりなる
制御装置にて行なう。廃液吹き付けが廃液ノズル
12Bに移行た後、廃液ノズル12A及び空気導
管17Aへは一定時間だけ送水管を通して洗浄水
を流して廃液と置換し、それらが無機塩析出によ
つて閉塞するのを防止しておく。廃液ノズル12
Aから炉内壁面11Aに吹き付けられた廃液は、
前記同様に、炉内壁面11Aへの付着→水分蒸発
→有機物の揮発燃焼→無機塩の析出、溶融→溶融
塩流下→流出孔6からの流出→液1中への溶解の
回分操作で無機塩が回収され、他方焼却排ガスは
導出管4を通して熱回収装置に至る。以下廃液吹
き付けを廃液ノズル12C→12D→12Aへと
順次移行させる。 次に本発明方法及び装置により得られた実験結
果を説明する。 第1表に示した供試廃液をサイクロン型焼却炉
へ供給、焼却し、無機塩の飛散性を調査した。
INDUSTRIAL APPLICATION FIELD The present invention relates to the incineration of inorganic salt-containing waste liquid, which is industrial waste, and relates to the supply of inorganic salt-containing waste liquid that enables heat recovery from the incineration exhaust gas. Prior Art In many cases, a submerged combustion system is adopted for incineration of waste liquid containing inorganic salts, and heat recovery from the incineration exhaust gas is not usually performed. However, recently, from the viewpoint of energy conservation, it has become necessary to recover heat from the incinerated waste gas containing inorganic salts. Therefore, a method to recover heat by directly introducing the exhaust gas discharged from the waste liquid incinerator into the heat recovery equipment is considered, but after the decomposition and combustion of the organic matter in the waste liquid, the remaining inorganic salts scatter with the exhaust gas and adhere to the inside of the heat recovery equipment. However, it is conceivable that the heat recovery efficiency will be reduced.
As a measure to prevent the scattering of inorganic salts, Japanese Patent Application Laid-Open No. 10572/1983 describes a method for a waste liquid incineration cyclone furnace in which waste liquid is sprayed toward the wall of the primary incineration chamber using a swinging nozzle located in the center of the ceiling of the primary incineration chamber, and the waste liquid is incinerated. Exhaust gas is discharged from the funnel-shaped bottom of the primary incineration chamber to the secondary incineration chamber,
It is stated that by rapidly cooling the exhaust gas with an air jet in the secondary incineration chamber and solidifying the inorganic salts in the exhaust gas into powder, they will not stick or accumulate in the subsequent heat recovery equipment. Problems to be Solved by the Invention However, even in the above method, there is a problem in that the scattering of inorganic salts into the heat recovery device is inevitable, and furthermore, as a result of cooling the exhaust gas, the heat recovery efficiency is reduced. It is also possible to inject the waste liquid containing inorganic salts onto the inner wall of the incinerator, but the temperature of the part of the combustion wall where the waste liquid adheres decreases, and a smelt mass of the inorganic salts is generated, which peels off and flows to the bottom outlet of the furnace. In addition, this smelt mass contains a large amount of organic matter and is discharged from the discharge port in an unburned state, which is a different problem than the scattering of inorganic salts. Means for Solving the Problems In order to solve the above problems, the present invention provides a cyclone-type inorganic salt-containing waste liquid incinerator that recovers heat from exhaust gas generated by high-temperature incineration and takes out molten inorganic salts from the bottom of the furnace. To solve the above problem by intermittently spraying inorganic salt-containing waste liquid in the form of coarse particles onto the furnace inner wall surface in a direction along the furnace inner wall surface from a plurality of circumferential locations of the waste liquid incinerator body furnace wall. was completed. Next, specific examples for carrying out the method and apparatus of the present invention will be explained based on FIGS. 1 to 4. 1 is a cyclone type incinerator, and the upper wall 3 of the cylindrical body 2 is equipped with a heat recovery device (boiler, etc.) not shown.
An incineration exhaust gas outlet pipe 4 is connected to the incineration exhaust gas outlet pipe 4, and an inorganic salt outflow hole 6 is formed at the bottom of the inverted conical portion 5. Most of the inverted conical part 5 is housed in the closed liquid tank 7 and has a nozzle part 8 having the outflow hole 8.
is immersed in liquid l stored in the liquid tank. The liquid 1 enters from the water supply port 7A at the bottom of the liquid tank 7 and is taken out from the discharge port 7B. Furthermore, liquid tank 7
The gas phase portion 9 is sucked to a constant pressure by a blower 10. On the other hand, a plurality of waste liquid nozzles 12A to 12D (four in the figure) are provided on the furnace wall 11 of the cylindrical body 2 at equal angle intervals in the circumferential direction (every 90 degrees in the figure). These waste liquid nozzles 12A to 12D are provided so as to face in a direction along the furnace inner wall surface 11A in a direction that is slightly inclined downward from a direction perpendicular to the axis of the furnace inner wall surface 11A. Waste liquid supply pipes 14A to 14D, in which electromagnetic valves 13A to 13D are interposed, are communicated with the waste liquid nozzles 12A to 12D. As is clear from FIG. 4, the supply pipes 14A to 14D are branched from the waste liquid main pipe 15. Reference numeral 16 denotes a controller, which intermittently opens each of the electromagnetic valves 13A to 13D for a certain period of time, and controls the plurality of electromagnetic valves 13A.
- 13D, control is performed to open and close sequentially in the circumferential direction d of the furnace inner wall surface 11A. Waste liquid nozzle 12A
Air conduits 17A to 17D are concentrically provided around 12D. Regarding the air conduit 17D, as shown in FIG. 3, a combustion air pipe 18D which also serves as waste liquid cooling is connected. The waste liquid nozzle 12D and the air conduit 17D are integrally attached to the guide pipe 19D. Furthermore, in the waste liquid supply pipe 14D and the combustion air pipe 18D,
Water pipes 21D having electromagnetic valves 20D are communicated via check valves 22D and 23D, respectively. The solenoid valve 20D in the water supply pipe 21D is opened when the solenoid valve 13D in the waste liquid supply pipe 14D is closed, and is controlled by the controller 24 so that it remains open for a certain period of time (for example, about ten seconds). Ru. The same applies to other items. 25 is a burner device, which is connected to the waste liquid nozzle 12A~
It is installed on the furnace wall 11 above 12D so as to be tangential to the furnace wall surface 11A and facing in the circumferential direction d, and burns the auxiliary fuel f with the primary and secondary air a. Note that at the tips of the waste liquid nozzles 12A to 12D (on the inside of the furnace), there are waste liquid spray holes 26A to 26D in the center that communicate with the waste liquid nozzles 12A to 12D, and a plurality of waste liquid spray holes 26A to 26D that communicate with the air conduits 17A to 17D around the spray holes. Nozzle chips 28A to 28D having air jet holes 27A to 27D are attached thereto. In the above, the burner device 25 is first operated to raise the temperature of the furnace wall 11, and then the waste liquid nozzle 12A is
The waste liquid W is blown out from the air conduit 17A in the form of coarse particles (0.3 to 5 mmφ) instead of fine particles for a certain period of time, and is sprayed onto the inner wall 11A of the furnace in the vicinity thereof. At this time, air a 1 from the air conduit 17A
is being injected. As a result, the waste liquid W adhering to the furnace inner wall 11A is heated, and the moisture evaporates.
The organic matter evaporates and burns, and the inorganic salt is precipitated and melted, and the resulting molten salt flows down the furnace wall surface 11A while spirally swirling. The molten salt that has reached the bottom of the incinerator flows out from the outflow hole 6 and dissolves in the liquid 1. At this time, a part of the incineration exhaust gas is simultaneously blown out from the outflow hole 6 in order to easily allow the inorganic salt to flow out from the outflow hole 6 and to prevent the outflow hole 6 from being blocked by inorganic salt precipitation. This operation is facilitated by the suction power of the blower 10, thereby eliminating the risk of smelt explosion since large chunks of smelt do not fall directly into the liquid. The amount of incineration gas ejected from the outflow hole 6 may be several percent of the total amount of incineration gas generated in the furnace, and since this incineration gas passes through the liquid 1, no inorganic salts are entrained. On the other hand, the remaining incineration exhaust gas passes through the outlet pipe 4 and reaches the heat recovery device. Since this incineration exhaust gas is the majority of the total amount of incineration exhaust gas generated in the furnace, it is sufficient to be used for heat recovery, and moreover, it is obtained by wall combustion of waste liquid W.
Almost no inorganic salts are present. Waste liquid nozzle 1
After the waste liquid spraying from the waste liquid nozzle 2A is stopped, the waste liquid is next similarly sprayed from the waste liquid nozzle 12B. In this case, the spraying time with the waste liquid nozzle 12A is set to a time during which the salt mass deposited on the furnace wall due to the waste liquid spraying does not grow larger than a certain level.
The control is performed by a control device consisting of a controller 16 and a solenoid valve 13A. After the waste liquid spray is transferred to the waste liquid nozzle 12B, cleaning water is flowed through the water pipe into the waste liquid nozzle 12A and the air conduit 17A for a certain period of time to replace the waste liquid and prevent them from being blocked by inorganic salt precipitation. I'll keep it. Waste liquid nozzle 12
The waste liquid sprayed from A onto the furnace inner wall surface 11A is
Similarly to the above, the inorganic salt is removed by the batch operation of adhesion to the furnace inner wall surface 11A → moisture evaporation → volatile combustion of organic matter → precipitation and melting of the inorganic salt → molten salt flowing down → outflow from the outflow hole 6 → dissolution into the liquid 1. On the other hand, the incineration exhaust gas passes through the outlet pipe 4 and reaches the heat recovery device. Thereafter, the waste liquid spraying is sequentially transferred from the waste liquid nozzles 12C to 12D to 12A. Next, experimental results obtained using the method and apparatus of the present invention will be explained. The sample waste liquids shown in Table 1 were supplied to a cyclone incinerator and incinerated, and the scattering properties of inorganic salts were investigated.

【表】 比較例 使用したサイクロン炉の大きさは、円筒状胴部
2の内径450mm、高さ700mm、逆円錐状部5の高さ
500mmもので、廃液ノズルは上壁3から500mm下方
に等間隔に配設し、測温は炉の軸心位置で上壁3
から650mm下方の位置に設けた温度計で行つた。
またノズル部8の液l内への挿入深さ200mmとし
気相部9の内圧を−250mmH2Oに制御した。 2流体内部混合噴射ノズルを円筒状胴部に周方
向で等間隔に4本配置し、廃液を炉中心方向に連
続して噴霧した。このノズルにより噴霧された廃
液の粒子径は約90%が100μ以下であつた。 焼却炉の操業条件は、助燃料としてプロパンガ
スを使用し、操作目標温度を850℃および廃液目
標噴霧量を10/hとした。焼却実験結果を表2
の比較例に示す。 この結果から、噴霧した廃液粒子は高温燃焼ガ
ス中に浮遊しながら焼却されるため、多くの無機
塩粒子が焼却排ガスに伴つて排出されると考えら
れた。そこで無機塩が焼却廃ガスに伴つて飛散さ
せないためには廃液を噴霧させずに炉壁面に供給
し炉壁面で焼却させることを考え、廃液の炉壁面
への供給を一流体ノズルで棒状の水流として行つ
たところ壁面が急冷されて廃液が未焼却のまま炉
底から排出された。そこで廃液の供給量を絞つた
ところ、廃液は粗粒子状となつて壁面に到達した
が廃液到達面が無機塩で生長し大きなスメルト塊
となり落下して実験を継続することができなかつ
た。 いろいろ考察検討した結果、本発明の方法に思
い到つた。 実施例 比較例と同一炉を使用し、吹き付け孔径1mmの
一流体ノズル12B〜12Dを円筒状胴部周方向
に等間隔に配設し、稍々下方へ傾斜して廃液を炉
壁面に沿うようにして壁面に吹き付けした。廃液
の粒子径は0.3〜5mmであつた。廃液の供給方法
は例えば図において、まず廃液ノズル12Aから
廃液を5分間吹き付けし次に廃液ノズル12A内
を洗浄するため水を30秒間通して休止した。廃液
ノズル12Aの洗浄が終つたならば直に廃液ノズ
ル12Bから廃液を5分間吹き付けしてから30秒
間水で洗浄する。これを次の廃液ノズルに順次行
なわせる。他方空気導管17A〜17Dは廃液ノ
ズル12A〜12Dが洗浄されている30秒間は同
じように通水し、他の時間帯は廃液ノズル12A
〜12Dの冷却兼用の燃焼空気を送つた。その他
の炉の操業条件は比較例と同一である。 その結果は表2の実施例の欄に示すとおりで、
無機塩の炉内捕促率は向上し、焼却廃ガス中の無
機塩濃度を非常に少くすることができた。また、
スメルト塊の生成はなかつた。
[Table] Comparative example The size of the cyclone furnace used was as follows: the inner diameter of the cylindrical body 2 was 450 mm, the height was 700 mm, and the height of the inverted conical part 5 was 450 mm.
500 mm, the waste liquid nozzles are arranged at equal intervals 500 mm below the upper wall 3, and the temperature is measured at the upper wall 3 at the axis of the furnace.
The temperature was measured using a thermometer placed 650 mm below the temperature.
Further, the insertion depth of the nozzle portion 8 into the liquid L was 200 mm, and the internal pressure of the gas phase portion 9 was controlled to −250 mmH 2 O. Four two-fluid internal mixing injection nozzles were arranged in the cylindrical body at equal intervals in the circumferential direction, and the waste liquid was continuously sprayed toward the center of the furnace. Approximately 90% of the particle diameters of the waste liquid sprayed by this nozzle were 100 μm or less. The operating conditions for the incinerator were as follows: propane gas was used as an auxiliary fuel, the target operating temperature was 850°C, and the target spray amount of waste liquid was 10/h. Table 2 shows the results of the incineration experiment.
This is shown in the comparative example. From this result, it was thought that since the sprayed waste liquid particles are incinerated while floating in the high-temperature combustion gas, many inorganic salt particles are emitted along with the incineration exhaust gas. Therefore, in order to prevent the inorganic salts from scattering along with the incineration waste gas, we considered supplying the waste liquid to the furnace wall without spraying it and incinerating it on the furnace wall. When they tried to do so, the walls were rapidly cooled and the waste liquid was discharged from the bottom of the furnace unburned. Therefore, when the amount of waste liquid supplied was reduced, the waste liquid became coarse particles and reached the wall surface, but the surface where the waste liquid reached was grown with inorganic salts and fell into a large smelt lump, making it impossible to continue the experiment. As a result of various considerations and studies, we came up with the method of the present invention. Example Using the same furnace as in the comparative example, monofluid nozzles 12B to 12D with a spray hole diameter of 1 mm were arranged at equal intervals in the circumferential direction of the cylindrical body, and were tilted slightly downward so that the waste liquid flowed along the furnace wall surface. Then I sprayed it on the wall. The particle size of the waste liquid was 0.3 to 5 mm. For example, in the figure, the waste liquid is supplied by spraying the waste liquid from the waste liquid nozzle 12A for 5 minutes, and then water is passed through the waste liquid nozzle 12A for 30 seconds to clean the inside of the waste liquid nozzle 12A, followed by a pause. Immediately after cleaning of the waste liquid nozzle 12A is completed, waste liquid is sprayed from the waste liquid nozzle 12B for 5 minutes and then washed with water for 30 seconds. This is performed sequentially for the next waste liquid nozzle. On the other hand, water flows through the air conduits 17A to 17D in the same manner for 30 seconds while the waste liquid nozzles 12A to 12D are being cleaned, and during other times, the air conduits 17A to 17D flow through the waste liquid nozzles 12A.
~12D of combustion air was sent for both cooling and cooling purposes. Other operating conditions of the furnace were the same as in the comparative example. The results are as shown in the Example column of Table 2.
The inorganic salt capture rate in the furnace was improved, and the inorganic salt concentration in the incineration waste gas was able to be extremely reduced. Also,
No smelt lumps were formed.

【表】 効 果 以上のように、本発明によると、廃液を粗粒子
状で炉内壁面に向つて吹き付けるようにしている
ので、例えば噴霧状で炉内壁面に吹き付けるもの
に比べて排ガス中に同伴する廃液粒子が極めて少
なくなり、また廃液を間欠的に燃焼させるように
しているので、廃液粗粒子の壁面付着→水分蒸発
→有機分の揮散燃焼→無機塩の析出溶融→溶融流
下排出の過程が得られ、従つて廃液の燃焼、含有
塩の分離が効果的に行なわれて、スメルト塊の発
生が防止されると共に、効率のよい壁面燃焼が成
される。もつて、全体として廃液中の無機塩を排
ガス中に同伴されることなく、廃液を壁燃焼させ
ることができ、従つて生成する焼却排ガスのほと
んど全部から熱回収が可能になると共に、熱回収
装置の管壁などに塩付着が生じてその熱回収効率
を低下させるおそれはない。
[Table] Effects As described above, according to the present invention, since the waste liquid is sprayed in the form of coarse particles toward the inner wall surface of the furnace, there is less concentration in the exhaust gas compared to, for example, spraying the waste liquid toward the inner wall surface of the furnace in the form of a spray. The amount of accompanying waste liquid particles is extremely small, and since the waste liquid is intermittently combusted, the process of coarse particles of waste liquid adhering to the wall → moisture evaporation → volatile combustion of organic content → precipitation and melting of inorganic salts → melting and draining. Therefore, the combustion of the waste liquid and the separation of the salts contained are effectively carried out, the generation of smelt lumps is prevented, and efficient wall combustion is achieved. As a whole, the waste liquid can be wall-combusted without inorganic salts in the waste liquid being entrained in the exhaust gas, and therefore it is possible to recover heat from almost all of the generated incineration exhaust gas, and it is also possible to use a heat recovery device. There is no risk of salt adhesion occurring on the pipe walls, etc., reducing the heat recovery efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明実施例を示しており、
第1図は一部切欠側面図、第2図は第1図のA−
A矢視拡大図、第3図は第2図のB−B矢視拡大
図、第4図は説明図である。 1……焼却炉、4……焼却排ガス導出管、6…
…流出孔、11……炉壁、11A……炉内壁面、
12A〜12D……廃液ノズル、13A〜13D
……電磁弁。
1 to 4 show embodiments of the present invention,
Figure 1 is a partially cutaway side view, Figure 2 is A- of Figure 1.
FIG. 3 is an enlarged view taken along line B--B in FIG. 2, and FIG. 4 is an explanatory view. 1...Incinerator, 4...Incineration exhaust gas outlet pipe, 6...
...outflow hole, 11...furnace wall, 11A...furnace inner wall surface,
12A to 12D...Waste liquid nozzle, 13A to 13D
……solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 高温焼却により発生した排ガスの熱回収を行
うと共に炉底から溶融無機塩を取り出すサイクロ
ン型無機塩含有廃液焼却炉において、該炉胴部炉
壁の周方向複数個所から炉内壁面に沿う方向で間
欠的に炉内壁面に対して無機塩含有廃液を粗粒子
状として吹き付けることを特徴とする無機塩含有
廃液焼却炉の廃液供給方法。
1. In a cyclone-type inorganic salt-containing waste liquid incinerator that recovers heat from exhaust gas generated by high-temperature incineration and extracts molten inorganic salt from the bottom of the furnace, from multiple points in the circumferential direction of the furnace wall of the furnace body to a direction along the furnace inner wall surface. A waste liquid supply method for an inorganic salt-containing waste liquid incinerator, which comprises intermittently spraying the inorganic salt-containing waste liquid in the form of coarse particles onto the inner wall surface of the furnace.
JP16346778A 1978-12-28 1978-12-28 Method of and device for supplying waste liquid to inorganic salt-containing waste liquid incinerator Granted JPS5592810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16346778A JPS5592810A (en) 1978-12-28 1978-12-28 Method of and device for supplying waste liquid to inorganic salt-containing waste liquid incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16346778A JPS5592810A (en) 1978-12-28 1978-12-28 Method of and device for supplying waste liquid to inorganic salt-containing waste liquid incinerator

Publications (2)

Publication Number Publication Date
JPS5592810A JPS5592810A (en) 1980-07-14
JPS6222044B2 true JPS6222044B2 (en) 1987-05-15

Family

ID=15774419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16346778A Granted JPS5592810A (en) 1978-12-28 1978-12-28 Method of and device for supplying waste liquid to inorganic salt-containing waste liquid incinerator

Country Status (1)

Country Link
JP (1) JPS5592810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193142A (en) * 1988-01-26 1989-08-03 Kitamura Mach Co Ltd Machine tool
JPH0473444U (en) * 1990-10-31 1992-06-26

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928169Y2 (en) * 1978-12-29 1984-08-15 日立造船株式会社 Waste liquid supply device for inorganic salt-containing waste liquid incinerator
JPH11218316A (en) * 1998-02-03 1999-08-10 Risou Burner Kk Waste liquid incinerator and incinerating method
JP5011080B2 (en) * 2007-12-05 2012-08-29 住友化学株式会社 Cleaning method inside waste liquid incinerator
CN113511694B (en) * 2021-05-21 2022-12-27 南京乐透思高新材料科技有限公司 Composite sponge material, preparation method thereof and application of composite sponge material in treatment of high-salinity and high-calorific-value wastewater
CN117682592A (en) * 2024-02-02 2024-03-12 南京宇清环境科技有限公司 Device and method for simultaneously treating high-salt-content high-COD industrial wastewater and industrial solid waste salt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910572A (en) * 1972-05-31 1974-01-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910572A (en) * 1972-05-31 1974-01-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193142A (en) * 1988-01-26 1989-08-03 Kitamura Mach Co Ltd Machine tool
JPH0473444U (en) * 1990-10-31 1992-06-26

Also Published As

Publication number Publication date
JPS5592810A (en) 1980-07-14

Similar Documents

Publication Publication Date Title
JP3844941B2 (en) Temperature control device and temperature control method for high temperature exhaust gas
JPH0133208B2 (en)
KR960010605B1 (en) Method and apparatus for preventing the adhesion of dust in a furnace or fluidized bed inclnerator
CN110038371A (en) Plasma gasification melts danger wastes disposal system and technique
JPS6222044B2 (en)
CZ288190B6 (en) Method and arrangement for removing deposits in and on feed nozzles or feed pipes of firing installations
EP0156676B1 (en) Apparatus for the gasification of coal
KR20120049782A (en) Whirlwind-type oxidation combustion apparatus for processing semiconductor fabrication exhaust gas
RU2411061C1 (en) Jet scrubber
JP4437957B2 (en) High temperature exhaust gas treatment method and apparatus
JP3989791B2 (en) High temperature exhaust gas treatment equipment
CN215675216U (en) Incineration flue gas quenching and cooling device
JPS5928169Y2 (en) Waste liquid supply device for inorganic salt-containing waste liquid incinerator
US5700144A (en) Method and apparatus for thermal treatment of solids
JPH108064A (en) Gasification apparatus for combustible waste material
JP3149484B2 (en) Combustion control method for sludge melting furnace
JPS631105B2 (en)
JPH05264019A (en) Method and furnace for carbonizing incineration of organic combustible and carbonized liquid storing tank
RU2530132C1 (en) Method of cooling, humidification and purification of blast furnace gas and device for its implementation
JPH01196407A (en) Method and apparatus for preventing adhesion of incinerated ash to inner wall of powder incinerator
JP2005164097A (en) Melting furnace device
JP3041617B1 (en) Incineration ash recovery equipment for incinerators
JP2003336829A (en) Wind box structure of incinerator
SU656647A1 (en) Gas-scrubbing apparatus
RU2397409C1 (en) Method of discharge suspension combustion and plant for its implementation