JPS62219928A - Manufacture of insulating film - Google Patents

Manufacture of insulating film

Info

Publication number
JPS62219928A
JPS62219928A JP6460986A JP6460986A JPS62219928A JP S62219928 A JPS62219928 A JP S62219928A JP 6460986 A JP6460986 A JP 6460986A JP 6460986 A JP6460986 A JP 6460986A JP S62219928 A JPS62219928 A JP S62219928A
Authority
JP
Japan
Prior art keywords
substrate
resin
insulating film
forming
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6460986A
Other languages
Japanese (ja)
Other versions
JPH0588540B2 (en
Inventor
Atsushi Tanaka
厚志 田中
Masato Kosugi
眞人 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6460986A priority Critical patent/JPS62219928A/en
Publication of JPS62219928A publication Critical patent/JPS62219928A/en
Publication of JPH0588540B2 publication Critical patent/JPH0588540B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good insulating film in short time, by stagedly trolling temperature of a substrate under a depressurized atmosphere in the range from room temperature to specific one so that resin is solidified. CONSTITUTION:A substrate 1 is spin-coated with silylated polymethylsilsesquioxane (PMSS) of silicone resin. This spin-coating is done by spin-coating the semiconductor substrate, on a spinner, with PMSS dissolved in an organic solvent. Then, the substrate 1 is mounted in a device. This device enables temperature of the substrate 1 to be controlled in the range from room temperature to 450 deg.C, generating plasma. After the substrate 1 being mounted there, the device is vacuumized swiftly. At a time A kept at 300 deg.C-350 deg.C, nitrogen gas is introduced to control the gaseous pressure in 0.01-10Torr, and at a time B, high frequency electric power is impressed to generate plasma so that the resin coating on the substrate 1 is stricken by the plasma to become solid in short time.

Description

【発明の詳細な説明】 〔概要〕 基板上に樹脂を塗布して絶縁膜を形成する方法において
、基板を、減圧雰囲気下で室温から450℃の範囲で段
階的に温度を制御し、該樹脂を硬化させる工程を有し、
短時間で良好な絶縁膜を得る。
Detailed Description of the Invention [Summary] In a method of forming an insulating film by coating a resin on a substrate, the temperature of the substrate is controlled stepwise from room temperature to 450°C in a reduced pressure atmosphere, and the resin is coated with the resin. It has a step of curing the
Obtain a good insulating film in a short time.

〔産業上の利用分野〕 本発明は、樹脂を基板上に塗布し、硬化して絶縁膜を形
成する方法に係り、特に、半導体装置において使用され
る樹脂の硬化方法に関する。
[Industrial Application Field] The present invention relates to a method of coating a resin on a substrate and curing it to form an insulating film, and particularly relates to a method of curing a resin used in a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体集積回路の高集積化が進むにつれて、配線の微細
化、多層化が重要になっている。特に、多層配線技術が
不可欠な技術になりつつある。その中でも、特に樹脂を
用いた眉間絶縁膜の平坦化技術はプロセスが簡単化でき
る上、平坦性に優れていることから益々重要になってき
ている。
2. Description of the Related Art As semiconductor integrated circuits become more highly integrated, miniaturization and multilayering of interconnections become important. In particular, multilayer wiring technology is becoming an essential technology. Among these, the technology for flattening the glabellar insulating film using resin is becoming increasingly important because it not only simplifies the process but also has excellent flatness.

例えば、従来半導体集積回路の形成に用いられる樹脂と
してポリイミド樹脂が良く知られている。
For example, polyimide resin is well known as a resin conventionally used for forming semiconductor integrated circuits.

また、シリコーン系樹脂が半導体装置の製造に用いられ
る。例えば、次に化学式を示すシリコーン樹脂のPuO
2も半導体装置の製造に用いられている。
Additionally, silicone resins are used in the manufacture of semiconductor devices. For example, the silicone resin PuO
2 is also used in the manufacture of semiconductor devices.

PuO5の化学式 さらに、本出願人が先に提案した次に示す化学式をもつ
シリコーン樹脂のシリル化ポリメチルシルセスキオキサ
ン(以下“PMSS”と略す)(特願昭59−1495
86号)がある。
The chemical formula of PuO5 Furthermore, the silicone resin silylated polymethylsilsesquioxane (hereinafter abbreviated as "PMSS") having the following chemical formula previously proposed by the applicant (Japanese Patent Application No. 59-1495)
No. 86).

このPMSSは塗布後加熱する時、温度が上がるにつれ
て、一旦溶けてその表面が平坦になり、その後硬化する
という特徴を持つことから、半導体装置表面の平坦化の
点で有利であり、今後、ひろく半導体装置の製造に通用
することが期待されている。
When this PMSS is heated after coating, it melts once and the surface becomes flat as the temperature rises, and then it hardens. Therefore, it is advantageous in terms of flattening the surface of semiconductor devices, and will be widely used in the future. It is expected that it will be used in the manufacture of semiconductor devices.

従来、半導体装置等の眉間絶縁膜や保護膜に用いられて
いるこれらの樹脂の硬化方法としては、脂硬化方法にお
いては、不活性ガスによる置換雰囲気中で熱処理を行な
う方式がとられている。
Conventionally, as a method of curing these resins used for glabellar insulating films and protective films of semiconductor devices, etc., a method of heat treatment in an atmosphere replaced with an inert gas has been adopted in the fat curing method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来の不活性雰囲気中の樹脂硬化方法による
と、樹脂硬化のために長時間(2時間以上)を要し、ま
た、膜にヒロック(小さな突起)が発生したり、膜に熱
歪がかかりクラックが発生し易い等の問題があった。ま
た、半導体装置の製造工程で施されるレジストと樹脂と
が反応する等、樹脂は有機酸に対して不安定であった。
However, according to the conventional resin curing method in an inert atmosphere, it takes a long time (more than 2 hours) for the resin to harden, and it also causes hillocks (small protrusions) on the film and thermal strain on the film. There were problems such as the tendency for cracks to occur. Furthermore, the resin is unstable to organic acids, such as the resin reacting with the resist applied in the manufacturing process of semiconductor devices.

4冶鴫鳴ヨ凄千 〔問題点を解決するための手段〕 本発明においては、上記問題点を解決するために、半導
体装置等の基板上に絶縁膜を形成する方法において、基
板上に樹脂を塗布した後、真空中で室温から450℃の
範囲で段階的に温度*制御を行ない、樹脂を硬化させる
樹脂硬化工程を有する絶縁膜の形成方法を提供する。
4. Means for Solving the Problems In the present invention, in order to solve the above problems, in a method for forming an insulating film on a substrate of a semiconductor device, etc., a resin is formed on the substrate. The present invention provides a method for forming an insulating film, which includes a resin curing step in which the resin is cured by applying the resin and then controlling the temperature in a stepwise manner from room temperature to 450° C. in vacuum.

また、さらに、本発明においては、基板上に樹脂を塗布
した後、上記と同様な温度制御を行ない樹脂を硬化させ
るにあたり、不活性ガスあるいは反応性ガスの雰囲気下
で、ガス圧を0.01〜10Torrの範囲で制御し、
高周波電力の印加によるプラズマを発生せしめ、該プラ
ズマ中に基板上の樹脂表面を暴露し、樹脂を硬化させる
工程を含む絶縁膜の形成方法を提供する。
Furthermore, in the present invention, after coating the resin on the substrate, when curing the resin by performing temperature control similar to the above, the gas pressure is set to 0.01 in an atmosphere of an inert gas or a reactive gas. Control in the range of ~10 Torr,
A method for forming an insulating film is provided, which includes a step of generating plasma by applying high-frequency power, exposing a resin surface on a substrate to the plasma, and curing the resin.

また、さらに、本発明においては、基板上に樹脂を塗布
した後、上記と同様な温度制御を行ない樹脂を硬化させ
るにあたり、基板上の樹脂表面に10eV〜300にe
νの荷電粒子を照射し、樹脂を硬化させる工程を含む絶
縁膜の形成方法を提供する。
Furthermore, in the present invention, after coating the resin on the substrate, when curing the resin by performing temperature control similar to the above, the resin surface on the substrate is heated to an eV of 10 eV to 300 eV.
Provided is a method for forming an insulating film, which includes a step of curing a resin by irradiating charged particles of ν.

また、さらに、本発明においては、上記各樹脂の硬化方
法を併用して樹脂を硬化させる工程を含む絶縁膜の形成
方法を提供する。
Furthermore, the present invention provides a method for forming an insulating film, which includes a step of curing the resin by using the above resin curing methods in combination.

〔作用〕[Effect]

上記、本発明の絶縁膜の形成方法によれば、真空ベータ
、ガスプラズマ、又は荷電粒子のエネルギを利用して樹
脂の膜質を改変することができ、従来の問題であった樹
脂にクラックが発生することを抑えることができる。ま
た、その硬化に要する処理時間を従来の不活性ガス中で
のベータ処理に比較して大幅に短縮することを可能にす
る。
According to the above method for forming an insulating film of the present invention, the film quality of the resin can be modified using the energy of vacuum beta, gas plasma, or charged particles, and cracks occur in the resin, which was a problem in the past. You can refrain from doing that. Furthermore, the processing time required for curing can be significantly shortened compared to conventional beta processing in an inert gas.

〔実施例〕〔Example〕

実施例1 以下に第1の実施例として、先に化学式を示したシリコ
ーン樹脂の一つであるPMSSを窒素プラズマを利用し
て硬化し絶縁膜を形成する実施例を示す。
Example 1 Below, as a first example, an example will be shown in which PMSS, which is one of the silicone resins whose chemical formula is shown above, is cured using nitrogen plasma to form an insulating film.

第1図に示すのが、本実施例に用いた装置で、プラズマ
CVD装置を利用している。なお装置としては、プラズ
マ発生及び加熱ができる装置ならば他の装置を使用する
ことが可能である。第1図において、1は半導体基板で
あり、ヒータ3を内蔵したサセプタ2の上に載置されて
いる。4は該サセプタの対向電極であり、両者間には5
の高周波(RF)電源が接続されている。6はガス導入
ロア及び真空ポンプに接続される排気口8を有する反応
管である。
What is shown in FIG. 1 is the apparatus used in this example, which utilizes a plasma CVD apparatus. Note that other devices can be used as long as they are capable of generating and heating plasma. In FIG. 1, reference numeral 1 denotes a semiconductor substrate, which is placed on a susceptor 2 having a heater 3 built therein. 4 is a counter electrode of the susceptor, and 5 is between them.
A radio frequency (RF) power source is connected. 6 is a reaction tube having a gas introduction lower and an exhaust port 8 connected to a vacuum pump.

以下に、この装置を用いて、基板1上に樹脂層を形成し
硬化せしめる工程を示す。
Below, a process of forming and curing a resin layer on the substrate 1 using this apparatus will be described.

■ 基板1にシリコーン樹脂のPMSSをスピン塗布す
る。このスピン塗布は、有機溶剤に熔かしたPMSSを
スピナー上の半導体基板にスピンコードするものである
■ Spin coat silicone resin PMSS on the substrate 1. In this spin coating, PMSS dissolved in an organic solvent is spin-coded onto a semiconductor substrate on a spinner.

■ 第1図の装置に基板1をセットする。この装置は基
板1の温度を、室温乃至450℃の範囲で制御出来、且
つプラズマを発生する装置である。
■ Set the board 1 in the device shown in Figure 1. This device is a device that can control the temperature of the substrate 1 in the range of room temperature to 450° C. and generates plasma.

■ 基板lをセットした後、速やかに装置内を真空に引
く。真空度はベーキグ中I X 1O−2Torr乃至
それ以下とする。
■ After setting the substrate l, immediately evacuate the inside of the apparatus. The degree of vacuum is set to I x 10-2 Torr or less during baking.

■ 第2図に示した温度シーケンスにより基板の温度を
制御する。100℃程度10分間加熱して溶剤を蒸発せ
しめる。100℃程度から300℃〜350℃に温度を
上げ、この300℃〜350℃に所定の時間(20〜3
0分)保つ。
(2) Control the temperature of the substrate according to the temperature sequence shown in FIG. Heat to about 100°C for 10 minutes to evaporate the solvent. Raise the temperature from about 100°C to 300°C to 350°C, and keep it at this 300°C to 350°C for a specified period of time (20 to 350°C).
0 minutes).

■ この300℃〜350℃に保たれた第2図のAの時
点において、窒素(N2)ガスを導入し、ガス圧をQ、
3 Torrに制御し、Bにおいて高周波電力(13,
56M Hz 、200W 、高周波電力密度0.3W
/cm2 )を印加してプラズマを発生させ、基板1上
に塗布された樹脂をプラズマでたたき硬化させる。
■ At point A in Figure 2, where the temperature is maintained at 300°C to 350°C, nitrogen (N2) gas is introduced and the gas pressure is set to Q,
3 Torr, and high frequency power (13,
56MHz, 200W, high frequency power density 0.3W
/cm2) to generate plasma, and the resin coated on the substrate 1 is struck by the plasma and hardened.

■ 第2図Cの時点において、高周波電力の印加を停止
し、窒素ガスにより装置内をリークし、基板を室温まで
冷却する。
(2) At the time point shown in FIG. 2C, the application of high frequency power is stopped, nitrogen gas is leaked into the apparatus, and the substrate is cooled to room temperature.

以上のようにして形成された樹脂層を調べた結果、PM
SSの表面では、メチル基が減少していることが認めら
れた。
As a result of examining the resin layer formed as described above, it was found that PM
It was observed that methyl groups were reduced on the surface of SS.

実施例2 第2の実施例として、シリコーン樹脂PMS Sをアル
ゴンイオンを利用して硬化する実施例の工程を示す。
Example 2 As a second example, the process of curing silicone resin PMS S using argon ions will be described.

■ 半導体基板にPMSSをスピン塗布する。■ Spin coat PMSS on the semiconductor substrate.

■ 基板の温度を室温乃至450℃の範囲で制御でき、
且つイオンを基板上に照射できる装置内にPMSSを塗
布した基板をセットする。本実施例に用いる装置の概略
を第3図に示す。第3図において、半導体基板31は加
熱手段33を備えるサセプタ32上に載置され、イオン
源34からのイオンが照射されるようになっている。こ
のイオン照射装置35の内部は真空ポンプで十分な真空
度に排気されるようになっている。
■ The temperature of the substrate can be controlled within the range of room temperature to 450℃,
Furthermore, the substrate coated with PMSS is set in a device that can irradiate the substrate with ions. FIG. 3 shows an outline of the apparatus used in this example. In FIG. 3, a semiconductor substrate 31 is placed on a susceptor 32 equipped with a heating means 33, and is irradiated with ions from an ion source 34. The inside of this ion irradiation device 35 is evacuated to a sufficient degree of vacuum by a vacuum pump.

■ 半導体基板31をセットした後、速やかにイオン照
射装置35内を真空にする。真空度(ベーキング中)は
I X 10−’ Torr乃至これ以下にする。
(2) After setting the semiconductor substrate 31, immediately evacuate the inside of the ion irradiation device 35. The degree of vacuum (during baking) is set to I x 10-' Torr or less.

■ 第2図に示した温度シーケンスにより、基板の温度
を制御する。
(2) Control the temperature of the substrate according to the temperature sequence shown in FIG.

■ 第2図の中のBの時点において、アルゴンイオンを
基板1上に照射し、樹脂を硬化させる。
(2) At time point B in FIG. 2, argon ions are irradiated onto the substrate 1 to harden the resin.

アルゴンイオンの加速電圧は5oov、アルゴンイオン
電流密度は0.5 m^/ cm ”とした。
The argon ion acceleration voltage was 5 oov, and the argon ion current density was 0.5 m^/cm''.

■ 第2図のCの時点において、アルゴンイオンの照射
を停止し、窒素ガスにより装置内をリークし、基板1を
室温まで冷却する。
(2) At time point C in FIG. 2, argon ion irradiation is stopped, nitrogen gas is leaked from inside the apparatus, and the substrate 1 is cooled to room temperature.

実施例3 上記実施例1.2と同様に基板上に樹脂を塗布した後、
真空度1×10″″’ Torrの真空中で第2図と同
様な温度シーケンスで室温から450℃の範囲内で段階
的に温度凄−制御を行なうことのみ(真空中ベータ処理
)で、樹脂を硬化させ、絶縁膜の形成を行なうことがで
きる。ベーク処理に要する真空度の範囲は1×10″″
2Torr程度乃至それ以下、ベータ処理時間は60分
程度であり、この場合にも従来よりベータ処理に要する
時間を短縮することができる。
Example 3 After coating the resin on the substrate in the same manner as in Example 1.2 above,
In a vacuum with a degree of vacuum of 1 x 10'''' Torr, the resin can be processed by controlling the temperature stepwise within the range from room temperature to 450°C using the same temperature sequence as shown in Figure 2 (beta treatment in vacuum). can be cured to form an insulating film. The degree of vacuum required for baking is 1 x 10''
At about 2 Torr or less, the beta processing time is about 60 minutes, and in this case as well, the time required for the beta processing can be reduced compared to the conventional method.

以上、実施例としてシリコーン樹脂のPMS Sを用い
た例を示したが、本発明は広く種々の樹脂に通用できる
ものであり、例えば、前記シリコーン樹脂のPLO3に
も同様に通用可能である。また、シリコーン樹脂以外の
樹脂、例えばポリイミド樹脂への通用法も考えられる。
Although an example using the silicone resin PMS S has been shown above, the present invention can be applied to a wide variety of resins, and for example, can be applied to the silicone resin PLO3 as well. It is also conceivable that the present invention can be applied to resins other than silicone resins, such as polyimide resins.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、樹脂を短時間に硬化さ
せることができ、且つ硬化の工程で発生する熱歪を大き
く減少することが可能となり、クラックの発生を無くす
ことができる。またヒロックの発生も無くすことができ
る。さらに、本発明により硬化した膜は、電気的絶縁性
、耐薬品性に優れ、金属との密着性も良好である等、信
頼性が高い。
As described above, according to the present invention, the resin can be cured in a short time, and the thermal distortion generated in the curing process can be greatly reduced, thereby making it possible to eliminate the occurrence of cracks. It is also possible to eliminate the occurrence of hillocks. Furthermore, the film cured according to the present invention has high reliability, such as excellent electrical insulation and chemical resistance, and good adhesion to metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に用いた装置の模式的構
造図、 第2図は本発明の第1及び第2の実施例の温度シーケン
スを示す線図、 第3図は本発明の第2の実施例に用いたイオン照射装置
の概略図である。 ■は半導体基板、2はサセプタ、3はヒータ、4はサセ
プタの対向電極、5は高周波(RF)電源、6は反応管
、7はガス導入口、8は真空ポンプ。
Fig. 1 is a schematic structural diagram of the device used in the first embodiment of the present invention, Fig. 2 is a diagram showing the temperature sequence of the first and second embodiments of the present invention, and Fig. 3 is a diagram of the device used in the first embodiment of the present invention. FIG. 2 is a schematic diagram of an ion irradiation device used in a second embodiment of the invention. (2) is a semiconductor substrate, 2 is a susceptor, 3 is a heater, 4 is a counter electrode of the susceptor, 5 is a radio frequency (RF) power source, 6 is a reaction tube, 7 is a gas inlet, and 8 is a vacuum pump.

Claims (7)

【特許請求の範囲】[Claims] (1)基板上に樹脂を塗布して絶縁膜を形成する方法に
おいて、 該基板上に樹脂を塗布した後、該基板を、減圧雰囲気下
におき、室温から450℃の範囲で段階的に温度を制御
し、該樹脂を硬化させる工程を有することを特徴とする
絶縁膜の形成方法。
(1) In a method of coating a resin on a substrate to form an insulating film, after coating the resin on the substrate, the substrate is placed in a reduced pressure atmosphere and heated in stages from room temperature to 450°C. A method for forming an insulating film, comprising the steps of controlling and curing the resin.
(2)特許請求の範囲第1項記載の絶縁膜の形成方法に
おいて、 前記段階的に温度を制御し、樹脂を硬化させる工程が、
不活性ガスあるいは反応性ガスの雰囲気下で、ガス圧を
0.01〜10Torrの範囲で制御し、高周波電力の
印加によるプラズマを発生せしめ、該プラズマ中に基板
上の樹脂表面を暴露する工程を含むことを特徴とする絶
縁膜の形成方法。
(2) In the method for forming an insulating film according to claim 1, the step of controlling the temperature in stages and curing the resin comprises:
In an atmosphere of inert gas or reactive gas, gas pressure is controlled in the range of 0.01 to 10 Torr, plasma is generated by applying high frequency power, and the resin surface on the substrate is exposed to the plasma. A method for forming an insulating film, the method comprising:
(3)特許請求の範囲第1項記載の絶縁膜の形成方法に
おいて、 前記段階的に温度を制御し、樹脂を硬化させる工程が、
基板上の樹脂表面に10eV〜300KeVの荷電粒子
を照射する工程を含むことを特徴とする絶縁膜の形成方
法。
(3) In the method for forming an insulating film according to claim 1, the step of controlling the temperature in stages and curing the resin comprises:
A method for forming an insulating film, the method comprising the step of irradiating a resin surface on a substrate with charged particles of 10 eV to 300 KeV.
(4)特許請求の範囲第1項記載の絶縁膜の形成方法に
おいて、 前記段階的に温度を制御し、樹脂を硬化させる工程が、
不活性ガスあるいは反応性ガスの雰囲気下で、ガス圧を
0.01〜10Torrの範囲で制御し、高周波電力の
印加によるプラズマを発生せしめ、該プラズマ中に基板
上の樹脂表面を暴露する工程、及び、基板上の樹脂表面
に10eV〜300KeVの荷電粒子を照射する工程の
両工程を含むことを特徴とする絶縁膜の形成方法。
(4) In the method for forming an insulating film according to claim 1, the step of controlling the temperature in stages and curing the resin comprises:
In an atmosphere of an inert gas or a reactive gas, controlling the gas pressure in the range of 0.01 to 10 Torr, generating plasma by applying high frequency power, and exposing the resin surface on the substrate to the plasma, and a step of irradiating the resin surface on the substrate with charged particles of 10 eV to 300 KeV.
(5)特許請求の範囲第1項乃至第4項のいずれかの項
に記載された絶縁膜の形成方法において、前記樹脂がシ
リコーン系樹脂であることを特徴とする絶縁膜の形成方
法。
(5) The method for forming an insulating film according to any one of claims 1 to 4, wherein the resin is a silicone resin.
(6)特許請求の範囲第1項乃至第4項のいずれかの項
に記載された絶縁膜の形成方法において、前記樹脂がポ
リイミド樹脂であることを特徴とする絶縁膜の形成方法
(6) The method for forming an insulating film as set forth in any one of claims 1 to 4, wherein the resin is a polyimide resin.
(7)特許請求の範囲第1項乃至第6項のいずれかの項
に記載された絶縁膜の形成方法において、前記基板が半
導体基板であり、該基板上に塗布され、硬化された樹脂
により層間絶縁膜或いは保護膜が形成されることを特徴
とする絶縁膜の形成方法。
(7) In the method for forming an insulating film according to any one of claims 1 to 6, the substrate is a semiconductor substrate, and a resin coated on the substrate and cured is used. A method for forming an insulating film, characterized in that an interlayer insulating film or a protective film is formed.
JP6460986A 1986-03-20 1986-03-20 Manufacture of insulating film Granted JPS62219928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6460986A JPS62219928A (en) 1986-03-20 1986-03-20 Manufacture of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6460986A JPS62219928A (en) 1986-03-20 1986-03-20 Manufacture of insulating film

Publications (2)

Publication Number Publication Date
JPS62219928A true JPS62219928A (en) 1987-09-28
JPH0588540B2 JPH0588540B2 (en) 1993-12-22

Family

ID=13263172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6460986A Granted JPS62219928A (en) 1986-03-20 1986-03-20 Manufacture of insulating film

Country Status (1)

Country Link
JP (1) JPS62219928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193847A (en) * 1988-01-29 1989-08-03 Konica Corp Coating mechanism and device for forming protective layer of id card having said coating mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918587A (en) * 1972-06-13 1974-02-19
JPS5852330A (en) * 1981-08-26 1983-03-28 サンド・アクチエンゲゼルシヤフト Originally colored polymer material
JPS58158952A (en) * 1982-03-17 1983-09-21 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5957437A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Forming method for silicon oxide film
JPS59178749A (en) * 1983-03-30 1984-10-11 Fujitsu Ltd Wiring structure
JPS6024037A (en) * 1983-07-20 1985-02-06 Comput Basic Mach Technol Res Assoc Formation of polyimide series resin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918587A (en) * 1972-06-13 1974-02-19
JPS5852330A (en) * 1981-08-26 1983-03-28 サンド・アクチエンゲゼルシヤフト Originally colored polymer material
JPS58158952A (en) * 1982-03-17 1983-09-21 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5957437A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Forming method for silicon oxide film
JPS59178749A (en) * 1983-03-30 1984-10-11 Fujitsu Ltd Wiring structure
JPS6024037A (en) * 1983-07-20 1985-02-06 Comput Basic Mach Technol Res Assoc Formation of polyimide series resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193847A (en) * 1988-01-29 1989-08-03 Konica Corp Coating mechanism and device for forming protective layer of id card having said coating mechanism

Also Published As

Publication number Publication date
JPH0588540B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
JPH01130535A (en) Formation of silicone coating
JPS59154029A (en) Formation of insulating film
US6235353B1 (en) Low dielectric constant films with high glass transition temperatures made by electron beam curing
JPS62219928A (en) Manufacture of insulating film
JP2003218516A (en) Manufacturing method for wiring board
JP3102999B2 (en) Resin surface treatment method
EP0527572A1 (en) Formation of benzocyclobutene resin films
JPH0355401B2 (en)
JP2004186512A (en) Treatment method of workpiece
JPH04242933A (en) Formation of oxide film
JP2003188256A (en) Formation method for low dielectric constant insulating film, and manufacturing method for semiconductor device
JP3218515B2 (en) Method for planarizing polymer blend film surface
TWI235463B (en) Low dielectric constant films with high glass transition temperatures made by electron beam curing
JPH0337987B2 (en)
JPS6377139A (en) Formation of insulating film
JPH02230735A (en) Manufacture of semiconductor device
JP2009152373A (en) ULTRAVIOLET CURING METHOD FOR LOW k DIELECTRIC FILM
JP2883333B2 (en) Method for manufacturing semiconductor device
JP2585439B2 (en) Method for manufacturing semiconductor device
JP3195201B2 (en) Polymer surface treatment method
JPS62221120A (en) Manufacture of semiconductor device
JPS6324628A (en) Manufacture of semiconductor device and equipment therefor
JPH11162969A (en) Manufacture of semiconductor device
JPS60100435A (en) Selective hardening method of applied liquid insulating material of semiconductor substrate
JP3473302B2 (en) Method for forming coating type insulating film, method for manufacturing semiconductor device, and semiconductor device