JPS62219835A - Interference compensation circuit - Google Patents
Interference compensation circuitInfo
- Publication number
- JPS62219835A JPS62219835A JP61060856A JP6085686A JPS62219835A JP S62219835 A JPS62219835 A JP S62219835A JP 61060856 A JP61060856 A JP 61060856A JP 6085686 A JP6085686 A JP 6085686A JP S62219835 A JPS62219835 A JP S62219835A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- circuit
- signal
- interference
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Noise Elimination (AREA)
- Radio Transmission System (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はディジタル通信方式においてディジタル信号が
受ける他方式からの干渉を除去する干渉補償回路の構成
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the configuration of an interference compensation circuit that eliminates interference from other systems that a digital signal receives in a digital communication system.
(従来の回路)
従来の干渉補償回路の構成例(例えば、特願昭6O−2
87881)を第4図に示す。以下、第4図について説
明する。主信号受信用の主アンテナ1から受信した主信
号(ここではディジタル信号を考える)は他方式からの
干渉を受けている。(Conventional Circuit) An example of the configuration of a conventional interference compensation circuit (for example, Patent Application No. 6O-2
87881) is shown in FIG. Below, FIG. 4 will be explained. The main signal (here, a digital signal is considered) received from the main antenna 1 for main signal reception is subject to interference from other systems.
その信号は必要に応じて帯域通過フィルタ2を通った後
受信機3によpIF帯に周波数変換される。The signal passes through a bandpass filter 2 as required, and then is frequency-converted to a pIF band by a receiver 3.
一方、干渉の源となる信号を補助アンテナ4を用いて受
信し必要に応じてそのs、/Ni改善するため帯域通過
フィルタ5全通した後主信号の受信機と共通の局部発振
器7を用いて、受信機6によりIP帯に周波数変換され
る。その干渉信号を位相および振幅を可変する回路8,
10に通し、主信号中にもれ込んだ干渉成分と逆位相2
等振幅で加算器11により加算することにより干渉成分
を消去する。その可変位相回路8および可変振幅回路1
0を制御するために、まず、加算器11で加算後、残留
する干渉成分の同相および直交分を検出するため、加算
した信号を復調器に通す。復調器では、再生した基準搬
送波20を用いて直交位相同期検波回路12.13によ
り検波され、同相分(13の出力)および直交分(12
の出力)全行る。それらの信号は高調波除去フィルタ1
4゜15全通した後、残留干渉成分を検出する誤差信号
発生回路102.103に通すことにより同相分および
直交分の誤差信号を得る。一方、干渉信号は可変位相回
路を通った後2分配され、その一方は、干渉信号を同相
分および直交分に分解するため直交位相検波器22,2
3に入力する。ここで、局部発振器は、主信号用復調器
と共通のものを使用する。そして、同相分および直交分
に分けられた干渉信号は高調波除去フィルタ24.25
を通った後、主信号用復調器のタイミング信号を用いて
識別回路27,28’を通し、2値化をおこなう。ここ
では後に、ディジタル処理をおこなう場合を示している
念めこの識別回路は必要となるが、アナログ処理をおこ
なう場合、この回路は不要である。誤差信号発生回路の
出力をディジタル信号で出力する場合、め変換器を使用
すればよい。すなわち、例えば主信号が16 QAM信
号の場合、復調信号は4値信号となシ、3ビツト以上の
出力を有するめ変換器でサンプリングすれば、第5図に
示すように、上位2ビツトは識別結果を表し、上位3ビ
ツト目は誤差の方向を表わす2値信号を得る。そして、
同相、直交成分の誤差信号と同相、直交成分の干渉信号
の識別結果について、相関をとる。On the other hand, in order to receive the signal that is a source of interference using the auxiliary antenna 4 and improve its s, /Ni as necessary, the signal is passed through a bandpass filter 5, and then a local oscillator 7 that is common to the main signal receiver is used. Then, the frequency is converted to the IP band by the receiver 6. A circuit 8 for varying the phase and amplitude of the interference signal;
10, and the interference component leaked into the main signal and the opposite phase 2
The interference component is canceled by adding the signals with equal amplitude by the adder 11. The variable phase circuit 8 and variable amplitude circuit 1
In order to control 0, first, after addition in the adder 11, the added signal is passed through a demodulator in order to detect the in-phase and quadrature components of the remaining interference components. In the demodulator, the regenerated reference carrier wave 20 is detected by the quadrature phase coherent detection circuit 12.13, and the in-phase component (output of 13) and quadrature component (output of 12
(output) all done. Those signals are filtered by harmonic removal filter 1
After passing through 4°15, the signal is passed through error signal generation circuits 102 and 103 for detecting residual interference components to obtain in-phase and quadrature error signals. On the other hand, the interference signal is divided into two parts after passing through a variable phase circuit, one of which is divided into two by quadrature phase detectors 22 and 2 to decompose the interference signal into an in-phase component and a quadrature component.
Enter 3. Here, the local oscillator used is the same as the main signal demodulator. The interference signal divided into in-phase and quadrature components is filtered through harmonic removal filters 24 and 25.
After passing through the identification circuits 27 and 28' using the timing signal of the main signal demodulator, the signal is binarized. This identification circuit will be necessary later in the case where digital processing is performed, but this circuit is not required when analog processing is performed. If the output of the error signal generation circuit is to be output as a digital signal, a digital converter may be used. That is, for example, when the main signal is a 16 QAM signal, the demodulated signal is not a 4-value signal, but has an output of 3 bits or more, so if it is sampled with a converter, the upper 2 bits will be identified as shown in Figure 5. A binary signal representing the result is obtained, with the third most significant bit representing the direction of the error. and,
A correlation is established between the identification results of the error signal of the in-phase and quadrature components and the interference signal of the in-phase and quadrature components.
すなわち、同相成分どうし、または直交成分どうしの排
他的論理和(EX−OR)29.30をとった信号を積
分器38に通すことにより可変振幅回路の制御信号とす
る。That is, a signal obtained by exclusive ORing (EX-OR) 29.30 of the in-phase components or orthogonal components is passed through the integrator 38 to be used as a control signal for the variable amplitude circuit.
また、同相分と直交分または直交分と同相分の排他的論
理和(EX−OR)31 、排他的反転論理和(E X
−NOR) 32をとった信号を積分器37に通すこ
とにより可変位相回路の制御信号とする。In addition, exclusive OR (EX-OR) 31, exclusive inverted OR (EX-OR) of in-phase and orthogonal components or orthogonal and in-phase components
-NOR) 32 is passed through an integrator 37 to be used as a control signal for the variable phase circuit.
(発明が解決しようとする問題点)
以上、説明したように従来の干渉補償回路では外部の付
加回路として、干渉信号を検出するための直交位相検波
器が必要であυ、回路規模が犬きくなるという問題点を
有していた。(Problems to be Solved by the Invention) As explained above, conventional interference compensation circuits require a quadrature phase detector to detect interference signals as an external additional circuit, which increases the circuit size. It had the problem of becoming.
本発明の目的は、干渉信号を検出するために直交位相検
波器を用いず位相検波器を用いることにより、外部付加
回路が簡略化でき、簡易な干渉補償回路を実現すること
にある。An object of the present invention is to use a phase detector instead of a quadrature phase detector to detect interference signals, thereby simplifying external additional circuits and realizing a simple interference compensation circuit.
(問題点を解決するための手段)
前記目的を達成するための本発明の特徴は、主信号受信
用の主アンテナと、干渉信号受信手段と、該干渉信号受
信手段の出力の位相及び振幅と前記主アンテナの出力と
の相対関係を調節する調節回路と、該回路により調節さ
れた主アンテナ及び干渉信号受信手段の出力を合成する
合成回路と、該合成回路の出力及び主信号から再生した
基準搬送波全入力として同相成分と直交成分に分解する
直交位相同期検波器と、前記同相成分及び直交成分を各
々入力とする2つの誤差信号発生回路と、前記調節回路
に結合し、該回路からの信号に対し、前記直交位相同期
検波器と同じ基準搬送波によ多位相検波する位相検波器
と、該位相検波器の出力と、前記2つの誤差信号発生回
路の出力との相関を各々独立に提供する2つの乗算器と
、該乗算器の出力に各々接続される2つの積分器とを有
し、前記同相成分に関連する、一方の積分器の出力によ
り前記調節回路の振幅調節を制御し、前記直交成分に関
連する、他方の積分器の出力により前記調節回路の位相
調節を制御する干渉補償回路にある。(Means for Solving the Problems) The features of the present invention for achieving the above object include a main antenna for receiving a main signal, an interference signal receiving means, and a phase and amplitude of the output of the interference signal receiving means. an adjustment circuit that adjusts the relative relationship with the output of the main antenna; a synthesis circuit that synthesizes the outputs of the main antenna and interference signal receiving means adjusted by the circuit; and a reference that is reproduced from the output of the synthesis circuit and the main signal. A quadrature phase synchronized detector that decomposes a carrier wave into an in-phase component and a quadrature component as a total carrier input, two error signal generation circuits each receiving the in-phase component and quadrature component as input, and a signal generator coupled to the adjustment circuit and outputting a signal from the circuit. In contrast, a phase detector that performs multiphase detection using the same reference carrier as the orthogonal phase synchronized detector, and a correlation between the output of the phase detector and the output of the two error signal generation circuits are independently provided. comprising two multipliers and two integrators respectively connected to the outputs of the multipliers, the output of one of the integrators relating to the in-phase component controls the amplitude adjustment of the adjustment circuit; The interference compensation circuit controls the phase adjustment of the adjustment circuit by the output of the other integrator, which is related to the quadrature component.
(実施例)
本発明の一実施例を第1図に示す。以下第1図について
詳しく説明する。主アンテナ1から受信した主信号はS
/N 1に良くするため必要に応じて、帯域通過フィル
タ2′f!I:通った後、周波数変換器3によりエF帯
に変換される。一方、主信号に含まれる干渉成分の源信
号受信用の補助アンテナ4から受信した干渉信号はS/
’N ’e良くするため、必要に応じて帯域通過フィル
タ5を通った後、主信号側と共通の局部発振器7を用い
、周波数変換器6によりIF帯に変換される。IF倍信
号位相および振幅を調整し主信号中の干渉成分と等振幅
、逆位相で加算11することにより主信号中の干渉成分
を消去することができる。(Example) An example of the present invention is shown in FIG. FIG. 1 will be explained in detail below. The main signal received from main antenna 1 is S
/N 1, if necessary, use a bandpass filter 2'f! I: After passing through, it is converted into the E-F band by the frequency converter 3. On the other hand, the interference signal received from the auxiliary antenna 4 for receiving the source signal of the interference component included in the main signal is S/
In order to improve 'N'e, after passing through a band pass filter 5 as necessary, the signal is converted into an IF band by a frequency converter 6 using a local oscillator 7 common to the main signal side. The interference component in the main signal can be eliminated by adjusting the phase and amplitude of the IF multiplied signal and adding 11 the same amplitude and opposite phase to the interference component in the main signal.
以下、定量的に説明する。主信号は16 QAM信号、
干渉信号は振幅変調波と仮定する。IF帯に変換された
主信号は次式で表わせる。A quantitative explanation will be given below. The main signal is a 16 QAM signal,
It is assumed that the interference signal is an amplitude modulated wave. The main signal converted to the IF band can be expressed by the following equation.
ここでak t bk= (±1.±3)prfりは系
全体のイン/ぞルス応答、Tはクロック周期、ω、は主
信号の搬送波角周波数である。At)は干渉成分の振幅
成分であシ、極座標表示であるためf(t))Oである
。Here, ak t bk= (±1.±3) prf is the in/out response of the entire system, T is the clock period, and ω is the carrier wave angular frequency of the main signal. At) is the amplitude component of the interference component, and since it is expressed in polar coordinates, it is f(t))O.
ω2は干渉成分の角周波数、θは位相を表わす。一方、
加算器11の他方の入力信号は正常に制御されている場
合、次式で表わされる。ω2 represents the angular frequency of the interference component, and θ represents the phase. on the other hand,
When the other input signal of the adder 11 is normally controlled, it is expressed by the following equation.
Y2(t)= (J’(t)+Δγ)、ej(o)2
t+e+le+*) (2゜ただし、Δr、Δ
θは十分率さい値と考えてよい。式(1)および式(2
)全加算した結果を主信号復調器1. OOで直交位相
同期検波(12,13)し、高調波除去フィルタ14
、15t−通った後、同相および直交成分は次式で表わ
される。Y2(t)=(J'(t)+Δγ), ej(o)2
t+e+le+*) (2゜However, Δr, Δ
θ can be considered to be a sufficiently small value. Formula (1) and formula (2
) The result of the full addition is sent to the main signal demodulator 1. Quadrature phase synchronous detection (12, 13) is performed at OO, and harmonic removal filter 14
, 15t-, the in-phase and quadrature components are expressed by the following equations.
i、(t)=Σak−r(t−kT)+〔−Δr−ca
!1(Δωを十〇)十ノてt)拳Δθ・*(Δωt+θ
)〕q 1(t)=Σbk・r(t−kT)+[ニーΔ
r−画(Δωt+θ)一7tt)・Δθ・邸(Δωを十
〇) ) (4)ここでΔω
はω、とω2の差を表わす。i, (t)=Σak-r(t-kT)+[-Δr-ca
! 1 (Δω to 10) ten t) fist Δθ・*(Δωt+θ
)]q 1(t)=Σbk・r(t-kT)+[knee Δ
r-picture (Δωt + θ) -7tt)・Δθ・Residence (Δω to 10) ) (4) Here, Δω
represents the difference between ω and ω2.
これらの4値の復調信号は、残留の干渉成分を検出する
誤差信号発生回路102 # 103に入力される。誤
差信号発生回路としては通常3ビット以上の出力を有す
るい変換器を用いる。第5図に示すように、4値信号を
入力するとその出力のうち、上位2ビツトはその識別結
果を示す。また上位3ビツト目は、信号点の偏移方向、
すなわち誤差の方向を表す。従って上位3ビツト目から
誤差信号をとり出すことができる。同相および直交成分
の誤差信号は次式で表わされる。These four-level demodulated signals are input to an error signal generation circuit 102 #103 that detects residual interference components. As the error signal generation circuit, a converter having an output of 3 bits or more is usually used. As shown in FIG. 5, when a four-value signal is input, the upper two bits of the output indicate the identification result. Also, the upper 3rd bit is the shift direction of the signal point,
In other words, it represents the direction of the error. Therefore, the error signal can be extracted from the third most significant bit. The in-phase and quadrature component error signals are expressed by the following equations.
E奴1)=−Δγ・匹(ΔωL十〇)十ft)・Δθ・
蜘(Δωt+θ)(5)E4t)=−Δγ・th(Δω
を十〇)−fCt)・Δθ・(2)(Δωを十〇)(6
)また、干渉信号を8によ多分岐し、主信号復調器で再
生された基準搬送波20で23によ多位相検波し、高調
波除去フィルタ25を通った後の検波器出力は次式とな
る。E guy 1) = -Δγ・person (ΔωL 10) 10 ft)・Δθ・
Spider (Δωt + θ) (5) E4t) = -Δγ・th(Δω
10) - fCt)・Δθ・(2) (Δω10) (6
) Also, the interference signal is multi-branched into 8, multiphase detection is performed on 23 using the reference carrier wave 20 regenerated by the main signal demodulator, and the output of the detector after passing through the harmonic removal filter 25 is given by the following formula. Become.
i2(t)=X−fCt)・Cxl5(Δωを十θ′+
Δθ+π)キードfct)・!(Δωを十〇’ )
(7)ここでKは可変振幅回路のゲイン、θ
′は位相を表わす。i2(t)=X−fCt)・Cxl5(Δω is 1θ′+
Δθ+π) keyed fct)・! (Δω is 10')
(7) Here, K is the gain of the variable amplitude circuit, θ
' represents the phase.
式(5) 、(6)で表わされる誤差信号と式(7)で
表わされる干渉信号との相関検出をおこなうため、30
によりzz(t) X Ez(りおよび31によりj2
(t) x E4t)の演算をおこない積分回路32.
33に通すことにより次式を得る。In order to detect the correlation between the error signal expressed by equations (5) and (6) and the interference signal expressed by equation (7), 30
By zz(t) X Ez(ri and 31 by j2
(t) x E4t) and integrates the circuit 32.
33, the following equation is obtained.
s 2(t)X Eilt)→f(t)−Δr’cos
(θ−θつ (8)i〆t)XE4t)→f
2Ct)・Δθ噛(θ−θ’) (9)ここ
でθおよびθ′は初期位相であシ、その変動量はほとん
ど考えなくてよいためθ=θ′となるよう初期調整して
おけば式(8)よシ可変振幅回路10のΔr2式(9)
よシ可変位相回路9のΔθを制御可ず
能と番る。s 2(t)X Eilt)→f(t)−Δr'cos
(θ−θtsu (8)i〆t)XE4t)→f
2Ct)・Δθ(θ−θ') (9) Here, θ and θ' are the initial phases, and there is almost no need to consider their fluctuations, so if you initialize them so that θ = θ', From equation (8), Δr2 of variable amplitude circuit 10 equation (9)
However, it is possible to control Δθ of the variable phase circuit 9.
次に、本発明の別の実施例を第2図に示す。第1図と異
なる点は誤差信号発生回路出力および位相検波した干渉
信号を2値化し、ディジタル的に相関検出することであ
る。式(3)2式(4)で表わされる検波出力に対し、
復調器で再生したタイミング信号22を用いて識別した
結果、誤差信号は次式%式%
一方、式(7)で表わされる干渉信号を主信号復調器で
再生したタイミング信号22を用いて識別すると次式で
表わされる。Next, another embodiment of the present invention is shown in FIG. The difference from FIG. 1 is that the output of the error signal generating circuit and the phase-detected interference signal are binarized and the correlation is detected digitally. For the detection output expressed by equation (3) and equation (4),
As a result of identification using the timing signal 22 regenerated by the demodulator, the error signal is expressed by the following formula % On the other hand, when the interference signal expressed by equation (7) is identified using the timing signal 22 regenerated by the main signal demodulator It is expressed by the following formula.
sgn(i2(mT))=−sgn (ccs(Δωを
十θ′))(6)弐αQ、αカと式(ロ)の間で相関を
とるため、ディ・ゾタル乗算、すなわち、排他的論理和
30.31をとり、積分器32.33に通すことにより
次式を得る。sgn (i2 (mT)) = -sgn (ccs (∆ω = 1θ')) (6) In order to take the correlation between αQ, α and equation (b), dizotal multiplication, that is, exclusive The following equation is obtained by taking the logical sum 30.31 and passing it through the integrator 32.33.
sgn(j2(mT乃X sgn(E<(mT))→−
sgn(−Δγ・■(θ−θ’ ) + f(t)・Δ
θ・内(θ−θ′)) (6)sgn(i2(mT)
) X agn(E、(mT) )→sgn(Δγ・幽
(θ−θ’)+、?”(t)−Δθ−(θ−θ′))
α◆ここで前回同様θ−〇′とおくと、弐α1
2式α→は次式となる。sgn(j2(mT乃X sgn(E<(mT))→-
sgn(-Δγ・■(θ−θ') + f(t)・Δ
θ・in (θ−θ′)) (6) sgn(i2(mT)
)
α◆Here, if we set θ−〇′ as before, then 2α1
The equation 2 α→ becomes the following equation.
sgn(j2(mT)) X sgn(E7(mT))
→sgn(Δγ)cLysgn(i2(mT乃X ag
n(E、(mT)) −+ sgn(Δθ) α4従っ
て、式げにより可変振幅回路10の振幅。sgn(j2(mT)) X sgn(E7(mT))
→sgn(Δγ)cLysgn(i2(mTnoX ag
n(E, (mT)) −+ sgn(Δθ) α4 Therefore, the amplitude of the variable amplitude circuit 10 is expressed as follows.
また式α〃により可変位相回路8の位相を制御可能丁 と奉る。In addition, the phase of the variable phase circuit 8 can be controlled by formula α. I dedicate it to you.
ここで式(8) 、 (9)、式韓、αダを適用するた
めには主信号にもれ込んだ干渉成分と、補助アンテナよ
り受信した干渉信号の両者について、第1図または第2
図の合成器11の直前において、絶対遅延時間を合わせ
る必要がある。そのために、第1図。Here, in order to apply Equations (8), (9), Equations (8), and (α), both the interference component leaked into the main signal and the interference signal received from the auxiliary antenna are shown in Figure 1 or 2.
It is necessary to adjust the absolute delay time immediately before the synthesizer 11 shown in the figure. For that purpose, Figure 1.
第2図にτ1なる遅延回路が必要となる。In FIG. 2, a delay circuit τ1 is required.
また、第1図の相関回路30.31または第2図の相関
回路34.35の入力点において、誤差信号と、干渉信
号の絶対遅延時間を合わせる必要がある。そのため、τ
2およびτ3の遅延回路が必要となる。Furthermore, at the input point of the correlation circuit 30.31 in FIG. 1 or the correlation circuit 34.35 in FIG. 2, it is necessary to match the absolute delay times of the error signal and the interference signal. Therefore, τ
2 and τ3 delay circuits are required.
以上、主信号として16 QAM信号を例にとり説明し
たが、4 PSK 、 64 QAM等についても、誤
差信号発生回路で使用するA/D変換器の出力ビットの
数が異るのみで他は全く同様である。また、干渉信号と
して、振幅変調信号を例にとり説明したが、周波数変調
信号の場合、式(1)または式(2)のf(t)−ej
(cc>2t + o )のかわりにf、ej(m2(
t)−t + a )また位相変調信号の場合、f−e
j(02t+o(t))、また、cw波の場合、f、e
j(ca2t+0)の形となり全く同様に処理できる。The explanation above has been given using a 16 QAM signal as an example of the main signal, but 4 PSK, 64 QAM, etc. are also the same except for the number of output bits of the A/D converter used in the error signal generation circuit. It is. Furthermore, although the explanation has been given using an example of an amplitude modulation signal as an interference signal, in the case of a frequency modulation signal, f(t)-ej of equation (1) or equation (2)
(cc>2t + o) instead of f, ej(m2(
t) - t + a) Also, in the case of a phase modulation signal, fe
j(02t+o(t)), and in the case of cw waves, f, e
j(ca2t+0) and can be processed in exactly the same way.
本発明の修飾例として、第1図または第2図の分配器9
を可変振幅回路10の後段に、また、分配器9を可変位
相回路8の前段にそれぞれ設けることが可能であり、こ
のような場合でもその他は全く同じ回路構成で干渉補償
回路を実現できる。As a modification of the invention, the distributor 9 of FIG.
It is possible to provide the divider 9 after the variable amplitude circuit 10 and the divider 9 before the variable phase circuit 8, and even in such a case, the interference compensation circuit can be realized with the other completely same circuit configuration.
第1図または第2図ではIF帯において可変振幅回路と
可変位相回路を用いる構成例を示したが、RF帯にもう
けても全く同様である。Although FIG. 1 or FIG. 2 shows an example of a configuration in which a variable amplitude circuit and a variable phase circuit are used in the IF band, the configuration is exactly the same even if the variable amplitude circuit and variable phase circuit are used in the RF band.
第1図または第2図の本発明実施例では、補助アンテナ
から受信した干渉信号の振幅および位相を調整し干渉波
を相殺したが、主アンテナから受信した主信号の振幅お
よび位相を調整しても全く同様に、干渉波を相殺できる
ことはいうまでもない。In the embodiment of the present invention shown in FIG. 1 or 2, the amplitude and phase of the interference signal received from the auxiliary antenna are adjusted to cancel the interference waves, but the amplitude and phase of the main signal received from the main antenna are adjusted. It goes without saying that interference waves can be canceled out in exactly the same way.
さらに、位相を調整する場合、直接信号の位相を可変す
るかわりに周波数変換器に用いる局部発振器の位相を調
整しても同じ効果が得られる。Furthermore, when adjusting the phase, the same effect can be obtained by adjusting the phase of the local oscillator used in the frequency converter instead of directly varying the phase of the signal.
また、本発明の実施例では干渉信号を得るため、(発明
の効果)
本発明の原理に基づく干渉補償回路を試作し、その補償
特性を測定した。その結果を第3図に示す。ここで、主
信号には16 QAM信号、干渉信号にはカフ−パー信
号をFM変調した信号を用いた。In addition, in the embodiment of the present invention, in order to obtain an interference signal, an interference compensation circuit based on the principle of the present invention was prototyped and its compensation characteristics were measured. The results are shown in FIG. Here, a 16 QAM signal was used as the main signal, and a signal obtained by FM modulating a Cuff-Par signal was used as the interference signal.
第3図のたて軸は信号対雑音電力比(C/N)を、横軸
は信号対干渉電力比(D/lJ)を表わしており、補償
器の有無による1 6 QAM信号の符号誤り率=10
−4におけるC/N対D/りの関係を示している。The vertical axis in Figure 3 represents the signal-to-noise power ratio (C/N), and the horizontal axis represents the signal-to-interference power ratio (D/lJ). Rate=10
It shows the relationship between C/N and D/R at -4.
第3図よりD/lJの20dB程度の改善効果を示して
おシ、本発明の有効性を確認できている。FIG. 3 shows an improvement effect of about 20 dB in D/lJ, confirming the effectiveness of the present invention.
以上説明したように、本干渉補償回路では干渉信号を検
出するのに1個の位相検波器でよく、従って、外付回路
が簡易化でき、干渉補償回路の小形化に有利である。As explained above, the present interference compensation circuit requires only one phase detector to detect the interference signal, and therefore the external circuit can be simplified, which is advantageous for downsizing the interference compensation circuit.
第1図と第2図は本発明の実施例を示すブロック図、第
3図は本発明の効果を示す図、第4図は従来の干渉補償
回路のブロック図、第5図は4値信号に対する誤差信号
発生回路の説明図である。
1・・・主アンテナ、2,5・・・帯域通過フィルタ、
3.6・・・周波数変換器、4・・・補助アンテナ、7
・・・局部発振器、8・・・可変位相回路、9・・・分
配器、10・・・可変振幅回路、11・・・合成器、1
2.13・・・位相検波器、14.15・・・低域通過
フィルタ、16.17・・・識別回路、18.19・・
・減算器、20・・・再生搬送波、21・・・90°移
相器、22・・・タイミンダ信号発生回路、23・・・
位相検波器、25・・・低域通過フィルタ、26・・・
識別回路、30゜31・・・乗算器、32.33・・・
積分器、34,35・・・EX−QR回路、100・・
・復調器、101・・・制御回路、102.103・・
・誤差信号発生回路。Figures 1 and 2 are block diagrams showing an embodiment of the present invention, Figure 3 is a diagram showing the effects of the present invention, Figure 4 is a block diagram of a conventional interference compensation circuit, and Figure 5 is a four-level signal signal. FIG. 2 is an explanatory diagram of an error signal generation circuit for FIG. 1... Main antenna, 2, 5... Band pass filter,
3.6... Frequency converter, 4... Auxiliary antenna, 7
...Local oscillator, 8...Variable phase circuit, 9...Distributor, 10...Variable amplitude circuit, 11...Synthesizer, 1
2.13... Phase detector, 14.15... Low pass filter, 16.17... Identification circuit, 18.19...
- Subtractor, 20... Regenerated carrier wave, 21... 90° phase shifter, 22... Timer signal generation circuit, 23...
Phase detector, 25...Low pass filter, 26...
Identification circuit, 30°31... Multiplier, 32.33...
Integrator, 34, 35...EX-QR circuit, 100...
・Demodulator, 101...Control circuit, 102.103...
・Error signal generation circuit.
Claims (7)
テナの出力との相対関係を調節する調節回路と、 該回路により調節された主アンテナ及び干渉信号受信手
段の出力を合成する合成回路と、 該合成回路の出力及び主信号から再生した基準搬送波を
入力として同相成分と直交成分に分解する直交位相同期
検波器と、 前記同相成分及び直交成分を各々入力とする2つの誤差
信号発生回路と、 前記調節回路に結合し、該回路からの信号に対し、前記
直交位相同期検波器と同じ基準搬送波により位相検波す
る位相検波器と、 該位相検波器の出力と、前記2つの誤差信号発生回路の
出力との相関を各々独立に提供する2つの乗算器と、 該乗算器の出力に各々接続される2つの積分器とを有し
、 前記同相成分に関連する、一方の積分器の出力により前
記調節回路の振幅調節を制御し、 前記直交成分に関連する、他方の積分器の出力により前
記調節回路の位相調節を制御することを特徴とする、干
渉補償回路。(1) A main antenna for receiving a main signal, an interference signal receiving means, an adjustment circuit for adjusting the relative relationship between the phase and amplitude of the output of the interference signal receiving means and the output of the main antenna, and adjustment by the circuit. a combining circuit that combines the outputs of the main antenna and the interference signal receiving means; a quadrature phase synchronous detector that inputs the output of the combining circuit and the reference carrier wave regenerated from the main signal and decomposes it into in-phase components and quadrature components; two error signal generation circuits each receiving an in-phase component and a quadrature component; and a phase detector coupled to the adjustment circuit to detect the phase of the signal from the circuit using the same reference carrier as the quadrature phase synchronized detector. and two multipliers each independently providing a correlation between the output of the phase detector and the output of the two error signal generation circuits, and two integrators each connected to the output of the multiplier. the output of one integrator associated with the in-phase component controls the amplitude adjustment of the adjustment circuit, and the output of the other integrator associated with the quadrature component controls the phase adjustment of the adjustment circuit. An interference compensation circuit characterized by:
続接続により構成されることを特徴とする特許請求の範
囲第1項記載の干渉補償回路。(2) The interference compensation circuit according to claim 1, wherein the adjustment circuit is constructed by cascading a variable phase circuit and a variable amplitude circuit.
り実現されることを特徴とする特許請求の範囲第1項記
載の干渉補償回路。(3) The interference compensation circuit according to claim 1, wherein the adjustment circuit is realized by adjusting the output of a local oscillator.
ンテナをふくむことを特徴とする特許請求の範囲第1項
記載の干渉補償回路。(4) The interference compensation circuit according to claim 1, wherein the interference signal receiving means includes an auxiliary antenna for receiving interference signals.
提供されることを特徴とする特許請求の範囲第2項記載
の干渉補償回路。(5) The interference compensation circuit according to claim 2, wherein the input of the phase detector is provided from the output of the cascade circuit.
提供されることを特徴とする特許請求の範囲第2項記載
の干渉補償回路。(6) The interference compensation circuit according to claim 2, wherein the input of the phase detector is provided from the input of the cascade circuit.
から提供されることを特徴とする特許請求の範囲第2項
記載の干渉補償回路。(7) The interference compensation circuit according to claim 2, wherein the input of the phase detector is provided from the output of the variable phase circuit.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61060856A JPH06105897B2 (en) | 1986-03-20 | 1986-03-20 | Interference compensation circuit |
US06/921,093 US4736455A (en) | 1985-12-23 | 1986-10-21 | Interference cancellation system |
CA000521944A CA1257658A (en) | 1985-12-23 | 1986-10-31 | Interference cancellation system |
DE8686308589T DE3685645T2 (en) | 1985-12-23 | 1986-11-04 | SYSTEM FOR COMPENSATING A RADIO INTERFERENCE SIGNAL. |
EP86308589A EP0228786B1 (en) | 1985-12-23 | 1986-11-04 | Radio signal interference cancellation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61060856A JPH06105897B2 (en) | 1986-03-20 | 1986-03-20 | Interference compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62219835A true JPS62219835A (en) | 1987-09-28 |
JPH06105897B2 JPH06105897B2 (en) | 1994-12-21 |
Family
ID=13154440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61060856A Expired - Lifetime JPH06105897B2 (en) | 1985-12-23 | 1986-03-20 | Interference compensation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06105897B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012514403A (en) * | 2008-12-31 | 2012-06-21 | エスティー‐エリクソン、ソシエテ、アノニム | Process and receiver for interference cancellation of interfering base stations in a synchronous OFDM system |
-
1986
- 1986-03-20 JP JP61060856A patent/JPH06105897B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012514403A (en) * | 2008-12-31 | 2012-06-21 | エスティー‐エリクソン、ソシエテ、アノニム | Process and receiver for interference cancellation of interfering base stations in a synchronous OFDM system |
Also Published As
Publication number | Publication date |
---|---|
JPH06105897B2 (en) | 1994-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2115222C1 (en) | Phase-angle corrector for power amplifier feedback circuit (options) | |
JP2603699B2 (en) | Dual branch receiver | |
US5715281A (en) | Zero intermediate frequency receiver | |
EP0032253B1 (en) | Demodulator carrier recovery loop and method for demodulating a signal | |
JPS6093861A (en) | Frequency modulator of electric communication carrier by base band signal | |
CA1238086A (en) | Data transmission using a transparent tone-in band system | |
EP0305604B1 (en) | Receiver comprising parallel signal paths | |
US3873931A (en) | FM demodulator circuits | |
JPS62219835A (en) | Interference compensation circuit | |
JPH05291995A (en) | Method for compensating interference for radio repeater station | |
JPS61273005A (en) | Amplitude modulation system receiver | |
JPH03234128A (en) | Phased array antenna | |
JPH05136836A (en) | Digital modulation signal generator | |
CA1083678A (en) | Carrier wave recovery circuit | |
JPH0761023B2 (en) | Interference compensation circuit | |
JP2765601B2 (en) | Demodulation circuit | |
US3999130A (en) | Automatic frequency translator for use with a delay/amplitude equalizer | |
JP2837914B2 (en) | AFC device | |
JPH0654890B2 (en) | Interference compensation circuit | |
JPS61177054A (en) | Receiving circuit of phase modulating signal | |
JP3923354B2 (en) | Automatic tracking antenna device | |
JPH06105898B2 (en) | Interference compensation circuit | |
JPH04274642A (en) | Orthogonal modulation circuit | |
KR100285756B1 (en) | Apparatus for tracking carrier in wireless transfer system | |
JPS61156956A (en) | Carrier recovery circuit of demodulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |