JPS62219507A - Control method of annealing temperature of iron core for electric apparatus - Google Patents

Control method of annealing temperature of iron core for electric apparatus

Info

Publication number
JPS62219507A
JPS62219507A JP6211486A JP6211486A JPS62219507A JP S62219507 A JPS62219507 A JP S62219507A JP 6211486 A JP6211486 A JP 6211486A JP 6211486 A JP6211486 A JP 6211486A JP S62219507 A JPS62219507 A JP S62219507A
Authority
JP
Japan
Prior art keywords
temperature
iron core
annealing temperature
core
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6211486A
Other languages
Japanese (ja)
Inventor
Makoto Hirao
誠 平尾
Toshishige Kitagawa
北川 利栄
Junji Tsukada
塚田 淳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6211486A priority Critical patent/JPS62219507A/en
Publication of JPS62219507A publication Critical patent/JPS62219507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To control the output of an inverter by inverter control means using the results of a sought true mean annealing temperature and the heating conditions of an iron core by removing the periodic variation due to the thickness of the iron core from the temperature data measured by optical temperature measuring means and by averaging. CONSTITUTION:The data of the temperature measured by temperature measuring means 3 of an iron core 2 which is moving in a heating coil are stored in the memory 13 of a microcomputer 10 in every arbitrary sampling time Ts and an artificial mean annealing temperature Xd is sought and stored after the data of the temperature of the thickness L of 1-2 iron cores 2 are obtained. After the second measurement, a temperature XL wherein a previously set normally generated dispersion temperature DELTAX is reduced from the Xd is calculated to remove the temperature data except the normally generated dispersion temperature. Temperature data B for the temperature which is lower than the temperature XL from sampled temperature data are made void. A mean annealing temperature X near a true value is sought by averaging again when the stored number of the above-mentioned artificial mean annealing temperatures became (n).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として小型電動機や小型変圧機等の電気機
器鉄心の焼鈍に用いる誘導加熱装置における焼鈍温度制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an annealing temperature control method in an induction heating apparatus mainly used for annealing cores of electrical equipment such as small electric motors and small transformers.

従来の技術 電気機器の鉄心は、機器の効率向上のために、鉄心とし
て打抜加工後、焼鈍を実施する場合が多い。この焼鈍は
、通常残留応力除去焼鈍あるいは、歪取焼鈍と言われる
もので、750℃〜850℃で1〜2時間焼鈍され、冷
却等の全ての工程を入れると10〜12!時間かかるの
が一般的である。
BACKGROUND OF THE INVENTION Iron cores for electrical equipment are often annealed after being punched to improve the efficiency of the equipment. This annealing is usually called residual stress relief annealing or strain relief annealing, and is annealed at 750°C to 850°C for 1 to 2 hours, and when all steps such as cooling are included, the temperature is 10 to 12%. It generally takes time.

そこで、加熱手段に誘導加熱装置を採用した焼鈍方法が
種々提案されている。すなわち特開昭58二10412
5号では、加熱条件としての周波数と投入電力量につい
て、特開昭59−123719号では加熱条件として温
度と時間の関係について、さらに特開昭59−1430
26号では焼鈍装置についてである。これらの従来例に
おいては、鉄心の誘導加熱により焼鈍するに際し、鉄心
の湿層を720℃以上850℃以下に管理することが必
要とされている。
Therefore, various annealing methods using induction heating devices as heating means have been proposed. That is, JP-A-58-210412
No. 5 discusses frequency and input power as heating conditions, and JP-A-59-123719 discusses the relationship between temperature and time as heating conditions, and JP-A-59-1430
Issue 26 is about annealing equipment. In these conventional examples, when annealing the iron core by induction heating, it is necessary to control the wet layer of the iron core to 720° C. or more and 850° C. or less.

発明が解決しようとずろ問題点 しかしながら、鉄心が加熱−1イル内を移動し、昇温さ
れた鉄心温度を実測してみると、鉄心の厚みに応じて鉄
心温度の」1下変動が発生ずる。これは、加熱コイル内
で鉄心を個別に加熱する時、鉄心と鉄心の間に0.5〜
1 、0 mmのすき間があるため、鉄心温度を測定す
る光学的測温手段が、真の鉄心温度を示さない現象が生
ずる。そのため、単純に測温された鉄心温度データを平
均化した時、真の平均焼鈍温度が求められないため、こ
の結果により加熱用インバータの出力を制御してt)、
所定の温度にすることが困が11であると共に、最適焼
鈍温度と平均焼鈍温度との偏差に対するインバータ出力
の演算をする時、加熱−Iイル内を移動する速度と鉄心
の重量の条件により微妙な温度変化が生ずるため、個々
の鉄心が均一な温度で焼鈍されず、その点からみれば、
はなはだ不満足であると言わざるを得ない。
However, when the iron core is moved through a heating tube and the heated iron core temperature is actually measured, the iron core temperature fluctuates by 1.5 degrees depending on the thickness of the iron core. . This means that when heating the iron cores individually in the heating coil, the distance between the iron cores is 0.5~
Since there is a gap of 1.0 mm, a phenomenon occurs in which the optical temperature measuring means for measuring the core temperature does not indicate the true core temperature. Therefore, when simply averaging the measured core temperature data, the true average annealing temperature cannot be obtained, so the output of the heating inverter is controlled based on this result.t)
It is difficult to set the temperature to a specified level, and when calculating the inverter output for the deviation between the optimum annealing temperature and the average annealing temperature, it is difficult to calculate the inverter output for the deviation between the optimum annealing temperature and the average annealing temperature. Because of the large temperature changes that occur, the individual cores are not annealed at a uniform temperature, and from that point of view,
I have to say that I am extremely dissatisfied.

問題点を解決するだめの手段 上記、従来の問題を解決するために、本発明は、光学的
測温手段により測湿された温度データから、鉄心の厚み
による周期的な変動を取りのぞき、平均化することて真
の平均焼鈍温度を求め、その結果と鉄心の加熱条件デー
タにより、インバータ制御手段にてインバータの出力を
制御するものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention eliminates periodic fluctuations caused by the thickness of the iron core from the temperature data measured by the optical temperature measuring means, and calculates the average temperature data. The true average annealing temperature is obtained by calculating the true average annealing temperature, and the output of the inverter is controlled by the inverter control means based on the result and the heating condition data of the iron core.

作用 本発明は、鉄心の焼鈍温度を光学的測温手段により測温
した温度データを、記憶しながら、記憶した温度データ
から、鉄心の厚み毎に発生する周期的な真の温度ではな
い温度データを取りのぞいて平均化することて真の平均
焼鈍温度を求めることができ、求められた平均焼鈍温度
と、予め設定された最適焼鈍温度との偏差を演算すると
ともに、加熱コイル内を鉄心が移動する速度と鉄心の重
量により、最高焼鈍温度までに必要な大熱量が決定され
るため、これによりインバータの出力を制御し鉄心は所
定の温度に昇温されることとなる。
Function The present invention stores temperature data obtained by measuring the annealing temperature of the iron core using an optical temperature measuring means, and extracts periodic temperature data that is not the true temperature generated for each thickness of the iron core from the stored temperature data. By removing and averaging the true average annealing temperature, the deviation between the determined average annealing temperature and the preset optimal annealing temperature is calculated, and the iron core moves within the heating coil. The amount of heat required to reach the maximum annealing temperature is determined by the speed at which the annealing is performed and the weight of the core, so that the output of the inverter is controlled and the core is heated to a predetermined temperature.

実施例 以下、本発明一実施例に1)いて、図面を参照しながら
説明する。
EXAMPLE Hereinafter, one example of the present invention (1) will be described with reference to the drawings.

第1図(イ)は、鉄心が加熱コイル内を移動中の鉄心温
度を、例えば赤外線温度計等の光学的測温手段により測
温した時の温度曲線である。温度曲線によれば、鉄心の
温度ばらつきと、鉄心と鉄心とのすき間による真の温度
ではない温度ばらつきが発生ずる。そこで、本発明では
鉄心の厚みに応じた周期的な温度ばらつきを取りのぞき
、真の温度データによる平均化処狸を行う。なお、第1
図(イ)において、Aは光学的測温手段によるアナログ
データ、Tは1個当りの鉄心移動時間、A′は鉄心すき
間による温度データを示す。
FIG. 1(a) is a temperature curve obtained by measuring the temperature of the iron core while the iron core is moving within the heating coil, using an optical temperature measuring means such as an infrared thermometer. According to the temperature curve, temperature variations that are not true temperatures occur due to temperature variations in the iron core and gaps between the iron cores. Therefore, in the present invention, periodic temperature variations depending on the thickness of the iron core are removed, and averaging processing is performed using true temperature data. In addition, the first
In the figure (A), A indicates analog data obtained by optical temperature measuring means, T indicates the moving time of each core, and A' indicates temperature data obtained by the core gap.

第1図(ロ)は、サンプリングされた温度を示すもので
、鉄心が加熱コイル内を移動中の鉄心温度を、測温手段
により測湿した温度データを任意のサンプリング時間T
Sごとに、マイクロコンピュータのメモリ部に記憶し、
鉄心の厚みLの1〜2個分の温度データがたまった後、
疑似平均焼鈍温度χdを求め、記憶する。
Figure 1 (b) shows sampled temperatures. Temperature data obtained by measuring the temperature of the iron core while the iron core is moving inside the heating coil using a temperature measuring means is measured at an arbitrary sampling time T.
Each S is stored in the memory section of the microcomputer,
After collecting temperature data for one or two pieces of iron core thickness L,
The pseudo average annealing temperature χd is determined and stored.

(1〜2)×L χd −−−−−−−−−−(2’) 但し、 a;サンプリング回数 χs+aH9回目に測温した温度データ(’C)2回目
測温以後、光学的測温手段により15時間ことにサンプ
リングする温度データから、通常発生するばらつき温度
以外の温度データについて削除をするため、χdから予
め設定された通常発生するばらつき温度Δχをひいた1
品度を算出し、その温度をχLとする。サンプリングさ
れる温度データからχLよりも少ない温度について、温
度データBを無効とし、前記式(1)、(2)によりχ
d+1を求め、記憶する。順次、連続して加熱コイル内
を移動してくるn個目の鉄心の疑似平均焼鈍温度χd 
+ nをχL +n −1と比較して求め、記憶する。
(1 to 2) In order to delete temperature data other than the normally occurring temperature variations from the temperature data sampled every 15 hours by the means, 1 is obtained by subtracting the normally occurring temperature variations Δχ from χd.
Calculate the quality and let the temperature be χL. Temperature data B is invalidated for temperatures less than χL from the sampled temperature data, and χ
Find d+1 and memorize it. Pseudo-average annealing temperature χd of the n-th core that successively moves in the heating coil
+n is obtained by comparing it with χL +n -1 and stored.

前記疑似平均焼鈍温度の記憶した数がn回目になった時
、再び平均化することにより、真値に近い平均焼鈍温度
χを求める。
When the number of pseudo average annealing temperatures stored reaches the nth time, averaging is performed again to obtain an average annealing temperature χ that is close to the true value.

χd+I+ χd+2+−−1− χd+nχ 0  
                   −−−一前記
疑似平均焼鈍温度の記憶した数がn+1回目以上になっ
た時は、最も古い温度データを記憶から削除し、最も新
しい温度データを記憶し、平均化することにより、常に
真値に近い平均焼鈍温度を求めることができる。
χd+I+ χd+2+−-1− χd+nχ 0
---When the number of pseudo average annealing temperatures stored is equal to or higher than the n+1th time, the oldest temperature data is deleted from memory, the newest temperature data is stored, and the averaging is performed so that the true value is always maintained. An average annealing temperature close to can be determined.

前記ザンプリング時間1゛8は、0.05秒〜0゜1秒
であり、前記通常発生するばらつき温度は、実測温度の
分析により、15°”C−20℃である。
The sampling time 1.8 is 0.05 seconds to 0.1 seconds, and the normally occurring temperature variation is 15.degree. C. to 20.degree. C. according to an analysis of measured temperatures.

また、再平均化するまでのx+lの記憶数nは、一定数
にするのではな(、鉄心の厚みや加熱コイルを鉄心が移
動する速度のデータにより変更できることがのぞましい
。以上の平均焼鈍温度演算処理を第2図のフローヂャー
トに示す。
In addition, the number n of x+l stored before re-averaging should not be set to a constant number (it is preferable that it can be changed based on data on the thickness of the core and the speed at which the core moves through the heating coil).The above average annealing temperature calculation The process is shown in the flowchart of FIG.

次に、前記平均焼鈍温度(”−Fめ設定された最適焼鈍
温度とにより温度偏差Δ′Fを求め、八Tを解消するよ
うに、誘導加熱用インバータ出力を制御する。
Next, the temperature deviation Δ'F is determined from the average annealing temperature ("-F" and the set optimum annealing temperature), and the output of the inverter for induction heating is controlled so as to eliminate 8T.

すなわち、平均焼鈍温度は、短期的な外乱による温度変
化や、鉄心と鉄心のすき間による周期的な温度変化が除
去されているから、最適焼鈍温度に、最少範囲の焼鈍温
度幅を設けることができ、前記焼鈍温度幅を上まわる、
あるいは下まわった場合、ΔTを求め、八Tに対応した
インバータ出力P(kw)を演算する。
In other words, since the average annealing temperature eliminates temperature changes due to short-term disturbances and periodic temperature changes due to gaps between the iron cores, the optimum annealing temperature can have a minimum range of annealing temperatures. , exceeding the annealing temperature range,
Alternatively, if it is below, ΔT is determined and the inverter output P (kw) corresponding to 8T is calculated.

P=IXS+cXΔT 但し、 pm!Ix:誘導加熱インバータの最大出力(kw)3
max :加熱コイル内を鉄心が移動する最大速度(m
m 7分) b:鉄心の形状と材質による補正係数 S:加熱コイル内を鉄心が移動する速度(mm7分)C
:温度偏差へTをインバータ出力に換算する係数。
P=IXS+cXΔT However, pm! Ix: Maximum output (kw) of induction heating inverter 3
max: Maximum speed at which the iron core moves within the heating coil (m
m 7 minutes) b: Correction coefficient depending on the shape and material of the iron core S: Speed at which the iron core moves within the heating coil (mm 7 minutes) C
: Coefficient for converting T into inverter output to temperature deviation.

前記に示された演算式にて、インバータ出力Pは算出さ
れる。前記補正係数1)とCは、実験、的に定める値で
、BはO〜30稈度で、Cは0.7〜1.3程度である
Inverter output P is calculated using the equation shown above. The correction coefficient 1) and C are experimentally determined values, and B is about 0 to 30 culm degree, and C is about 0.7 to 1.3.

よって、加熱コイル内には、数十個の鉄心が入っており
、加熱二1イル入+、+(;I近の鉄心は温度」−昇中
であり、出口付近の鉄心は焼鈍完了温度に昇温された状
態が、前記温度偏差ΔTに対応したインバータ出力の制
御により最適焼鈍温度となる。
Therefore, there are several dozen cores inside the heating coil, and the temperature of the core near the heating coil is increasing, and the temperature of the core near the exit has reached the annealing completion temperature. The heated state becomes the optimum annealing temperature by controlling the inverter output in accordance with the temperature deviation ΔT.

第3図は、この発明を実施゛するための電気機器鉄心製
造における焼鈍温度制御装置の説明図である。図示され
るイうに、゛ルノイド型加熱コイルlを連続的に通過す
る鉄心2は、加熱コイル1を通過しながら徐々に加熱さ
れ、加熱コイル1の出口の近傍で最高温度となる。前記
加熱コイル1の出口の近傍に、光学的測温手段の一例で
ある赤外線温度計3を位置し、鉄心温度を測温する。測
温された結果は、光−電気変換器4を経てA/D変換器
5へ入力され、アナログ値からデジタル値に変換される
。その結果は、インバータ制御手段を構成するマイクロ
コンピュータ10内のメモリ部13に記憶され、第2図
に示した前記平均焼鈍温度演算処理により、前記温度偏
差へTを求める。
FIG. 3 is an explanatory diagram of an annealing temperature control device for manufacturing an electrical equipment core for carrying out the present invention. As shown in the figure, the iron core 2 that continuously passes through the ulnoid heating coil 1 is gradually heated while passing through the heating coil 1, and reaches its maximum temperature near the outlet of the heating coil 1. An infrared thermometer 3, which is an example of optical temperature measuring means, is placed near the outlet of the heating coil 1 to measure the temperature of the iron core. The temperature measurement result is input to the A/D converter 5 via the optical-to-electrical converter 4, and is converted from an analog value to a digital value. The result is stored in the memory section 13 in the microcomputer 10 constituting the inverter control means, and T is determined as the temperature deviation by the average annealing temperature calculation process shown in FIG.

そして、誘導加熱用インバータ出力を演算するため、加
熱コイル1を通過する速度を速度検出手段の一例である
パルス信号発生器6により測定し、パルスカラン、り7
て係数値に変換し、その結果をマイクロコンピュータ1
0に入力し、インバータ出力の演算に必要な係数、たと
えば、前記誘導加熱インバータ最大出力Pm+lx (
kw) 、前記温度偏差ΔTをインバータ出力に換算す
る係数等を、外部補助記憶手段の一例であるフロッピー
ディスクよりマイクロコンピュータ10に入力される。
In order to calculate the induction heating inverter output, the speed of passing through the heating coil 1 is measured by a pulse signal generator 6, which is an example of speed detection means, and the pulse signal generator 6 is used as a pulse signal generator 6.
Convert it to a coefficient value, and send the result to the microcomputer 1.
0 and the coefficient necessary for calculating the inverter output, for example, the induction heating inverter maximum output Pm+lx (
kw), a coefficient for converting the temperature deviation ΔT into an inverter output, etc. are input to the microcomputer 10 from a floppy disk, which is an example of external auxiliary storage means.

さらに、任意に変更する係数については、キーボード1
1より入力され、その結果は、ディスプレー12に表示
され、入力値や演算結果を確認することができる。
Furthermore, for coefficients to be changed arbitrarily, keyboard 1
1, and the results are displayed on the display 12, allowing the input values and calculation results to be confirmed.

上記、加熱条件により、マイクロコンピュータ10から
、インバータ出力制御信号がD/A変換器9を通して加
熱用インバータ8に入力され、インバータ出力が調整さ
れる。
According to the heating conditions described above, an inverter output control signal is input from the microcomputer 10 to the heating inverter 8 through the D/A converter 9, and the inverter output is adjusted.

発明の効果 以上の如く本発明では、鉄心の短期的な外乱による温度
変化や、鉄心と鉄心のすき間による周期的な温度変化を
取りのぞき、真の平均焼鈍温度を求め、前記平均焼鈍温
度により、最適焼鈍温度との偏差を求め、その結果によ
りインバータ出力の制御をするため、加熱コイルを通過
した全ての鉄心が、所定の温度範囲内にS’l’ Im
され、−切温度不足あるいは超過の不良が発生せず、安
定した焼鈍が可能であり、誘導加熱法を採用した焼鈍の
有利性を確実なものとてき、良好な品質の鉄心を低価格
で供給できる。
Effects of the Invention As described above, in the present invention, temperature changes due to short-term disturbances of the iron core and periodic temperature changes due to gaps between the iron cores are removed, the true average annealing temperature is determined, and from the average annealing temperature, In order to determine the deviation from the optimum annealing temperature and control the inverter output based on the result, all the iron cores passing through the heating coil are kept within a predetermined temperature range.
As a result, stable annealing is possible without defects due to insufficient or excessive cutting temperatures, ensuring the advantages of annealing using induction heating, and providing iron cores of good quality at low prices. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は加熱コイル付近の鉄心焼鈍温度のアナロ
グ実測結果を示す図、第1図(ロ)は・す″ンプリング
された温度を示す図、第2図は平均焼鈍温度演算処理の
フローチャー1・を示す図、第3図は本発明の実施例を
示す111192図である。 1・・・・・・加熱コイル、2・・・・・・鉄心、3・
・・・・・光学的測温手段、4・・・・・・光−電気変
換器、5・・・・・・A/D変換器、6・・・・・・パ
ルス信号発生器、7・・・・・・パルスカウンタ、8・
・・・・・加熱用インバータ、9・・・・・・D/A変
換器、10・・・・・・マイクロコンピュータ、11・
・・・・・キーボード、12・・・・・・ディスプレー
、13・・・・・・メモリ部、14・・・・・・フロッ
ピーディスク。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 (イ) (ロ) 相 第2図
Figure 1 (a) is a diagram showing analog actual measurement results of the core annealing temperature near the heating coil, Figure 1 (b) is a diagram showing the sampled temperature, and Figure 2 is a diagram showing the average annealing temperature calculation process. A diagram showing flowchart 1, and FIG. 3 are diagrams 111192 showing an embodiment of the present invention. 1... Heating coil, 2... Iron core, 3...
. . . Optical temperature measurement means, 4 . . . Optical-electrical converter, 5 . . . A/D converter, 6 . ...Pulse counter, 8.
... Heating inverter, 9 ... D/A converter, 10 ... Microcomputer, 11.
... Keyboard, 12 ... Display, 13 ... Memory section, 14 ... Floppy disk. Name of agent Patent attorney Toshio Nakao (1 person) Figure 1 (a) (b) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)誘導加熱法によって連続的に電気機器鉄心を焼鈍
する際、鉄心の焼鈍温度を測定する光学的測温手段によ
り測温し、温度データを記憶する一方、前記記憶した温
度データから、平均化して平均焼鈍温度を求める時に、
鉄心厚みによる周期的な変動を取りのぞくことにより、
真の平均焼鈍温度を求め、前記鉄心に対して予め設定さ
れた最適焼鈍温度と前記平均焼鈍温度との偏差を解消す
るように、誘導加熱用インバータ出力手段を制御する電
気機器鉄心の焼鈍温度制御方法。
(1) When continuously annealing the iron core of electrical equipment using the induction heating method, the temperature is measured by an optical temperature measuring means that measures the annealing temperature of the iron core, and the temperature data is stored. When calculating the average annealing temperature by
By removing periodic fluctuations due to core thickness,
Annealing temperature control for an electrical equipment iron core, which calculates a true average annealing temperature and controls an induction heating inverter output means so as to eliminate a deviation between an optimum annealing temperature preset for the iron core and the average annealing temperature. Method.
(2)誘導加熱用インバータの出力を制御する時に、加
熱コイル内を鉄心が移動する速度と鉄心の形状と鉄心の
材質等の条件により、偏差に基づいた演算を行う特許請
求の範囲第1項記載の電気機器鉄心の焼鈍温度制御方法
(2) When controlling the output of the induction heating inverter, calculations are performed based on deviations based on conditions such as the speed at which the core moves within the heating coil, the shape of the core, and the material of the core. The method for controlling the annealing temperature of an electrical equipment core.
JP6211486A 1986-03-19 1986-03-19 Control method of annealing temperature of iron core for electric apparatus Pending JPS62219507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6211486A JPS62219507A (en) 1986-03-19 1986-03-19 Control method of annealing temperature of iron core for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6211486A JPS62219507A (en) 1986-03-19 1986-03-19 Control method of annealing temperature of iron core for electric apparatus

Publications (1)

Publication Number Publication Date
JPS62219507A true JPS62219507A (en) 1987-09-26

Family

ID=13190705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6211486A Pending JPS62219507A (en) 1986-03-19 1986-03-19 Control method of annealing temperature of iron core for electric apparatus

Country Status (1)

Country Link
JP (1) JPS62219507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270064A (en) * 2020-01-23 2020-06-12 西南交通大学 Control method of coiled iron core annealing process and evaluation method of annealing effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270064A (en) * 2020-01-23 2020-06-12 西南交通大学 Control method of coiled iron core annealing process and evaluation method of annealing effect
CN111270064B (en) * 2020-01-23 2020-10-02 西南交通大学 Control method of coiled iron core annealing process and evaluation method of annealing effect

Similar Documents

Publication Publication Date Title
Lillie Viscosity‐time‐temperature relations in glass at annealing temperatures
Towle et al. The creep of alpha-iron at low stresses
US4795884A (en) Method for in-situ restoration of plantinum resistance thermometer calibration
Kotler et al. Experimental observations of dendritic growth
JPS62219507A (en) Control method of annealing temperature of iron core for electric apparatus
JP4096034B2 (en) Creep test method
Davies et al. The contribution of voids to the tertiary creep of gold
CN107990977B (en) Measurement method of solar absolute radiometer based on PI controller
EP0919806B1 (en) High-speed thermal analyser
Thompson et al. Relation between temperature and solidification velocity in rapidly cooled liquid silicon
US3759083A (en) Sensing element response time measuring system
US4775400A (en) Method of controlling glass fiber formation and control system
Nilan et al. Stored-Energy Release Below 80° K in Deuteron-Irradiated Copper
US4225306A (en) Method of controlling a heating furnace for steel ingots
US4923529A (en) Equipment for continuous heat treatment of tungsten filaments wound on molybdenum cores
Kumar et al. β-brass critical temperatures and exponents as a function of composition
Kollie Specific heat determinations by pulse calorimetry utilizing a digital voltmeter for data acquisition
JPH06303746A (en) Control method of heating temperature of motor core
JPH07260663A (en) Gas analyzing method in thermogravimetry
RU2563337C2 (en) Method and device for electric furnace heater control
Bobrov et al. Stress relaxation in an Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 bulk metallic glass
JPS5635026A (en) Temperature estimating system for heated object
Lopukh et al. Investigation of Parameters Dependences of Induction Melting of Glass in a Cold Crucible in Stationary and Dynamic Modes
Flores et al. The solubility of argon in vitreous silica
Houzali et al. A new technique for dynamic annealing of amorphous alloys using Joule effect with controlled mechanical tensile stress