JPS62219322A - Magnetic disk substrate - Google Patents

Magnetic disk substrate

Info

Publication number
JPS62219322A
JPS62219322A JP6326886A JP6326886A JPS62219322A JP S62219322 A JPS62219322 A JP S62219322A JP 6326886 A JP6326886 A JP 6326886A JP 6326886 A JP6326886 A JP 6326886A JP S62219322 A JPS62219322 A JP S62219322A
Authority
JP
Japan
Prior art keywords
magnetic disk
film
thickness
substrate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6326886A
Other languages
Japanese (ja)
Inventor
Toshiya Murata
俊哉 村田
Toshikazu Nishihara
西原 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP6326886A priority Critical patent/JPS62219322A/en
Publication of JPS62219322A publication Critical patent/JPS62219322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the titled substrate provided with sufficient strength, and an excellent wear resistance requiring no surface finishing, by forming a WC (tungsten carbide) layer exceeding a specific thickness, on a disk made of aluminum, which is applied to turn work by diamond bit. CONSTITUTION:A magnetic disk substrate whose material cost is comparatively inexpensive, and also, whose surface finishing is not required, by forming a WC (tungsten carbide) layer whose thickness exceeds 500Angstrom , on a disk made of aluminum, which is applied to turn work by diamond bit. When thickness of the WC film is set to >=about 500Angstrom , said layer becomes clearly smoother than roughness of the surface of an Al base (substrate). In case of only the Al base on which the WC film is not formed, a head crush occurs, and an extremely large sliding mark is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、磁気ディスクの静止中には磁気ヘッ
ドが磁気ディスクに当接し、且つ磁気ディスクの回転中
(記録、再生中)には僅かに浮上させて記録、再生を行
なう装置(いわゆる浮動型磁気ヘッドを使用する磁気記
録再生装置a)に使用される磁気ディスク等を作成する
ための磁気ディスク基板に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides, for example, a magnetic head in contact with the magnetic disk when the magnetic disk is stationary, and a magnetic head in contact with the magnetic disk while the magnetic disk is rotating (during recording and reproduction). The present invention relates to a magnetic disk substrate for producing a magnetic disk or the like used in a device that performs recording and reproducing while slightly floating (a so-called magnetic recording/reproducing device using a floating magnetic head).

〔従来の技術及びその問題点〕[Conventional technology and its problems]

一般に浮動型磁気ヘッドを使用する磁気記録再生装置に
おいて、高密度記録を行なうには、磁気ディスク及び磁
気ヘッド自体の諸特性の改善が必要なことは言うまでも
ないが、磁気ディスクの記録面と磁気ヘッドとの間隙、
いわゆるスペーシング(3pacing)を小さくする
ことが最も効果的である。従来この種の装置におけるス
ペーシングは、記録密度が40008 P I (bi
t/ 1nch)程度のものに対しては1μ程度で充分
であるが、10,0OOB P1以上の場合は0.2μ
以下、更に20,0OOB P 1以上に対しては0.
15μ程度まで小さくする必要があると考えられている
In magnetic recording and reproducing devices that generally use floating magnetic heads, it goes without saying that in order to perform high-density recording, it is necessary to improve the characteristics of the magnetic disk and the magnetic head itself. The gap between
It is most effective to reduce so-called spacing (3pacing). Conventionally, the spacing in this type of device has a recording density of 40008 PI (bi
Approximately 1μ is sufficient for something like t/1nch), but 0.2μ for 10,0OOB P1 or more.
Below, further 0.0 for 20,0 OOB P 1 or more.
It is believed that it is necessary to reduce the thickness to about 15μ.

ところでこの種の装置で注意すべきことは、磁気ディス
ク表面と磁気ヘッドとの接触、いわゆるヘッドクラッシ
ュによる磁性層の破壊である。特に、高密度記録化に伴
ない、スペーシングが小さくなるにつれ、ヘッドクラッ
シュの発生頻度が増大するのは明らかである。そこで従
来は、このヘッドクラッシュから磁性層を保護するため
に磁性層上にRh(ロジウム)、Cr(クロム)、N1
−P等の硬い金属皮膜を形成し、これを保護膜としてい
た。しかるにこれらの皮膜はあまり厚く形成することが
できず、また、薄く形成すればする程容易に傷付き易く
なり、傷によって発生した摩耗粉末が研磨剤のような作
用をして、急速に傷を拡げ、遂には磁性層までも破壊す
るという欠点があった。また、ヘッドクラッシュにより
磁気ディスクに対向する磁気ヘッドまでも破壊されてし
まうことが度々あった。このため、Rh、Cr、N1−
P等よりも更に硬く、傷を生じ難い皮膜、例えば5LO
2,83N41 At 203.TLC,SLC,B4
C等の酸化物、炭化物、窒化物等からなる保護膜が提案
されている。これらの無機化合物はいずれもスパッタリ
ングによる皮膜形成が可能であるが、スパッタリングで
形成されたこれらの保護膜は密着性、潤滑性、再現性等
で問題となるものが多く、そのまま保護膜として使用で
きるものは少ない。特にスパッタリング形成された炭化
物から成る保護膜は耐摩耗性における再現性が乏しり、
優れた耐摩耗性を示す保!It!のスパッタリング条件
と同一条件でスパッタリングしても常に耐摩耗性に優れ
た保l!膜が得られるとは限らず、中にはRh 、 C
r 、 N i−P等の鶴来の保護膜より耐摩耗性にお
いて劣るものがあるという問題点があった。
However, what should be noted in this type of device is the destruction of the magnetic layer due to contact between the magnetic disk surface and the magnetic head, or so-called head crash. In particular, it is clear that as the spacing becomes smaller with higher density recording, the frequency of head crashes increases. Conventionally, in order to protect the magnetic layer from this head crash, Rh (rhodium), Cr (chromium), N1
-A hard metal film such as P was formed and used as a protective film. However, these films cannot be formed very thickly, and the thinner they are formed, the more easily they become scratched, and the abrasion powder generated by the scratches acts like an abrasive, rapidly causing the scratches. It had the disadvantage of spreading and eventually destroying the magnetic layer. Furthermore, the magnetic head facing the magnetic disk was often destroyed due to a head crash. Therefore, Rh, Cr, N1-
A film that is harder than P, etc. and less likely to cause scratches, such as 5LO
2,83N41 At 203. TLC, SLC, B4
Protective films made of oxides such as C, carbides, nitrides, etc. have been proposed. All of these inorganic compounds can be used to form films by sputtering, but these protective films formed by sputtering often have problems with adhesion, lubricity, reproducibility, etc., so they cannot be used as is as a protective film. There aren't many things. In particular, protective films made of carbide formed by sputtering have poor reproducibility in wear resistance.
It shows excellent wear resistance! It! Even when sputtering is performed under the same sputtering conditions, it always maintains excellent wear resistance! It is not always possible to obtain a film, and some of them contain Rh, C.
There was a problem in that some protective films were inferior in abrasion resistance to Tsurugi's protective films such as R, Ni-P, etc.

以上の諸問題点を解消するために、磁気ディスクの下地
基板〈サブストレート)としてダイヤターン加工したA
n(アルミニウム)を用い、このAJの硬度の低さや表
面の粗さを補うためにAlの上に無電解ニッケル鍍金を
施した後表面仕上げをしてサブストレートを作成してい
る。しかるにかかる方法によって得られるサブストレー
トは材料費が高く、しかも表面仕上げに時間がかかるの
で、製造コストが大幅にかかり、大きな負担となってい
た。
In order to solve the above problems, diamond-turned A was used as the base substrate for the magnetic disk.
Using n (aluminum), in order to compensate for the low hardness and surface roughness of this AJ, electroless nickel plating is performed on the Al and the surface is then finished to create a substrate. However, the substrates obtained by such methods have high material costs and require time to finish the surface, resulting in significant manufacturing costs and a heavy burden.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、ダイヤターン加工したアルミニウムの円盤
上に500Å以上の厚さのWC(タングステンカーバイ
ド)層を形成することにより、材料費が比較的安価で、
しかも表面仕上げの必要のない磁気ディスク基板を得る
ことに成功し、上記諸問題点を解決したものである。
In the present invention, by forming a WC (tungsten carbide) layer with a thickness of 500 Å or more on a diamond-turned aluminum disk, the material cost is relatively low.
In addition, we have succeeded in obtaining a magnetic disk substrate that does not require surface finishing, and have solved the above-mentioned problems.

(実施例) ここで、本発明の磁気ディスク基板の作り方について説
明する。まずA4またはA1合金の円盤をダイヤターン
加工(高速回転させながらダイヤモンドバイトで研磨す
ること)する。次にこの円盤上に、例えばスパッタリン
グ法等によりWC層の膜を形成する。なお、WCにはバ
インダーとして5wt%程度のCOを含んでもよい。
(Example) Here, how to make a magnetic disk substrate of the present invention will be explained. First, a disk of A4 or A1 alloy is diamond-turned (polished with a diamond cutting tool while rotating at high speed). Next, a WC layer is formed on this disk by, for example, sputtering. Note that the WC may contain about 5 wt% of CO as a binder.

かかる方法により作成した、種々の厚さのWC膜を有す
る磁気ディスク基板の諸特性硬度と中心線平均粗さRa
)の測定結果を第1表に示す。
Various characteristics hardness and center line average roughness Ra of magnetic disk substrates having WC films of various thicknesses prepared by this method.
) are shown in Table 1.

第1表 各WCC膜厚おける硬度と表面粗度この第1表
において、摺動痕は、動I9!擦係数測定(ディスク−
ヘッド摺動試験)後のWC膜を形成した磁気ディスク基
板の傷つぎ具合から、表面性、潤滑性、耐摩耗性等を総
合的に判断するものである。また、中心線平均粗さR(
a>は、ランク・テーラ−・ホブソン社のタリステップ
を用いて測定し、計算処理したものである。なお、スパ
ッタリングは各WC膜厚とも2r717 orr〜20
mTorrのうちのいくつかの真空度で行なってWC躾
を形成したが、真空度の相違による特性の有意差は認め
られなかった。
Table 1 Hardness and surface roughness for each WCC film thickness In Table 1, the sliding marks are dynamic I9! Friction coefficient measurement (disc-
The surface properties, lubricity, wear resistance, etc. are comprehensively judged from the degree of damage to the magnetic disk substrate on which the WC film was formed after the head sliding test). In addition, the center line average roughness R (
a> is measured and calculated using Talystep manufactured by Rank Taylor Hobson. In addition, sputtering has a thickness of 2r717 orr~20 for each WC film thickness.
Although WC was formed at several vacuum degrees of mTorr, no significant difference in characteristics was observed depending on the vacuum degree.

上記実験結果から、W CII厚を大体500Å以上に
すると、AXベース(基板)の表面粗さと比較して明確
に滑らかになっていることがわかる。また、W CII
Iを形成しないAJベースのみの場合には、ヘッドクラ
ッシュを起こしてしまい、極めて大きな摺動痕が生じて
しまうので、このことがらWC膜を形成することの効果
が如何に大きいかがわかる。従って、Aiベースのみの
場合に生じ易かった、搬送中等の傷つきや変形等の心配
はなくなった。
From the above experimental results, it can be seen that when the W CII thickness is approximately 500 Å or more, the surface roughness becomes clearly smoother compared to the surface roughness of the AX base (substrate). Also, W CII
In the case of only an AJ base without forming an I, a head crash occurs and extremely large sliding marks are produced, so this shows how great the effect of forming a WC film is. Therefore, there is no need to worry about damage or deformation during transportation, etc., which was likely to occur when using only an Ai base.

次に、本発明の磁気ディスク基板の硬度について、従来
のNLP皮膜を有する磁気ディスク基板との比較におい
て測定した結果を第2表に示す。
Next, Table 2 shows the hardness of the magnetic disk substrate of the present invention measured in comparison with a magnetic disk substrate having a conventional NLP film.

なお、WCのスパッタリングは、Arガス雰囲気中、真
空度2mTorr、及び10mTorr (7)2通m
2表 各種磁気ディスク基板の硬度 H:押し込み深さ D H−37,837P / )−1まただしP:試験
荷重〔g重〕 (p−100mg重で測定) なお、押込み深さH及び[) H(D ynamic 
 Hard−nass)は島沖製作所製のDUH−50
を用いて測定した。DUI−1−50は、ダイヤモンド
圧子を試験片に試験荷重Pで押込み、圧子の押込み深さ
Hを測定し、更に上式によりDHを算定する装置である
Note that WC sputtering was performed in an Ar gas atmosphere at a vacuum level of 2 mTorr and 10 mTorr (7) 2 times m
Table 2 Hardness H of various magnetic disk substrates: Indentation depth D H-37,837P/)-1 P: Test load [g weight] (measured with p-100 mg weight) In addition, indentation depth H and [) H (Dynamic
Hard-nass) is DUH-50 manufactured by Shimaoki Seisakusho.
Measured using DUI-1-50 is a device that indents a diamond indenter into a test piece with a test load P, measures the indentation depth H of the indenter, and further calculates DH using the above formula.

上記第2表から、真空度10m T orr テ500
OAに近い厚さのWC躾を形成すれば、従来のNLP膜
形成の磁気ディスク基板と同等以上の硬度が得られるこ
とがわかるが、実用上は、第1表の測定値により、WC
膜厚が500A程度以上あればさしつかえないと考えら
れる。なお、従来の磁気ディスク基板におけるNIP膜
の厚さは10数μ〜数十μであり、これに比べて本発明
の磁気ディスク基板におけるWC膜の厚さは2桁近く薄
くてすむので、材料費の点からも有利である。
From Table 2 above, vacuum degree 10m Torr Te500
It can be seen that by forming a WC layer with a thickness close to that of OA, it is possible to obtain a hardness equivalent to or higher than that of a magnetic disk substrate formed with a conventional NLP film.
It is considered that there is no problem if the film thickness is about 500A or more. Note that the thickness of the NIP film in a conventional magnetic disk substrate is about 10 μm to several tens of μm, and compared to this, the thickness of the WC film in the magnetic disk substrate of the present invention is nearly two orders of magnitude thinner. It is also advantageous in terms of cost.

なお、本発明の磁気ディスク基板は、浮動型磁気ヘッド
用の°磁気ディスクの材料(原盤)に限定されるもので
はなく、例えば磁気ディスクと磁気ヘッドとが常に接触
するようなタイプの磁気ディスク用の磁気ディスク基板
としても適用し得ることは言うまでもない。
Note that the magnetic disk substrate of the present invention is not limited to magnetic disk materials (master disks) for floating magnetic heads, but can be used, for example, for magnetic disks of a type in which a magnetic disk and a magnetic head are in constant contact. Needless to say, it can also be applied as a magnetic disk substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の磁気ディスク基板は、浮
動型磁気ヘッドを使用する磁気記録再生装置に使用され
る磁気ディスクを製造するために十分な強度を有し、か
つ耐摩耗性に優れており、しかも、表面仕上げを必要と
しないで安価に得られるという、実用上優れた特長を有
するものである。
As explained above, the magnetic disk substrate of the present invention has sufficient strength and excellent wear resistance for manufacturing magnetic disks used in magnetic recording and reproducing devices using floating magnetic heads. Moreover, it has excellent practical features in that it can be obtained at low cost without requiring surface finishing.

特許出願人  日本ビクター株式会社 1.′:・ 代表者  大通 −m11嘔 手続ネrli iE書 1、事件の表示 昭和61年特許願第63268号 2、発明の名称 磁気ディスク基板 3、補正をする者 事件との関係  特許出願人 住所 神奈川県横浜市神奈用区守屋町3丁目12番地 4、補正命令の日付 (自発補正) 5、補正の対象 明りIl書の特許請求の範囲及び発明の詳細な〈1〉特
許請求の範囲を別紙の通り補正する。
Patent applicant: Victor Japan Co., Ltd. 1. ':・Representative Odori-m11 Proceedings Nerli iE Book 1, Display of the Case 1985 Patent Application No. 63268 2, Name of the Invention Magnetic Disk Substrate 3, Person Making Amendment Relationship with the Case Patent Applicant Address Kanagawa 3-12-4 Moriya-cho, Kanayō-ku, Yokohama City, Prefecture Date of amendment order (voluntary amendment) Correct as expected.

(2)明細お第3頁第9行のrs3N+Jを、「Si3
N4」と補正する。
(2) Change rs3N+J on the 9th line of page 3 of the specification to “Si3
N4” is corrected.

(3)同、第4頁第15行乃至第16行の「ダイヤ・・
・ニウム」を「A4又はA1合金」と補正する。
(3) Same, page 4, lines 15 and 16, “Diamond...
・Correct "Nium" to "A4 or A1 alloy".

(4)同、第5頁第3行乃至第5行の「まず・・・・・
・次に」をFAA又はA4合金の円盤(予めダイヤター
ン加工(高速回転させながらダイヤモンドバイトで研磨
すること)を施しておくと良い)を用意し、」と補正す
る。
(4) Same, page 5, lines 3 to 5, “First of all...
・Next, prepare a disk made of FAA or A4 alloy (preferably diamond-turned (polished with a diamond cutting tool while rotating at high speed) in advance) and correct it to ``.

(5)同頁の第1表を次のように補正する。(5) Table 1 on the same page is amended as follows.

第1表 各WC膜厚における硬度と表面粗度(6)同頁
第8行の「co」をrCo等の金属」と補正する。
Table 1 Hardness and surface roughness at each WC film thickness (6) Correct "co" in line 8 of the same page to "metal such as rCo".

(7)同、第7頁の第2表中の「μ」を「μm」と補正
する。
(7) "μ" in Table 2 on page 7 of the same document is corrected to "μm".

(8)同、第8頁第1行の「深さ」を「深さ〔μm)J
と補正する。
(8) Same, page 8, line 1, “depth” was changed to “depth [μm] J
and correct it.

(9)同頁第17行の「10数μ〜数十μ」を「数10
μm」と補正する。
(9) In the 17th line of the same page, “10-odd μ to several tens of μ” is changed to “several 10-odd μ”
µm”.

特許請求の範囲Scope of claims

Claims (1)

【特許請求の範囲】[Claims]  ダイヤターン加工したアルミニウムの円盤上に500
Å以上の厚さのWC(タングステンカーバイド)層を形
成したことを特徴とする磁気ディスク基板。
500 on a diamond-turned aluminum disk
A magnetic disk substrate characterized by forming a WC (tungsten carbide) layer with a thickness of Å or more.
JP6326886A 1986-03-20 1986-03-20 Magnetic disk substrate Pending JPS62219322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6326886A JPS62219322A (en) 1986-03-20 1986-03-20 Magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6326886A JPS62219322A (en) 1986-03-20 1986-03-20 Magnetic disk substrate

Publications (1)

Publication Number Publication Date
JPS62219322A true JPS62219322A (en) 1987-09-26

Family

ID=13224374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6326886A Pending JPS62219322A (en) 1986-03-20 1986-03-20 Magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPS62219322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297678A (en) * 1988-09-30 1990-04-10 Central Glass Co Ltd Wear resistant aluminum material and production thereof
WO1993007613A2 (en) * 1991-10-04 1993-04-15 Tulip Memory Systems, Inc. Coating of metal-substrate disk for magnetic recording
US5536549A (en) * 1993-08-02 1996-07-16 Tulip Memory Systems, Inc. Austenitic stainless steel substrate for magnetic-recording media
US5681635A (en) * 1994-01-20 1997-10-28 Tulip Memory Systems, Inc. Magnetic recording medium having a ceramic substrate, an underlayer having a dense fibrous zone T structure, and a magnetic layer
US5707705A (en) * 1993-09-08 1998-01-13 Tulip Memory Systems, Inc. Titanium or titanium-alloy substrate for magnetic-recording media

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297678A (en) * 1988-09-30 1990-04-10 Central Glass Co Ltd Wear resistant aluminum material and production thereof
WO1993007613A2 (en) * 1991-10-04 1993-04-15 Tulip Memory Systems, Inc. Coating of metal-substrate disk for magnetic recording
WO1993007613A3 (en) * 1991-10-04 1993-07-08 Tulip Memory Systems Inc Coating of metal-substrate disk for magnetic recording
US5626920A (en) * 1991-10-04 1997-05-06 Tulip Memory Systems, Inc. Method for coating metal disc substrates for magnetic-recording media
US5811182A (en) * 1991-10-04 1998-09-22 Tulip Memory Systems, Inc. Magnetic recording medium having a substrate and a titanium nitride underlayer
US6103367A (en) * 1991-10-04 2000-08-15 Tulip Memory Systems, Inc. Coating of metal substrate for magnetic recording medium
US5536549A (en) * 1993-08-02 1996-07-16 Tulip Memory Systems, Inc. Austenitic stainless steel substrate for magnetic-recording media
US5900126A (en) * 1993-08-02 1999-05-04 Tulip Memory Systems, Inc. Method for manufacturing austenitic stainless steel substrate for magnetic-recording media
US5707705A (en) * 1993-09-08 1998-01-13 Tulip Memory Systems, Inc. Titanium or titanium-alloy substrate for magnetic-recording media
US5961792A (en) * 1993-09-08 1999-10-05 Tulip Memory Systems, Inc. Method for making titanium or titanium-alloy substrate for magnetic-recording media
US5681635A (en) * 1994-01-20 1997-10-28 Tulip Memory Systems, Inc. Magnetic recording medium having a ceramic substrate, an underlayer having a dense fibrous zone T structure, and a magnetic layer

Similar Documents

Publication Publication Date Title
US4647494A (en) Silicon/carbon protection of metallic magnetic structures
EP0249216B1 (en) Magnetic recording medium and method of manufacturing the same
US4664976A (en) Magnetic recording medium comprising a protective carbon nitride layer on the surface thereof
JPS62219322A (en) Magnetic disk substrate
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JPH0349020A (en) Magnetic recording medium
US5496606A (en) Magnetic recording medium
KR890004256B1 (en) Magnetic recording carrier
EP0547820B1 (en) A magnetic recording disk having an improved protective overcoat
US5223304A (en) Process for fabricating magnetic disks
EP0109481B1 (en) Magnetic recording disk
JPS62219323A (en) Magnetic recording medium and its production
JPS62252518A (en) Magnetic recording medium and its production
JPS626425A (en) Magnetic recording medium
JPS62287415A (en) Magnetic recording medium
JP2626737B2 (en) Solid lubrication film structure of magnetic recording media
JP2625652B2 (en) Memory device
JPH0644559A (en) Magnetic disk and its production
JPS62289913A (en) Magnetic recording medium
JP2558653B2 (en) Magnetic recording media
JPH0428013A (en) Metallic thin film type magnetic recording disk
JPS63102017A (en) Magnetic recording medium
JP3038888B2 (en) Magnetic disk
JPH0731807B2 (en) Magnetic recording medium
JPH0240129A (en) Magnetic disk for high hardness slider