JPS6221888Y2 - - Google Patents

Info

Publication number
JPS6221888Y2
JPS6221888Y2 JP1981098557U JP9855781U JPS6221888Y2 JP S6221888 Y2 JPS6221888 Y2 JP S6221888Y2 JP 1981098557 U JP1981098557 U JP 1981098557U JP 9855781 U JP9855781 U JP 9855781U JP S6221888 Y2 JPS6221888 Y2 JP S6221888Y2
Authority
JP
Japan
Prior art keywords
evaporator
compressor
compressors
evaporators
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981098557U
Other languages
Japanese (ja)
Other versions
JPS584973U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9855781U priority Critical patent/JPS584973U/en
Publication of JPS584973U publication Critical patent/JPS584973U/en
Application granted granted Critical
Publication of JPS6221888Y2 publication Critical patent/JPS6221888Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Description

【考案の詳細な説明】 本考案は冷凍装置、特に複数の圧縮機と複数の
蒸発器とを同一冷媒回路中に挿入してなる冷凍装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system, and particularly to a refrigeration system in which a plurality of compressors and a plurality of evaporators are inserted into the same refrigerant circuit.

公知のこの種の冷凍装置は、第1図系統図に示
すように、圧縮機1、凝縮器2、液ライン電磁弁
3aおよび3b、膨張弁4aおよび4b、第1蒸
発器5a、第2蒸発器5b、蒸発圧力調整弁6、
逆止弁7よりなり、第1蒸発器5a、第2蒸発器
5bをそれぞれ異なる蒸発温度で使用する場合
の、冷媒の流れは、実線矢印で示すように、圧縮
機1→凝縮器2と流れたのち2つに分流し、一方
は液ライン電磁弁3a→膨張弁4a→第1蒸発器
(高温用)5a→蒸発圧力調整弁6と流れるとゝ
もに、他方は液ライン電磁弁3b→膨張弁4b→
第2蒸発器(低温用)5b→逆止弁7と流れたの
ち、両分流は合流して圧縮機1に戻る。
As shown in the system diagram of FIG. 1, a known refrigeration system of this type includes a compressor 1, a condenser 2, liquid line solenoid valves 3a and 3b, expansion valves 4a and 4b, a first evaporator 5a, and a second evaporator. 5b, evaporation pressure adjustment valve 6,
When the first evaporator 5a and the second evaporator 5b are used at different evaporation temperatures, the flow of refrigerant is from the compressor 1 to the condenser 2, as shown by the solid arrow. After that, the flow is divided into two parts, one of which flows from liquid line solenoid valve 3a → expansion valve 4a → first evaporator (for high temperature) 5a → evaporation pressure adjustment valve 6, and the other flows from liquid line solenoid valve 3b → Expansion valve 4b→
After flowing from the second evaporator (for low temperature) 5b to the check valve 7, both branched streams merge and return to the compressor 1.

通常、冷凍装置の運転効率は圧縮機の吸入圧力
が高い程良くなり、逆に吸入圧力が低い程悪くな
るので、第1図に示す異なる蒸発温度で使用する
複数の蒸発器を有する冷凍装置の欠点は、圧縮機
1の吸入圧力が第2蒸発器(低温用)5bの蒸発
圧力とほゞ同じ圧力となり、本来第1蒸発器(高
温用)5aは効率良く運転出来るにもかゝわら
ず、蒸発圧力調整弁6で第2蒸発器(低温用)5
bと同じ吸入圧力まで低下させて効率を悪くして
運転する結果となつて了うことである。
Normally, the operating efficiency of a refrigeration system improves as the suction pressure of the compressor increases, and conversely decreases as the suction pressure decreases. The disadvantage is that the suction pressure of the compressor 1 is almost the same as the evaporation pressure of the second evaporator (for low temperature) 5b, and even though the first evaporator (for high temperature) 5a can normally operate efficiently. , the second evaporator (for low temperature) 5 with the evaporation pressure adjustment valve 6
This results in lowering the suction pressure to the same level as b, resulting in inefficient operation.

本考案はこのような事情に鑑みて提案されたも
ので、異なる蒸発温度で使用する複数の蒸発器を
有する冷凍装置の運転効率を改善するとゝもに、
圧縮機の故障時に温度上昇による商品損傷を防止
する冷凍装置を提供することを目的とし、複数の
圧縮機と複数の蒸発器とを同一冷媒回路中に挿入
する冷凍装置において、上記複数の蒸発器の出口
側を前記複数の圧縮機と同数の連絡管路で接続し
上記各連絡管路をそれぞれ三方弁を介して前記各
圧縮機の吸入側に接続し上記切換弁の切換えによ
り蒸発器の負荷に応じて接続する圧縮機を選択可
能としたことを特徴とする。
The present invention was proposed in view of these circumstances, and aims to improve the operating efficiency of a refrigeration system that has multiple evaporators used at different evaporation temperatures.
In a refrigeration system in which multiple compressors and multiple evaporators are inserted into the same refrigerant circuit, the purpose is to provide a refrigeration system that prevents product damage due to temperature rise in the event of compressor failure. The outlet side of the compressor is connected to the same number of connecting pipes as the plurality of compressors, and each of the connecting pipes is connected to the suction side of each of the compressors through a three-way valve, and the load on the evaporator is changed by switching the switching valve. The feature is that the compressor to be connected can be selected depending on the type of compressor.

本考案を3台の圧縮機と2台の蒸発器とを有す
る冷凍装置に適用した一実施例を図面について説
明すると、第2図はその系統図である。
An embodiment in which the present invention is applied to a refrigeration system having three compressors and two evaporators will be described with reference to the drawings. FIG. 2 is a system diagram thereof.

上図において、11a,11b,11cはそれ
ぞれ圧縮機、12は凝縮器、13a,13bは液
ライン電磁弁、14a,14bは膨張弁、15a
は第1蒸発器(高温用)、15bは第2蒸発器
(低温用)、18a,18b,18cはそれぞれ3
方弁である。
In the above figure, 11a, 11b, 11c are compressors, 12 is a condenser, 13a, 13b are liquid line solenoid valves, 14a, 14b are expansion valves, 15a
is the first evaporator (for high temperature), 15b is the second evaporator (for low temperature), and 18a, 18b, and 18c are each 3
It is a dialect.

このような装置において、冷媒の流れを説明す
ると、 (1) まず、第1蒸発器(高温用)15aの負荷が
大きく、第2蒸発器(低温用)15bの負荷が
小さい場合は、3方切換弁18a,18bを動
作させると、圧縮機11a,11b,11cか
らの冷媒は凝縮器12を通つて分流し、一方は
液ライン電磁弁13a、膨張弁14a、第1蒸
発器15aを経たのち、さらに3方切換弁18
aおよび圧縮機11aの流路と3方切換弁18
bおよび圧縮機11bの2並列流路を分流した
のち凝縮器12に流れ、他方は液ライン電磁弁
13b、膨張弁14b、第2蒸発器15b、3
方切換弁18c、圧縮機11cを経て凝縮器1
2の順に流れて冷凍サイクルを行なう。
To explain the flow of refrigerant in such a device, (1) First, when the load on the first evaporator (for high temperature) 15a is large and the load on the second evaporator (for low temperature) 15b is small, When the switching valves 18a, 18b are operated, the refrigerant from the compressors 11a, 11b, 11c is divided through the condenser 12, and one side passes through the liquid line solenoid valve 13a, the expansion valve 14a, and the first evaporator 15a. , and a three-way switching valve 18
a and the flow path of the compressor 11a and the three-way switching valve 18
After dividing the two parallel flow paths of b and compressor 11b, it flows to the condenser 12, and the other one flows to the liquid line solenoid valve 13b, expansion valve 14b, second evaporator 15b, 3
The condenser 1 via the switching valve 18c and the compressor 11c.
Flows in the order of 2 to perform the refrigeration cycle.

こうして、第1蒸発器15aには2台分の圧
縮機11a,11bの冷媒が流れ、第2蒸発器
15bには圧縮機11cの1台の分の冷媒が流
れることになる。
In this way, the refrigerant for two compressors 11a and 11b flows into the first evaporator 15a, and the refrigerant for one compressor 11c flows into the second evaporator 15b.

(2) 次に、第1蒸発器(高温用)15aの負荷が
小さく、第2蒸発器(低温用)15bの負荷が
大きい場合は、3方切換弁18aのみを動作さ
せると、圧縮機11a,11b,11cからの
冷媒は凝縮器12を経て2つに分流し、一方は
液ライン電磁弁13a、膨張弁14a、第1蒸
発器15a、3方弁切換弁18a、圧縮機11
aを経て凝縮器12に流れ、他方は液ライン電
磁弁13b、膨張弁14b、第2蒸発器15b
を経て3方切換弁18bおよび圧縮機11bの
流路と3方切換弁18cおよび圧縮機11cの
流路の並列2流路を分流したのち凝縮器12に
流れて冷媒サイクルを行なう。
(2) Next, if the load on the first evaporator (for high temperature) 15a is small and the load on the second evaporator (for low temperature) 15b is large, operating only the three-way switching valve 18a will cause the compressor 11a to , 11b, 11c passes through the condenser 12 and is divided into two parts, one of which is the liquid line solenoid valve 13a, the expansion valve 14a, the first evaporator 15a, the three-way switching valve 18a, and the compressor 11.
a to the condenser 12, and the other side is a liquid line solenoid valve 13b, an expansion valve 14b, and a second evaporator 15b.
After passing through the three-way switching valve 18b and the compressor 11b, the refrigerant is divided into two parallel channels: one for the three-way switching valve 18b and the compressor 11c, and then flowing to the condenser 12 to perform a refrigerant cycle.

こうして、第1蒸発器15aには圧縮機11
aの1台分の冷媒が流れ、第2蒸発器15bに
は圧縮機11b,11cの2台分の冷媒が流れ
ることになる。
In this way, the compressor 11 is connected to the first evaporator 15a.
The refrigerant for one unit a flows, and the refrigerant for two compressors 11b and 11c flows to the second evaporator 15b.

(3) さらに、1台の圧縮機例えば、11aが故障
した場合は、3方切換弁18bを動作させる
と、冷媒は第1蒸発器15a、3方切換弁18
b、圧縮機11bおよび第2蒸発器15b、3
方切換弁18c、圧縮機11cの2並列流路を
分流したのち凝縮器12に流れるので、圧縮機
の故障により蒸発器の機能が停止することはな
い。
(3) Furthermore, if one compressor, for example 11a, fails, when the three-way switching valve 18b is operated, the refrigerant is transferred to the first evaporator 15a and the three-way switching valve 18.
b, compressor 11b and second evaporator 15b, 3
Since the water flows to the condenser 12 after being separated through the two parallel flow paths of the switching valve 18c and the compressor 11c, the function of the evaporator will not stop due to a failure of the compressor.

したがつて本考案によれば、下記の効果が奏せ
られる。
Therefore, according to the present invention, the following effects can be achieved.

(1) 第1図の従来の冷凍装置では、圧縮機の故障
により蒸発器の温度が上昇し、貯蔵中の商品が
腐るといつたトラブルが発生し、大損害を生ず
ることがあるが、本装置では、圧縮機3台中1
台が故障した場合は前記(3)で述べたように蒸発
器の機能が停止することはなく、また3台中2
台が故障した場合でも、3方切換弁18をON
−OFFさせることにより、蒸発器15a,1
5bを交互に機能させ、貯蔵中の商品を最小限
の損害に押えることができる。
(1) In the conventional refrigeration system shown in Figure 1, troubles such as compressor failure can cause the temperature of the evaporator to rise and stored products to rot, which can cause major damage. In the equipment, 1 out of 3 compressors
If a unit breaks down, the evaporator function will not stop as mentioned in (3) above, and only 2 out of 3 units will malfunction.
Even if the stand breaks down, turn on the 3-way switching valve 18.
-By turning off, the evaporators 15a, 1
5b can be operated alternately to minimize damage to stored products.

(2) 第1図の従来の冷凍装置ではさきに述べたよ
うに、吸入圧力が低くなり、効率が悪くなつて
いるが、本装置では、3方切換弁により蒸発器
と圧縮機をグループ分けして運転するので、第
1蒸発器(高温用)15aに接続して使用する
圧縮機は、吸入圧力が高い状態で運転できるの
で、効率が良くなる。
(2) As mentioned earlier, in the conventional refrigeration system shown in Figure 1, the suction pressure is low and the efficiency is poor, but in this system, the evaporator and compressor are divided into groups using a three-way switching valve. Since the compressor used in connection with the first evaporator (for high temperature) 15a can be operated with a high suction pressure, efficiency is improved.

因みに、第1図の従来の冷凍装置と前記(1)に述
べた第1蒸発器(高温用)15aに2台の圧縮機
11a,11bを接続し、第2蒸発器15bに1
台の圧縮機11cを接続した場合の例を比較する
と下記のようになる。
Incidentally, two compressors 11a and 11b are connected to the conventional refrigeration system shown in FIG. 1 and the first evaporator (for high temperature) 15a described in (1) above, and one
A comparison of the case where two compressors 11c are connected is as follows.

たゞし、R502を使用した冷凍装置で運転条件
を下記となし、 凝縮温度:+45℃ 第1蒸発器の蒸発温度:−10℃ 第2蒸発器の蒸発温度:−40℃ 過熱度、過冷却度:5゜ 吐出ガスのエンタルピ:id(kcal/Kg) 吸入ガスのエンタルピ:is(kcal/Kg) 膨張弁前液冷媒のエンタルピ:i(kcal/
Kg) 成績係数を下記算式で求めて比較する。
However, the operating conditions for a refrigeration system using R502 are as follows: Condensing temperature: +45℃ Evaporation temperature of the first evaporator: -10℃ Evaporation temperature of the second evaporator: -40℃ Degree of superheating, supercooling degree: 5° Enthalpy of discharge gas: id (kcal/Kg) Enthalpy of suction gas: is (kcal/Kg) Enthalpy of liquid refrigerant before expansion valve: i (kcal/Kg)
Kg) Calculate the performance coefficient using the formula below and compare.

成績係数η=is−i/id−is 第1図の冷凍装置では、 η1=131.35−111.54/143.35−
131.35=19.81/12.00=1.651 本考案装置では; 第1蒸発器15aに接続された圧縮機 11a,11bの系統では、 η21=134.83−111.54/141.53−
134.83=23.29/6.70=3.476 第2蒸発器15bに接続された圧縮機 11cの系統では、 η22=131.35−111.54/143.35−
131.35=19.81/12.00=1.651 すなわち、本考案装置全体では、 η2=1/3(η21×2×η22)= 1/3(3.476×2+1.651)=2.868 両者を比較すると、 η2/η1=2.868/1.651=1.737 すなわち、本考案装置は、第1図の従来装置に
比べて約1.7倍の効率で運転することができ
る。
Coefficient of performance η=is-i/id-is In the refrigeration system shown in Figure 1, η1=131.35-111.54/143.35-
131.35=19.81/12.00=1.651 In the device of the present invention; In the system of compressors 11a and 11b connected to the first evaporator 15a, η21=134.83−111.54/141.53−
134.83=23.29/6.70=3.476 In the system of compressor 11c connected to second evaporator 15b, η22=131.35−111.54/143.35−
131.35 = 19.81/12.00 = 1.651 In other words, for the entire device of the present invention, η2 = 1/3 (η 21 × 2 × η 22 ) = 1/3 (3.476 × 2 + 1.651) = 2.868 For comparison, η2/η1=2.868/1.651=1.737 That is, the device of the present invention can be operated with approximately 1.7 times the efficiency as compared to the conventional device shown in FIG.

上記実施例では、圧縮機3台、蒸発器2台、の
例を示したが、圧縮機、蒸発器はそれぞれ2台以
上であれば、その台数に制限はなく、また3方切
換弁の代わりに電磁弁を使用してもよい。
In the above embodiment, an example of 3 compressors and 2 evaporators was shown, but there is no limit to the number of compressors and evaporators as long as there are 2 or more each. A solenoid valve may be used.

要するに本考案によれば、複数の圧縮機と複数
の蒸発器とを同一冷媒回路中に挿入する冷凍装置
において、上記複数の蒸発器の出口側を前記複数
の圧縮機と同数の連絡管路で接続し上記各連絡管
路をそれぞれ三方弁を介して前記各圧縮機の吸入
側に接続し上記切換弁の切換えにより蒸発器の負
荷に応じて接続する圧縮機を選択可能としたこと
により、高効率の冷凍装置を得るから、本考案は
産業上極めて有益なものである。
In short, according to the present invention, in a refrigeration system in which a plurality of compressors and a plurality of evaporators are inserted into the same refrigerant circuit, the outlet sides of the plurality of evaporators are connected to the same number of connecting pipes as the plurality of compressors. The connection pipes are connected to the suction side of each compressor through three-way valves, and the compressor to be connected can be selected according to the load on the evaporator by switching the switching valve. The present invention is extremely useful industrially because it provides a highly efficient refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の冷凍装置を示す系統図、第2図
は本考案の一実施例を示す系統図である。 11a,11b,11c……圧縮機、12……
凝縮器、13a,13b……液ライン電磁弁、1
4a,14b……膨張弁、15a……第1蒸発器
(高温用)、15b……第2蒸発器(低温用)、1
8a,18b,18c……3方切換弁。
FIG. 1 is a system diagram showing a known refrigeration system, and FIG. 2 is a system diagram showing an embodiment of the present invention. 11a, 11b, 11c...compressor, 12...
Condenser, 13a, 13b...liquid line solenoid valve, 1
4a, 14b...Expansion valve, 15a...First evaporator (for high temperature), 15b...Second evaporator (for low temperature), 1
8a, 18b, 18c...3-way switching valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の圧縮機と蒸発温度の異なる複数の蒸発器
とを同一冷媒回路中に挿入する冷凍装置におい
て、上記複数の蒸発器の出口側を前記複数の圧縮
機と同数の連絡管路で接続し上記各連絡管路をそ
れぞれ三方弁を介して前記各圧縮機の吸入側に接
続し、上記各三方弁の切換えにより上記各蒸発器
の負荷に応じて接続する圧縮機を選択可能とした
ことを特徴とする冷凍装置。
In a refrigeration system in which a plurality of compressors and a plurality of evaporators having different evaporation temperatures are inserted into the same refrigerant circuit, the outlet sides of the plurality of evaporators are connected by the same number of connecting pipes as the plurality of compressors, and the Each communication pipe is connected to the suction side of each of the compressors via a three-way valve, and by switching each of the three-way valves, it is possible to select the compressor to be connected according to the load of each of the evaporators. refrigeration equipment.
JP9855781U 1981-07-03 1981-07-03 Refrigeration equipment Granted JPS584973U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9855781U JPS584973U (en) 1981-07-03 1981-07-03 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9855781U JPS584973U (en) 1981-07-03 1981-07-03 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS584973U JPS584973U (en) 1983-01-13
JPS6221888Y2 true JPS6221888Y2 (en) 1987-06-03

Family

ID=29893315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9855781U Granted JPS584973U (en) 1981-07-03 1981-07-03 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS584973U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device
US6883346B2 (en) 2001-10-23 2005-04-26 Daikin Industries, Ltd. Freezer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545162B2 (en) * 1991-04-23 1996-10-16 アサヒビール株式会社 Cooling system
JP5194884B2 (en) * 2008-02-29 2013-05-08 ダイキン工業株式会社 Refrigeration equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551263A (en) * 1978-10-07 1980-04-14 Fuji Electric Co Ltd Condensing unit for refrigeration equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551263A (en) * 1978-10-07 1980-04-14 Fuji Electric Co Ltd Condensing unit for refrigeration equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883346B2 (en) 2001-10-23 2005-04-26 Daikin Industries, Ltd. Freezer
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device
US6938430B2 (en) 2002-01-24 2005-09-06 Daikin Industries, Ltd. Refrigerating device

Also Published As

Publication number Publication date
JPS584973U (en) 1983-01-13

Similar Documents

Publication Publication Date Title
DE602004008450D1 (en) STEAM COMPRESSION SYSTEM WITH BYPASS / ECONOMISER CIRCULATIONS
US20060010899A1 (en) Flash tank for heat pump in heating and cooling modes of operation
AU2016337938B2 (en) Heat pump unit control system
JPS608425B2 (en) heat pump equipment
JP2000171117A (en) Refrigerating machine
JPS6221888Y2 (en)
JP2567686B2 (en) Air conditioner
JPH04356665A (en) Two-stage compressor type refrigerating apparatus
JP2000304373A (en) Engine heat pump
JPH062966A (en) Two-stage compression heat pump system
JPH04324067A (en) Air conditioner
KR200214003Y1 (en) Heating apparatus with low compression load
JPH03294750A (en) Freezing apparatus
JP2000320908A (en) Refrigerating cycle circuit
JPH02178575A (en) Heat pump for cooling or heating and supplying hot water system
KR200214002Y1 (en) Heating apparatus with low compression load
CN107504709A (en) A kind of ultralow temperature Multifunctional heat pump system
JPH04268165A (en) Double-stage compression and freezing cycle device
JPS6124950A (en) Two-element refrigerator
JPH0448169A (en) Separated air-cooled heat pump type air-conditioning machine
JPS6152909B2 (en)
KR200214007Y1 (en) Air-conditioning apparatus with low compression load
KR200214006Y1 (en) Air-conditioning apparatus with low compression load
Mastrullo et al. Exergetic analysis of compound mechanical refrigeration systems
JP3336032B2 (en) Refrigeration circuit with injection circuit