JPS62218516A - Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance - Google Patents

Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance

Info

Publication number
JPS62218516A
JPS62218516A JP5812886A JP5812886A JPS62218516A JP S62218516 A JPS62218516 A JP S62218516A JP 5812886 A JP5812886 A JP 5812886A JP 5812886 A JP5812886 A JP 5812886A JP S62218516 A JPS62218516 A JP S62218516A
Authority
JP
Japan
Prior art keywords
steel
corrosion cracking
stress corrosion
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5812886A
Other languages
Japanese (ja)
Inventor
Kozo Denpou
伝宝 幸三
Takeshi Terasawa
寺沢 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5812886A priority Critical patent/JPS62218516A/en
Publication of JPS62218516A publication Critical patent/JPS62218516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel even in severe corrosive environment of H2S existence, by hot working, water cooling and tempering steel having a prescribed component compsn. under respectively prescribed temp. ranges. CONSTITUTION:Steel contg. by weight, 0.10-0.40% C, 0.05-0.50% Si, 0.30-1.5% Mn, 0.1-2.0% Cr, 0.2-7.5% Mo and restricted quantities of <=0.005% S, <=0.005% P is treated as follows: Namely, the steel is heated to Ac3 transforma tion point + >=50 deg.C-<=1,150 deg.C, to obtain uniform bainite structure, then hot worked at >=Ar3 transformation point by >=30% draft. The steel after working is immediately water cooled to 600 deg.C- room temp. by 5-60 deg.C/sec rate for preventing coarsening of austenite grain due to recrystallization and growth, then tempered at temp. of 400 deg.C-Ac1 transformation point to obtain the aimed titled steel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐H2S性の優れた鋼の製造方法に係り、さら
に詳しくは石油、天然ガスの掘削、輸送或いは貯蔵等に
用いる耐硫化物応力腐食割れに優れた高強度鋼の製造方
法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing steel with excellent H2S resistance, and more specifically, to a method for manufacturing steel with excellent H2S resistance, and more specifically to a method for manufacturing steel with excellent H2S resistance. This invention relates to a method for manufacturing high-strength steel with excellent corrosion cracking resistance.

(従来の技術) 硫化物応力腐食割れはサワー油井やサワーガス井等の硫
化水素を含む湿潤な環境下で使用される鋼材に応力が作
用して生ずる現象でアシ、一般に材料強度が高くなるほ
ど耐硫化物応力腐食割れ性の劣化することが知られてお
シ、高張一度材では極く低い応力が作用しても割れを生
ずるととが確認されている。
(Prior art) Sulfide stress corrosion cracking is a phenomenon that occurs when stress is applied to steel materials used in humid environments containing hydrogen sulfide, such as in sour oil wells and sour gas wells.In general, the higher the material strength, the better the sulfide resistance. It is known that stress corrosion cracking of materials deteriorates, and it has been confirmed that high tensile materials crack even when subjected to extremely low stress.

従来、上述のようなサワー環境で使用する油井管等には
、人工S工規格の4135鋼を焼入れ、焼もどししたも
のや、この組成を基本としてMoを0.5%まで増量し
たp、Ti−B処理を行ったシして耐硫化物応力腐食割
れ性や強度の向上を図った鋼が使用されていた。
Conventionally, oil country tubular goods used in the above-mentioned sour environment have been made of quenched and tempered 4135 steel of the artificial S engineering standard, or p-, Ti-based products with this composition but with Mo added up to 0.5%. -B treatment was used to improve sulfide stress corrosion cracking resistance and strength.

さらに、焼入れ、焼もどしに関しては、特開昭59−1
73245号公報記載のような熱処理が施されるのが普
通であシ、その場合、高強度かつ耐硫化物応力腐食割れ
性に優れた鋼を得ることは困難であシ、この高強度かつ
耐硫化物応力腐食割れ性に優れたという矛循する要求の
だめの製造法は確立されてはいない。
Furthermore, regarding hardening and tempering, JP-A-59-1
Usually, heat treatment as described in 73245 is performed, but in that case, it is difficult to obtain steel with high strength and excellent sulfide stress corrosion cracking resistance. There is no established method for producing dams that meet the contradictory demands of having excellent sulfide stress corrosion cracking properties.

(発明が解決しようとする問題点) 本発明はこうした現状に鑑み、H2Sが存在する苛酷な
腐食環境中にあっても高強度で耐硫化物応力腐食割れに
優れた鋼を得る方法を提供することを目的とするもので
ある。
(Problems to be Solved by the Invention) In view of the current situation, the present invention provides a method for obtaining steel with high strength and excellent resistance to sulfide stress corrosion cracking even in a severe corrosive environment where H2S exists. The purpose is to

(問題点を解決するための手段) 本発明の要旨とするところは、重量%で、C:0.10
〜0.40%、St : 0.05〜0.50%、Mn
: 0.30〜1.5%、Cr二0.1〜2.0%、M
o : 0.2〜0.75%を含有し、S : 0.0
05%以下、P:0.005  %以下に制限し、必要
に応じてTi :0.002〜0.08%、Nb:0.
005〜0.1%、B:0.0005〜0.004%、
Cu:0.01〜1.0%の1種または2種以上を含有
し、残部Feおよび不可避不純物よシなる鋼をA c3
変態点+50℃以上1150℃以下に加熱後、ArB変
態点以上の温度で加工率30%以上熱間加工し、加工後
直ちに5〜b 温度に水冷し、その後400℃〜A c 1変態点の温
度で焼戻すことを特徴とする耐硫化物応力腐食割れに優
れた高強度鋼の製造方法である。
(Means for solving the problems) The gist of the present invention is that C: 0.10% by weight.
~0.40%, St: 0.05~0.50%, Mn
: 0.30-1.5%, Cr2 0.1-2.0%, M
o: Contains 0.2-0.75%, S: 0.0
Ti: 0.002 to 0.08%, Nb: 0.05% or less, P: 0.005% or less, as necessary.
005-0.1%, B: 0.0005-0.004%,
A steel containing one or more Cu: 0.01 to 1.0%, with the remainder being Fe and unavoidable impurities.
After heating to transformation point +50°C to 1150°C or less, hot working at a processing rate of 30% or more at a temperature above ArB transformation point, immediately after processing, water cooling to a temperature of 5~B, and then 400°C~A c 1 transformation point. This is a method for producing high-strength steel with excellent resistance to sulfide stress corrosion cracking, which is characterized by tempering at a high temperature.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

(作 用) 最初に、本発明において各成分の範囲を前記の如く限定
した理由を以下に述べる。
(Function) First, the reason for limiting the range of each component in the present invention as described above will be described below.

まず、Cは鋼の強度を確保する元素であるが、その含有
量が0.40%超ではマルテンサイトおよび炭化物量が
増し、耐応力腐食割れ性が劣化する。
First, C is an element that ensures the strength of steel, but if its content exceeds 0.40%, the amount of martensite and carbides increases, and stress corrosion cracking resistance deteriorates.

一方、0.10%未満ではフェライトが出現しやすくな
シ、所望の組織とはなり難いことがらCの成分範囲を0
.10〜0.40%と定めた。
On the other hand, if it is less than 0.10%, ferrite tends to appear and it is difficult to form the desired structure, so the C component range is reduced to 0.
.. It was set at 10% to 0.40%.

Siは脱酸あるいは強度調整用として添加する。Si is added for deoxidation or strength adjustment.

その含有量が0.05%未満では脱酸効果を得ることは
できず、一方0.50%超では脆化現象が生じることか
ら、Si含有量を0.05〜0.50%と定めた。
If the Si content is less than 0.05%, a deoxidizing effect cannot be obtained, while if it exceeds 0.50%, embrittlement occurs, so the Si content was set at 0.05 to 0.50%. .

Mnは脱酸剤としての作用、強度および靭性を向上させ
る作用、そのほか均一ペイナイト組織を得る作用を有し
ておシ、特に均一ペイナイト組織となすために0.3%
以上必要である。一方、1.5%超含有させると鋼の靭
性を劣化するようになることから、Mn 含有量を0.
3〜1.5%と定めた。
Mn has the function of deoxidizing agent, the function of improving strength and toughness, and the function of obtaining a uniform payinite structure.
The above is necessary. On the other hand, if the Mn content exceeds 1.5%, the toughness of the steel will deteriorate, so the Mn content should be reduced to 0.
It was set at 3 to 1.5%.

Cr は強度、靭性、焼入れ性、耐食性の向上に有効で
あるが、0.1%未満ではその効果が得られず、他方2
.0%超を含有させても焼入れ性の改善効果が飽和して
しまうことから、Cr含有量を0、1〜2.0%と定め
た。
Cr is effective in improving strength, toughness, hardenability, and corrosion resistance, but if it is less than 0.1%, this effect cannot be obtained;
.. Since the effect of improving hardenability is saturated even if the Cr content exceeds 0%, the Cr content is set at 0.1 to 2.0%.

Moには鋼の焼入れ性を改善し、強度を高める作用がち
シ、さらに耐硫化物応力腐食割れ性の向上に有効である
が、0.20%未満ではその効果は充分でない。一方、
0.75%超含有させても焼入れ性の改善効果及び耐硫
化物応力−腐食割れ性向上効果が飽和する上、コスト上
昇を招き不経済であることから、MO含有量を0.20
〜0.75%と定めた。
Mo tends to improve the hardenability of steel and increase its strength, and is also effective in improving sulfide stress corrosion cracking resistance, but if it is less than 0.20%, the effect is not sufficient. on the other hand,
Even if the MO content exceeds 0.75%, the effect of improving hardenability and the effect of improving sulfide stress-corrosion cracking resistance will be saturated, and it will increase the cost and be uneconomical. Therefore, the MO content should be reduced to 0.20%.
It was set at ~0.75%.

Pは不純物として鋼中に不可避的に存在する元素である
が、0.005%超では靭性の劣化をもたらすだけでな
く、応力腐食割れ感受性を高めるため、上限を0.00
5%とした。
P is an element that inevitably exists in steel as an impurity, but if it exceeds 0.005%, it not only causes deterioration of toughness but also increases susceptibility to stress corrosion cracking, so the upper limit should be set to 0.00%.
It was set at 5%.

SもPと同様に不純物として鋼中に不可避的に存在する
元素であシ、可及的にその含有量を少量に抑えることが
望ましい。とくに0.QO5%超では耐硫化物応力腐食
割れ性を劣化させるので、0005%以下に限定した。
Like P, S is an element that inevitably exists in steel as an impurity, and it is desirable to suppress its content to a small amount as much as possible. Especially 0. If QO exceeds 5%, the sulfide stress corrosion cracking resistance deteriorates, so it is limited to 0005% or less.

以上が本発明鋼の基本成分であるが、本発明においては
この他さらに耐応力腐食割れ性を改善する目的でTi、
Nb、B、Cuのうち1種または2種以上を含有させる
ことができるが、その範囲は次の通シとすべきである。
The above are the basic components of the steel of the present invention, but in the present invention, in addition to these, Ti,
One or more of Nb, B, and Cu can be contained, but the range should be as follows.

まず、TiはBとともに鋼の焼入れ性を向上する作用の
#丘か、細粒化およびベイナイト組織化して耐応力腐食
割れ性を改善する作用を有しているが、その含有量が0
.002%未満ではその効果が得られず、一方過剰な添
加は焼もとし脆化を招くことから、Tiを添加する場合
の上限は0.08%とし、Ti含有量を0.002〜0
.08%と定めた。
First, along with B, Ti has the effect of improving the hardenability of steel, or it has the effect of improving stress corrosion cracking resistance by refining the grains and forming a bainite structure.
.. If it is less than 0.002%, the effect cannot be obtained, and on the other hand, if it is added in excess, it will cause embrittlement due to burning.
.. It was set at 0.8%.

Nbは鋼材組織を微細化し、焼戻し抵抗性を向上させる
とともに、耐硫化物応力腐食割れ性を改善する作用があ
るが、その含有量が0.005%未満ではその効果が得
られず、一方0.1%超では靭性を損なうことから、N
bはその含有量を0.005〜0.1%と定めた。
Nb has the effect of refining the steel structure, improving tempering resistance, and improving sulfide stress corrosion cracking resistance, but if its content is less than 0.005%, this effect cannot be obtained; If it exceeds .1%, the toughness will be impaired, so N
The content of b was determined to be 0.005 to 0.1%.

Bには鋼の焼入れ性を向上式せる作用があるが、その含
有量がo、ooo;s%未満ではその効果が得られず、
一方0.004%超含有させても焼入れ性向上効果が飽
和することから、B含有量をo、o o o s〜0.
004%と定めた。
B has the effect of improving the hardenability of steel, but if its content is less than o, ooo; s%, this effect cannot be obtained.
On the other hand, since the hardenability improvement effect is saturated even if the B content exceeds 0.004%, the B content is adjusted to between o, o o o s and 0.004%.
It was set as 0.004%.

Cuは固溶強化および耐食性の向上に有効であるが、過
剰に添加すると鋼表面に欠陥が多発することから、Cu
を添加する場合の上限は1.OcXとする。一方、Cu
の添加効果は0.01%未満では得られないことから、
Cu の含有量は0.01〜1.0%と定めた。
Cu is effective for solid solution strengthening and improving corrosion resistance, but if added in excess, many defects will occur on the steel surface, so Cu
The upper limit when adding is 1. Let it be OcX. On the other hand, Cu
Since the addition effect of is not obtained at less than 0.01%,
The content of Cu was set at 0.01 to 1.0%.

本発明は、以上のような成分を含有する鋼を溶製した後
熱間加工を施すが、次に熱間圧延工程について述べる。
In the present invention, hot working is performed after melting steel containing the above-mentioned components.Next, the hot rolling process will be described.

本発明の鋼成分よシなるスラブの加熱温度の限定理由は
、均一ペイナイト組織を得るには完全オーステナイト域
で熱間加工する必要があシ、それゆえAcs+50℃以
上とし、また、オーステナイトの粗大化を防止するため
1150℃以下とする。
The reason why the heating temperature of the slab according to the steel composition of the present invention is limited is that in order to obtain a uniform paynite structure, it is necessary to perform hot working in a completely austenite region. To prevent this, the temperature should be 1150°C or less.

熱間加工率は耐硫化物応力腐食割れ性を劣化させない微
細組織とするため30%以上が必要である。加工温度は
均一ペイナイト組織とするために完全オーステナイト域
で加工することが必要で、A r z変態点以上とする
A hot working rate of 30% or more is required to obtain a microstructure that does not deteriorate sulfide stress corrosion cracking resistance. The processing temperature is required to be processed in a completely austenite region in order to obtain a uniform payinite structure, and the processing temperature should be higher than the A r z transformation point.

加工後オーステナイト粒の再結晶および成長による粗粒
化を防止するため、加工後可能な限り速やかに冷却を開
始することが必要である。冷却速度は均一微細ペイナイ
ト組織を得るため5℃/sec以上が必要であシ、60
℃/ Sec超ではマルテンサイト組織となるために6
0℃/sec以下とする。冷却温度が600℃以上で水
冷を止めるのは均一ペイナイトにする効果がないので、
少なくとも600℃まで冷却する。
In order to prevent grain coarsening due to recrystallization and growth of austenite grains after processing, it is necessary to start cooling as soon as possible after processing. The cooling rate must be 5°C/sec or more to obtain a uniform fine payinite structure, and 60°C/sec or more is required.
6 to become a martensitic structure at temperatures exceeding ℃/Sec.
The temperature should be 0°C/sec or less. Stopping water cooling when the cooling temperature is over 600℃ has no effect on uniform paynight, so
Cool to at least 600°C.

焼戻し温度の限定理由は次の通シである。The reason for limiting the tempering temperature is as follows.

焼戻しは耐硫化物応力腐食割れ性に有害な内部応力の除
去のために不可避であシ、また財力の上昇にも効果があ
シ、その有効焼戻し範囲を400℃〜Ac1変態点温度
までとする。
Tempering is unavoidable to remove internal stress that is harmful to sulfide stress corrosion cracking resistance, and is also effective in increasing financial strength.The effective tempering range is from 400℃ to Ac1 transformation point temperature. .

以上詳述したように、本発明の製造方法に従えば、鋼組
織が極細粒均−ペイナイト組織となシ、耐硫化物応力腐
食割れ性を著しく向上させることができる。
As detailed above, according to the manufacturing method of the present invention, the steel structure becomes an ultra-fine-grained, even-paynite structure, and the resistance to sulfide stress corrosion cracking can be significantly improved.

(実施例) 第1表に示す組成の鋼を真空溶解炉を用いて溶製し、第
1表に示す製造条件で処理して製造した各鋼について、
API引張試験とNACE−SSC試験を施した。その
結果も第1表に示す。鋼1〜25は本発明法によるもの
、26〜29は従来法による比較材である。
(Example) For each steel manufactured by melting steel having the composition shown in Table 1 using a vacuum melting furnace and treating it under the manufacturing conditions shown in Table 1,
API tensile test and NACE-SSC test were conducted. The results are also shown in Table 1. Steels 1 to 25 are made by the method of the present invention, and steels 26 to 29 are comparative materials made by the conventional method.

副硫化物応力腐食割れ試験は第1図に示すNACE定荷
重引張シ試験−によシ、糧々の応力を負荷して720時
間経過しても破断しない最小応力を限界応力σthとし
て求めた。
The subsulfide stress corrosion cracking test was carried out using the NACE constant load tensile test shown in FIG. 1, and the minimum stress at which breakage did not occur even after 720 hours of applying a certain amount of stress was determined as the critical stress σth.

第1図において、3は試験片1を固定するための固定式
引張治具で、支持棒4によシ重錘5の荷重を腐食セル6
内の試験片1に伝達し、固定治具2とによって試験片1
に引張シ応力を加える。
In Fig. 1, reference numeral 3 denotes a fixed tension jig for fixing the test piece 1, and the load of the weight 5 is transferred to the corrosion cell 6 by the support rod 4.
the test piece 1 by the fixing jig 2.
Apply tensile stress to.

第1表に示される結果からも明らかなように、本発明法
による鋼は高い強度を有しかつ耐硫化物応力腐食割れ性
が著しく改善された特性を有しているのに対し、比較材
は耐硫化物応力腐食割れ性に劣っていることがわかる。
As is clear from the results shown in Table 1, the steel produced by the method of the present invention has high strength and significantly improved resistance to sulfide stress corrosion cracking, whereas the comparative steel It can be seen that the sulfide stress corrosion cracking resistance is poor.

(発明の効果) 本発明は高強度と優れた耐硫化物応力腐食割れ性を兼ね
そなえた鋼の再加熱焼入れ工程を必要としない低コスト
の製造方法であシ、サワー環境下において使用される油
井用鋼管、厚板等に有効に利用できる鋼の製造を可能に
する。
(Effects of the Invention) The present invention is a low-cost manufacturing method that does not require a reheating and quenching process for steel that has both high strength and excellent sulfide stress corrosion cracking resistance, and can be used in sour environments. It enables the production of steel that can be effectively used for oil well steel pipes, thick plates, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験片に引張応力を与えるだめの定荷重引張シ
試験器の構造を示す側面である。 1・・・試験片、2−・・固定治具、3・・・固定式引
張治具、4・・・支持棒、5−重錘、6・・・腐食セル
。 代理人 弁理士 秋 沢 政 光 他1名 片1図
FIG. 1 is a side view showing the structure of a constant load tensile tester that applies tensile stress to a test piece. DESCRIPTION OF SYMBOLS 1... Test piece, 2... Fixing jig, 3... Fixed tension jig, 4... Support rod, 5- Weight, 6... Corrosion cell. Agent: Patent attorney Masamitsu Akizawa and 1 other person, 1 illustration

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.10〜0.40%、 Si:0.05〜0.50%、 Mn:0.30〜1.5%、 Cr:0.1〜2.0%、 Mo:0.2〜0.75% を含有し、 S:0.005%以下、 P:0.005%以下 に制限し、残部Feおよび不可避不純物よりなる鋼をA
c_3変態点+50℃以上1150℃以下に加熱後、A
r_3変態点以上の温度で加工率30%以上熱間加工し
、加工後直ちに5〜60℃/secの冷却速度で600
℃〜室温までの温度に水冷し、その後400℃〜Ac_
1変態点の温度で焼戻することを特徴とする耐硫化物応
力腐食割れに優れた高強度鋼の製造方法。
(1) In weight%, C: 0.10-0.40%, Si: 0.05-0.50%, Mn: 0.30-1.5%, Cr: 0.1-2.0% , Mo: 0.2 to 0.75%, S: 0.005% or less, P: 0.005% or less, and the balance is Fe and unavoidable impurities.
c_3 After heating above transformation point +50℃ and below 1150℃, A
Hot-worked at a processing rate of 30% or more at a temperature above the r_3 transformation point, and immediately after processing at a cooling rate of 5 to 60°C/sec to 600°C.
Water cooled to a temperature of ℃~room temperature, then 400℃~Ac_
A method for producing high-strength steel with excellent resistance to sulfide stress corrosion cracking, characterized by tempering at a temperature of 1 transformation point.
(2)重量%で、 C:0.10〜0.40%、 Si:0.05〜0.50%、 Mn:0.30〜1.5%、 Cr:0.1〜2.0%、 Mo:0.2〜0.75% を含有し、 S:0.005%以下、 P:0.005%以下 に制限し、かつ Ti:0.002〜0.08%、 Nb:0.005〜0.1%、 B:0.0005〜0.004%、 Cu:0.01〜1.0% の1種または2種以上を含有し、残部Feおよび不可避
不純物よりなる鋼をAc_3変態点+50℃以上115
0℃以下に加熱後、Ar_3変態点以上の温度で加工率
30%以上熱間加工し、加工後直ちに5〜60℃/se
cの冷却速度で600℃〜室温までの温度に水冷し、そ
の後400℃〜Ac_1変態点の温度で焼戻すことを特
徴とする耐硫化物応力腐食割れに優れた高強度鋼の製造
方法。
(2) In weight%, C: 0.10-0.40%, Si: 0.05-0.50%, Mn: 0.30-1.5%, Cr: 0.1-2.0% , Mo: 0.2-0.75%, S: 0.005% or less, P: 0.005% or less, Ti: 0.002-0.08%, Nb: 0. Ac_3 transformation of steel containing one or more of the following: 005 to 0.1%, B: 0.0005 to 0.004%, and Cu: 0.01 to 1.0%, with the balance consisting of Fe and inevitable impurities. Point +50℃ or more 115
After heating to 0℃ or less, hot working at a temperature of Ar_3 transformation point or higher with a processing rate of 30% or more, and immediately after processing at 5 to 60℃/se
A method for producing high-strength steel with excellent resistance to sulfide stress corrosion cracking, characterized by water cooling to a temperature of 600° C. to room temperature at a cooling rate of c and then tempering at a temperature of 400° C. to Ac_1 transformation point.
JP5812886A 1986-03-18 1986-03-18 Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance Pending JPS62218516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5812886A JPS62218516A (en) 1986-03-18 1986-03-18 Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5812886A JPS62218516A (en) 1986-03-18 1986-03-18 Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPS62218516A true JPS62218516A (en) 1987-09-25

Family

ID=13075343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5812886A Pending JPS62218516A (en) 1986-03-18 1986-03-18 Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS62218516A (en)

Similar Documents

Publication Publication Date Title
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
KR20160078573A (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101696051B1 (en) Steel sheet having excellent resistance and excellent low temperature toughness to hydrogen induced cracking, and method of manufacturing the same
JPS6216250B2 (en)
JP3211627B2 (en) Steel for nitriding and method for producing the same
JPS62218516A (en) Manufacture of high strength steel superior in sulfide stress corrosion cracking resistance
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
KR100363194B1 (en) A method for high toughness bolts
JPS5943846A (en) Cr-mo steel with superior hardenability and toughness
KR0143498B1 (en) Making method of pc wire rod
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH0450364B2 (en)
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
KR100268843B1 (en) The manufacturing method for heat treatmented high strength steel sheet with excellent normal and high temperature strength
JPH0576533B2 (en)
KR940007370B1 (en) Method of manufacturing steel pipe
KR100355020B1 (en) Manufacturing method of high tensile strength steel with improved toughness
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
KR940008060B1 (en) Making method of high tension steel