JPS6221786B2 - - Google Patents

Info

Publication number
JPS6221786B2
JPS6221786B2 JP2200879A JP2200879A JPS6221786B2 JP S6221786 B2 JPS6221786 B2 JP S6221786B2 JP 2200879 A JP2200879 A JP 2200879A JP 2200879 A JP2200879 A JP 2200879A JP S6221786 B2 JPS6221786 B2 JP S6221786B2
Authority
JP
Japan
Prior art keywords
tetrahydrophthalic anhydride
anhydride
isomerization
derivatives
thpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2200879A
Other languages
Japanese (ja)
Other versions
JPS55115879A (en
Inventor
Hiroshi Samejima
Marenori Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP2200879A priority Critical patent/JPS55115879A/en
Publication of JPS55115879A publication Critical patent/JPS55115879A/en
Publication of JPS6221786B2 publication Critical patent/JPS6221786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はテトラヒドロ無氎フタル酞及びその誘
導䜓の異性化方法に関するものである。 テトラヒドロ無氎フタル酞及びその誘導䜓はナ
フサ分解油等から埗られる各皮ゞ゚ン類や合成ゞ
゚ンオリゎマヌ類ず無氎マレむン酞ずの付加反応
によ぀お埗られる。そしお、かかるテトラヒドロ
無氎フタル酞及びその誘導䜓類ぱポキシ暹脂の
硬化剀及びアルキツド暹脂の酞成分その他皮々の
甚途があるが、これらの甚途に䜿甚するに先立぀
お、その物性を倉化させる等の皮々の目的で異性
化するのが望たしいこずがある。本発明はかかる
目的に䜿甚されるテトラヒドロ無氎フタル酞及び
その誘導䜓類の異性化方法に関するものである。 埓来、テトラヒドロ無氎フタル酞及びその誘導
䜓類の異性化方法ずしおは皮々の方法が提案され
おいるが、埓来法は必ずしも充分に満足できる方
法でなか぀た。 たずえば、米囜特蚱第2764597号明现曞におい
おは△―テトラヒドロ無氎フタル酞、その遊離
酞及びその゚ステル類をPd又はRuを異性化觊媒
ずしお異性化するこずにより△―テトラヒドロ
無氎フタル酞を埗おいるが、この方法は異性化觊
媒ずしお高䟡な貎金属類を必芁ずする欠点があ぀
た。 たた、特公昭45―15495号公報には、およ
び―メチル――シクロヘキセン――
ゞカルボン酞無氎物を異性化觊媒ずしおのポリリ
ン酞、又はBF3コンプレツクス゚チル゚ヌテ
ル、酢酞の存圚䞋で加熱凊理しお液状化させる
方法の提案があるが、この方法はおよび
―メチル――シクロヘキセン――ゞカル
ボン酞無氎物、すなわち―メチル―△―テト
ラヒドロ無氎フタル酞ず―メチル―△―テト
ラヒドロ無氎フタル酞の混合物に察しおしか有効
に液状化効果を発揮できない。すなわち、この方
法は―メチル―△―テトラヒドロ無氎フタル
酞、又は―メチル―△―テトラヒドロ無氎フ
タル酞の単䞀化合物に察しおは液状化の目的を達
成せしめるこずができない。 本発明者等はテトラヒドロ無氎フタル酞及びそ
の誘導䜓類の異性化反応に぀いお皮々研究を行な
぀た結果、安䟡な異性化觊媒によ぀おテトラヒド
ロ無氎フタル酞類を極めお有効に異性化できる方
法の開発に成功したのである。 すなわち、本発明は、䞀般匏 匏䞭、は氎玠又は炭玠数〜のアルキル
基を瀺す。 で衚わされるテトラヒドロ無氎フタル酞及びその
誘導䜓を、臭玠、沃玠、臭化アルカリ金属、沃化
アルカリ金属、臭化アルカリ土類金属及び沃化ア
ルカリ土類金属よりなる矀から遞ばれた皮以䞊
の異性化觊媒の存圚䞋で加熱凊理をするこずを特
城ずするテトラヒドロ無氎フタル酞及びその誘導
䜓の異性化方法である。 本発明においお異性化反応の察象ずなるテトラ
ヒドロ無氎フタル酞及びその誘導䜓は䞊蚘䞀般匏
で衚わされる化合物である。かかる化合物
ずしおは、たずえば△―テトラヒドロ無氎フタ
ル酞、―メチル―△―テトラヒドロ無氎フタ
ル酞、―メチル―△―テトラヒドロ無氎フタ
ル酞、―ブチル―△―テトラヒドロ無氎フタ
ル酞、―ブテニル――メチル―△―テトラ
ヒドロ無氎フタル酞等があげられる。これらの化
合物は単䞀の化合物ずしおも、たた任意の皮以
䞊の混合物ずしおも、本発明の原料ずするこずが
できる。そしお、本発明の異性化方法においお
は、これらの△―テトラヒドロ無氎フタル酞及
びそのアルキル誘導䜓が、䞻反応ずしお△―䜍
から△―䜍ぞの二重結合の移動反応を起し、そ
の結果ずしお、䞻生成物ずしお△―テトラヒド
ロ無氎フタル酞及びそのアルキル誘導䜓、すなわ
ち無氎マレむン酞誘導䜓を生成する。したが぀
お、本発明の異性化方法は、換蚀すれば無氎マレ
むン酞誘導䜓の補造法であるずもいえる。 たた、本発明の異性化方法においおは、原料化
合物が垞枩で固䜓の化合物である堎合に
は、異性化生成物が垞枩で液状のものずしお埗ら
れるこずが倚い。これはその異性化反応によ぀お
数皮の幟䜕及び構造異性䜓を生成し、それらの数
皮の異性䜓の共存によ぀お凝固点を䜎䞋させるず
掚枬される。したが぀お、本発明の異性化方法は
固䜓の原料化合物の液状化凊理方法ずしお
利甚するこずができる。 本発明における異性化觊媒ずしおは、臭玠、沃
玠、臭化アルカリ金属、沃化アルカリ金属、臭化
アルカリ土類金属及び沃化アルカリ土類金属が甚
いられる。その觊媒におけるアルカリ金属ずしお
はリチりム、ナトリりム、カリりム、ルビゞりム
及びセシりムがあげられ、たたそのアルカリ土類
金属ずしおはカルシりム、マグネシりム及びバリ
りムがあげられる。これらの異性化觊媒は皮以
䞊の䜵甚をさたたげない。 本発明における異性化觊媒の䜿甚量は、出発原
料の䞊蚘䞀般匏で衚わされる化合物に察し
お0.005重量以䞊、奜たしくは0.01〜3.0重量
である。これら異性化觊媒の添加は、加熱溶融し
た原料無氎物に盎接に添加しおもよいし、氎やア
セトン等の溶媒に溶解しお添加するなどの他の方
法で添加しおもよい。たた、異性化觊媒を適圓な
担䜓に担持させたものを充填塔に充填し、その充
填局に原料酞無氎物の蒞気を所望の反応枩床で通
しお、本発明の加熱凊理を行わせるこずも可胜で
ある。 本発明における加熱凊理条件は、加熱枩床があ
たり䜎枩では異性化に長時間を芁するし、あたり
高枩では分解反応や暹脂化物生成反応が倚くな
り、目的の異性化物の収率を䜎䞋させる。そしお
その反応枩床は、通垞、120〜250℃、奜たしくは
150〜230℃である。たた、加熱凊理時間は、觊媒
量及び反応枩床によ぀お倉化し、䞀抂に䞀般的な
芏定ができないが、通垞、10分〜10時間、奜たし
くは0.5〜時間である。 たた䞊述のように、軜石、掻性炭、けいそう
土、シリカゲル、モレキナラヌシヌブ等の担䜓に
異性化觊媒を担持させ、その担持觊媒局に原料酞
無氎物の蒞気を通過させお連続的に加熱凊理をす
るこずができるが、このような堎合には200〜250
℃の高枩で短時間凊理をするのが望たしい。 本発明の方法にしたが぀お凊理しお埗られる異
性化生成物は觊媒量が少い堎合には、そのたた蒞
溜しお粟補しおもよいが、遊離のハロゲンによ぀
お着色するこずがあるのでチオ硫酞゜ヌダハむ
ボの、たずえば10氎溶液で掗浄埌、蒞溜する
のが奜たしい。たた、脱色のために掻性炭凊理、
けいそう土等の過助剀添加、さらには氎分を陀
くための適圓な脱氎剀凊理等をしおから過し、
蒞溜しおもよい。 本発明の方法によ぀お埗られる異性化生成物は
゚ポキシ暹脂硬化剀、アルキツド暹脂の酞成分ず
しお有利に䜿甚するこずができる。たた、この生
成物はアミド、むミド、゚ステル、塩玠付加物、
アルキレンオキサむド付加物等に倉成しお防錆剀
に䜿甚するこずができ、さらにマグネシりム、ア
ルミニりムの塩ずしおグリヌスのベヌス油、ゞ゚
ステルずしおゎム、暹脂特に塩ビの可塑剀ず
しおも甚いるこずができる。 特に、この異性化生成物は各皮の゚ポキシ暹脂
類、たずえば垣内匘線、昭和45幎月30日、昭晃
堂発行の「゚ポキシ暹脂」の第章及び第章に
蚘茉されおいるような各皮の゚ポキシ暹脂甚の硬
化剀ずしお䜿甚すれば優れた硬化性を発揮でき
る。この異性化生成物を゚ポキシ暹脂硬化剀ずし
お䜿甚する堎合の䜿甚量は、゚ポキシ暹脂100重
量郚に察しお通垞、50〜120重量郚、奜たしくは
70〜100重量郚である。 たた、この異性化生成物を゚ポキシ暹脂硬化剀
ずしお䜿甚する堎合に、必芁に応じお他の酞無氎
物硬化剀などの硬化剀を䜵甚しおもよい。たずえ
ばヘキサヒドロ無氎フタル酞、テトラヒドロ無氎
フタル酞、メチルヘキサヒドロ無氎フタル酞、無
氎メチルナゞツク酞、無氎フタル酞、無氎ピロメ
リツト酞、ドデセニルサクニツク酞無氎物、無氎
ナゞツク酞及び無氎クロレンド酞等があげられ
る。 さらに、この異性化生成物を゚ポキシ暹脂硬化
剀ずしお䜿甚する堎合には、必芁に応じお硬化促
進剀を䜵甚するこずができる。たずえば、トリア
ルキルアミン、―ゞメチルベンゞルアミン、ト
リ゚タノヌルアミン、ピペリゞン、ゞメチルアミ
ノメチルプノヌル、トリスゞメチルアミノメ
チルプノヌル、トリスゞメチルアミノメチ
ルプノヌルのヘキ゜゚ヌト、むミダゟヌル類
たずえば―゚チル――メチルむミダゟヌ
ル、ゞシアンゞアミド及びトリプニルホスフ
むン等を硬化促進剀ずしお䜵甚するこずができ
る。硬化促進剀の䜵甚量ぱポキシ暹脂100重量
郚に察しお0.1〜重量郚が奜たしい。 次に本発明の方法における出発原料である䞊蚘
䞀般匏で衚わされる化合物の皮である
―メチル―△―テトラヒドロ無氎フタル酞以
䞋、これを「―Me―△―THPA」ずいう。
ず―メチル―△―テトラヒドロ無氎フタル酞
以䞋、これを「―Me―△―THPA」ずい
う。の補造䟋、実斜䟋、比范䟋及び実隓䟋をあ
げお説明する。 ―Me―△―THPA補造䟋 無氎マレむン酞1962.0モルを撹拌機、枩
床蚈、コンデンサヌ、滎䞋ロヌト及び窒玠導入管
を付蚭した容量の四぀口フラスコに入れ、さ
らにトル゚ン100mlを加えた。宀枩で撹拌しなが
ら1432.1モルのむ゜プレンを埐々に適䞋し
た。反応熱のために枩床が䞊昇するので、りオタ
ヌバスで冷华しお、反応枩床を70〜80℃に保぀
た。玄0.5時間かか぀おむ゜プレンの適䞋を終了
した。さらに反応を完結させるために70〜80℃で
玄時間撹拌した。 反応終了埌、過剰のむ゜プレン、溶媒のトル゚
ンを100℃以䞋の枩床でアスピレヌタヌで吞匕し
お留去した枛圧床20mmHg。さらに、枛圧蒞留
しお0.5〜mmHg、留出枩床105〜115℃、
―Me―△―THPAを埗た。 ―Me―△―THPA補造䟋 無氎マレむン酞19620モル、―ペン
タゞ゚ン1432.1モル及びキシレン100mlを
容量のステンレス補オヌトクレヌブに仕蟌ん
だ。反応熱による枩床䞊昇を制埡しながら、枩床
を玄90〜100℃に保぀お、時間撹拌した。 反応終了埌、過剰の―ペンタゞ゚ン、溶
媒のキシレンを100℃以䞋の枩床でアスピレヌタ
ヌで吞匕しお留去した枛圧床20mmHg。さら
に、枛圧蒞留しお0.5〜mmHg、留出枩床100
〜110℃、―Me―△―THPAを埗た。 実斜䟋  垂販の△―テトラヒドロ無氎フタル酞以
䞋、「△―THPA」ずいう。50を、撹拌機、
枩床蚈、コンデンサヌ、窒玠導入管を付蚭した四
぀口フラスコに入れ、玄130℃に加熱しお溶解し
た。 これに沃化ナトリりム0.15を加え、200℃で
時間撹拌した。反応終了埌、トル゚ン50mlを加
え、10チオ硫酞゜ヌダ氎溶液50mlで掗浄した。
次いで、氎掗埌、氎局を陀き、油局に脱氎剀ずし
お無氎硫酞゜ヌダを加えお脱氎埌、枛圧床0.5〜
mmHgで単蒞留した。 110〜150℃0.6〜mmHgの留分ずしお玄50
の癜色固䜓生成物を埗た。このものの融点は73〜
74℃であ぀た。たた、このもののNMRスペクト
ル分析結果は、第図に瀺すずおりであ぀た。す
なわち、そのスペクトルは原料の△―THPAの
実線スペクトルに察し、点線のずおりのスペクト
ルを瀺した。これらのデヌタヌから、この生成物
は△―テトラヒドロ無氎フタル酞以䞋、「△
―THPA」ずいう。を䞻成分ずするこずが確
認された。 実斜䟋 〜10 觊媒の皮類、觊媒量、反応時間、反応枩床及び
觊媒添加方法を衚―に蚘茉のようにしお行な
い、そのほかは実斜䟋の方法ず同様にしお△
―THPAを加熱凊理した。 生成物を実斜䟋の方法ず同様にしお埌凊理し
た埌の生成物の収率及び融点は衚―に瀺すずお
りであ぀た。たた、この実斜䟋〜10においお埗
られた生成物は、NMRスペクトル分析等の結果
から、その䞻成分が△―THPAであるこずが確
認された。
The present invention relates to a method for isomerizing tetrahydrophthalic anhydride and its derivatives. Tetrahydrophthalic anhydride and its derivatives can be obtained by the addition reaction of various dienes obtained from naphtha cracked oil or synthetic diene oligomers with maleic anhydride. Tetrahydrophthalic anhydride and its derivatives have various uses, including as a curing agent for epoxy resins and as an acid component for alkyd resins. It may be desirable to isomerize for this purpose. The present invention relates to a method for isomerizing tetrahydrophthalic anhydride and its derivatives used for such purposes. Hitherto, various methods have been proposed for isomerizing tetrahydrophthalic anhydride and its derivatives, but the conventional methods have not always been fully satisfactory. For example, in US Pat. No. 2,764,597, △ 1 -tetrahydrophthalic anhydride is obtained by isomerizing △ 4 -tetrahydrophthalic anhydride, its free acid, and its esters using Pd or Ru as an isomerization catalyst. However, this method has the disadvantage of requiring expensive noble metals as an isomerization catalyst. Furthermore, in Japanese Patent Publication No. 15495/1987, 3 (and 4)-methyl-4-cyclohexene-1,2-
A method has been proposed in which dicarboxylic acid anhydride is liquefied by heat treatment in the presence of polyphosphoric acid or BF 3 complex (ethyl ether, acetic acid) as an isomerization catalyst, but this method is
Effective liquefaction only for methyl-4-cyclohexene-1,2-dicarboxylic anhydride, that is, a mixture of 3-methyl-△ 4 -tetrahydrophthalic anhydride and 4-methyl-△ 4 -tetrahydrophthalic anhydride. cannot be effective. That is, this method cannot achieve the purpose of liquefying a single compound of 3-methyl-△ 4 -tetrahydrophthalic anhydride or 4-methyl-△ 4 -tetrahydrophthalic anhydride. The present inventors conducted various studies on isomerization reactions of tetrahydrophthalic anhydride and its derivatives, and as a result, succeeded in developing a method that can extremely effectively isomerize tetrahydrophthalic anhydride using an inexpensive isomerization catalyst. That's what I did. That is, the present invention provides the general formula (In the formula, R represents hydrogen or an alkyl group having 1 to 6 carbon atoms.) Tetrahydrophthalic anhydride and its derivatives represented by bromine, iodine, alkali metal bromide, alkali metal iodide, alkaline earth bromide This is a method for isomerizing tetrahydrophthalic anhydride and its derivatives, which is characterized by carrying out a heat treatment in the presence of one or more isomerization catalysts selected from the group consisting of metals and alkaline earth metal iodides. Tetrahydrophthalic anhydride and its derivatives to be subjected to the isomerization reaction in the present invention are compounds represented by the above general formula (). Examples of such compounds include Δ4 -tetrahydrophthalic anhydride, 3-methyl- Δ4 -tetrahydrophthalic anhydride, 4-methyl- Δ4 -tetrahydrophthalic anhydride, 3-butyl- Δ4 -tetrahydrophthalic anhydride, Examples include 3-butenyl-5-methyl- Δ4 -tetrahydrophthalic anhydride. These compounds can be used as a raw material for the present invention either as a single compound or as a mixture of two or more of them. In the isomerization method of the present invention, these △ 4 -tetrahydrophthalic anhydride and its alkyl derivative cause a double bond transfer reaction from the △ 4 -position to the △ 1 -position as the main reaction, As a result, Δ 1 -tetrahydrophthalic anhydride and its alkyl derivatives, namely maleic anhydride derivatives, are produced as the main products. Therefore, in other words, the isomerization method of the present invention can be said to be a method for producing maleic anhydride derivatives. Further, in the isomerization method of the present invention, when the raw material compound () is a compound that is solid at room temperature, the isomerized product is often obtained as a liquid at room temperature. It is presumed that several types of geometric and structural isomers are produced through the isomerization reaction, and the coexistence of these several types of isomers lowers the freezing point. Therefore, the isomerization method of the present invention can be used as a method for liquefying a solid raw material compound (). As the isomerization catalyst in the present invention, bromine, iodine, alkali metal bromide, alkali metal iodide, alkaline earth metal bromide, and alkaline earth metal iodide are used. The alkali metals in the catalyst include lithium, sodium, potassium, rubidium and cesium, and the alkaline earth metals include calcium, magnesium and barium. Two or more of these isomerization catalysts may be used in combination. The amount of the isomerization catalyst used in the present invention is 0.005% by weight or more, preferably 0.01 to 3.0% by weight based on the compound represented by the above general formula () as the starting material.
It is. These isomerization catalysts may be added directly to the anhydrous raw material heated and melted, or may be added by other methods such as dissolved in a solvent such as water or acetone. Alternatively, the isomerization catalyst supported on a suitable carrier may be packed in a packed column, and the steam of the raw material acid anhydride may be passed through the packed bed at a desired reaction temperature to perform the heat treatment of the present invention. It is possible. Regarding the heat treatment conditions in the present invention, if the heating temperature is too low, it will take a long time for isomerization, and if the heating temperature is too high, the decomposition reaction and resin compound formation reaction will increase, reducing the yield of the desired isomerized product. And the reaction temperature is usually 120-250℃, preferably
The temperature is 150-230℃. Further, the heat treatment time varies depending on the amount of catalyst and the reaction temperature, and cannot be generally specified, but it is usually 10 minutes to 10 hours, preferably 0.5 to 3 hours. In addition, as mentioned above, an isomerization catalyst is supported on a carrier such as pumice, activated carbon, diatomaceous earth, silica gel, or molecular sieve, and the vapor of the raw material acid anhydride is passed through the supported catalyst layer to continuously heat it. can be processed, but in such cases 200 to 250
It is desirable to carry out the treatment at a high temperature of °C for a short time. If the amount of catalyst is small, the isomerized product obtained by processing according to the method of the present invention may be purified by distillation as it is, but it may be colored by free halogen. It is preferable to wash it with, for example, a 10% aqueous solution of sodium thiosulfate (Hybo) and then distill it. Also, activated carbon treatment for decolorization,
After adding superimposing agents such as diatomaceous earth, and further treating with an appropriate dehydrating agent to remove moisture,
May be distilled. The isomerization products obtained by the process of the invention can be advantageously used as hardeners for epoxy resins and as acid components of alkyd resins. This product also includes amides, imides, esters, chlorine adducts,
It can be used as a rust preventive after being modified into an alkylene oxide adduct, and can also be used as a base oil for grease as a salt of magnesium or aluminum, and as a plasticizer for rubber or resin (especially vinyl chloride) as a diester. In particular, this isomerization product can be used for various epoxy resins, such as those described in Chapters 3 and 4 of ``Epoxy Resins'' edited by Hiroshi Kakiuchi and published by Shokodo on September 30, 1970. It can exhibit excellent curing properties when used as a curing agent for various epoxy resins. When this isomerized product is used as an epoxy resin curing agent, the amount used is usually 50 to 120 parts by weight, preferably 50 to 120 parts by weight, per 100 parts by weight of the epoxy resin.
It is 70-100 parts by weight. Furthermore, when this isomerized product is used as an epoxy resin curing agent, other curing agents such as acid anhydride curing agents may be used in combination as necessary. Examples include hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, phthalic anhydride, pyromellitic anhydride, dodecenylsacnic anhydride, nadic anhydride, and chlorendic anhydride. It will be done. Furthermore, when this isomerized product is used as an epoxy resin curing agent, a curing accelerator can be used in combination, if necessary. For example, hexoates of trialkylamines, N-dimethylbenzylamine, triethanolamine, piperidine, dimethylaminomethylphenol, tris(dimethylaminomethyl)phenol, tris(dimethylaminomethyl)phenol, imidazoles (e.g. 2-ethyl-4 -methylimidazole), dicyandiamide, triphenylphosphine, etc. can be used in combination as a curing accelerator. The amount of the curing accelerator used is preferably 0.1 to 5 parts by weight per 100 parts by weight of the epoxy resin. Next, 4, which is one of the compounds represented by the above general formula (), which is the starting material in the method of the present invention.
-Methyl-△ 4 -tetrahydrophthalic anhydride (hereinafter referred to as "4-Me-△ 4 -THPA")
The following describes production examples, examples, comparative examples, and experimental examples of 3-methyl-△ 4 -tetrahydrophthalic anhydride (hereinafter referred to as "3-Me-△ 4 -THPA"). 4-Me-△ 4 -THPA production example Put 196 g (2.0 mol) of maleic anhydride into a four-necked flask with a capacity of 1 equipped with a stirrer, thermometer, condenser, dropping funnel, and nitrogen inlet tube, and add 100 ml of toluene. added. 143 g (2.1 mol) of isoprene was gradually added while stirring at room temperature. Since the temperature rose due to the heat of reaction, the reaction temperature was maintained at 70-80°C by cooling with a water bath. Approximately 0.5 hours or so once finished administering isoprene. Further, the mixture was stirred at 70 to 80°C for about 1 hour to complete the reaction. After the reaction was completed, excess isoprene and toluene as a solvent were distilled off by suction using an aspirator at a temperature of 100° C. or less (degree of vacuum: 20 mmHg). Furthermore, by distilling under reduced pressure (0.5-1 mmHg, distillation temperature 105-115℃),
-Me-△ 4 - Obtained THPA. 3-Me- Δ4 -THPA production example 196 g (20 mol) of maleic anhydride, 143 g (2.1 mol) of 1,3-pentadiene, and 100 ml of xylene were placed in a stainless steel autoclave with a capacity of 2. The mixture was stirred for 3 hours while maintaining the temperature at about 90 to 100° C. while controlling the temperature rise due to reaction heat. After the reaction was completed, excess 1,3-pentadiene and xylene as a solvent were removed by suction using an aspirator at a temperature of 100° C. or less (degree of vacuum: 20 mmHg). Furthermore, vacuum distillation (0.5 to 1 mmHg, distillation temperature 100
~110°C), 3-Me-△ 4 -THPA was obtained. Example 1 50 g of commercially available △ 4 -tetrahydrophthalic anhydride (hereinafter referred to as "△ 4 -THPA") was mixed with a stirrer,
The mixture was placed in a four-necked flask equipped with a thermometer, condenser, and nitrogen inlet tube, and heated to about 130°C to dissolve. 0.15 g of sodium iodide was added to this, and the mixture was stirred at 200°C for 6 hours. After the reaction was completed, 50 ml of toluene was added, and the mixture was washed with 50 ml of 10% sodium thiosulfate aqueous solution.
Next, after washing with water, remove the aqueous layer, add anhydrous sodium sulfate as a dehydrating agent to the oil layer, dehydrate it, and reduce the pressure to 0.5~
Simple distillation was performed at 1 mmHg. Approximately 50g as a fraction of 110-150℃/0.6-1mmHg
A white solid product was obtained. The melting point of this thing is 73~
It was 74℃. Further, the NMR spectrum analysis results of this product were as shown in FIG. That is, the spectrum showed a dotted line spectrum in contrast to the solid line spectrum of the raw material Δ 4 -THPA. From these data, this product is △ 1 -tetrahydrophthalic anhydride (hereinafter “△
1- THPA”. ) was confirmed to be the main component. Examples 2 to 10 The type of catalyst, amount of catalyst, reaction time, reaction temperature and catalyst addition method were as shown in Table 1, and the other conditions were the same as in Example 1.
- THPA was heat treated. After the product was post-treated in the same manner as in Example 1, the yield and melting point of the product were as shown in Table 1. Furthermore, it was confirmed from the results of NMR spectrum analysis and the like that the main component of the products obtained in Examples 2 to 10 was Δ 1 -THPA.

【衚】 実斜䟋 11 䞊蚘の補造䟋で埗られた―Me―△―
THPA60を撹拌機、枩床蚈、コンデンサヌ及び
窒玠導入管を付蚭した四぀口フラスコに入れ、玄
100℃に加熱しお溶解した。これに沃化ナトリり
ム0.3を加え、210℃で時間加熱撹拌した。 反応終了埌、クロロホルム50mlを加え、10チ
オ硫酞゜ヌダ氎溶液50mlで掗浄した。氎掗埌、氎
局を陀き、油局に脱氎剀ずしお無氎硫酞゜ヌダを
加えお脱氎した埌、枛圧床0.5〜mmHgで単蒞留
した。105〜115℃0.5〜mmHgの留分ずしお、
淡黄色の液状生成物54収率90を埗た。 この生成物は酞䟡が82〜84であ぀た。たた、こ
の生成物が―Me―△―THPAを䞻成分ずす
る異性䜓混合物であるこずは、GC、IR及びNMR
分析の結果から確められた。第図は実斜䟋11に
おける原料の―Me―△―THPA実線及
びその生成物点線のスペクトルを瀺すもので
ある。 この液状生成物は、℃の冷蔵庫内、−20℃の
冷凍庫内、及び垞枩20〜25℃でか月攟眮し
たが、いずれも結晶化しなか぀た。たた、その粘
床型粘床蚈は25℃で42cpsであ぀た。 実斜䟋 12〜19 䞊蚘補造䟋で補造した―Me―△―THPA
及び又は―Me―△―THPAに察しお、
觊媒の皮類、觊媒量、反応時間、反応枩床及び觊
媒添加方法を衚―に蚘茉のずおりずしお、その
他は実斜䟋11の方法に準じお加熱凊理を斜した。 埗られた生成物を実斜䟋11の方法に準じお埌凊
理し、それぞれ衚―に蚘茉の粘床を有する液状
生成物を同衚に蚘茉の収率で埗た。この実斜䟋12
〜19においお埗られた生成物も―Me―△―
THPAを䞻成分ずするこずは、NMR分析等によ
぀お確められた。 これら実斜䟋12〜19で埗られた液状生成物はい
ずれも液状安定性に優れ、実斜䟋11におけるず同
様の各枩床でか月保持したが、いずれも結晶を
生成しなか぀た。
[Table] Example 11 4-Me-△ 4- obtained in the above production example
Put 60g of THPA into a four-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen inlet tube, and add approximately
It was heated to 100°C and dissolved. To this was added 0.3 g of sodium iodide, and the mixture was heated and stirred at 210°C for 4 hours. After the reaction was completed, 50 ml of chloroform was added, and the mixture was washed with 50 ml of 10% sodium thiosulfate aqueous solution. After washing with water, the aqueous layer was removed, and anhydrous sodium sulfate was added as a dehydrating agent to the oil layer for dehydration, followed by simple distillation at a reduced pressure of 0.5 to 1 mmHg. As a fraction of 105-115℃/0.5-1mmHg,
54 g (yield 90%) of a pale yellow liquid product was obtained. This product had an acid value of 82-84. Furthermore, it was confirmed by GC, IR and NMR that this product is an isomer mixture containing 4-Me-△ 1 -THPA as the main component.
This was confirmed from the analysis results. FIG. 2 shows the spectra of the raw material 4-Me-△ 4 -THPA (solid line) and its product (dotted line) in Example 11. This liquid product was left in a refrigerator at 5°C, in a freezer at -20°C, and at room temperature (20 to 25°C) for 2 months, but did not crystallize. Further, its viscosity (E-type viscometer) was 42 cps at 25°C. Examples 12 to 19 4-Me-△ 1 -THPA produced in the above production example
and (or) 3-Me-△ 4 -THPA,
The type of catalyst, amount of catalyst, reaction time, reaction temperature, and catalyst addition method were as shown in Table 2, and the heat treatment was otherwise performed in accordance with the method of Example 11. The obtained products were post-treated according to the method of Example 11, and liquid products having the viscosities shown in Table 2 were obtained at the yields shown in the table. This example 12
The product obtained in ~19 is also 4-Me-△ 1-
It was confirmed by NMR analysis etc. that THPA is the main component. All of the liquid products obtained in Examples 12 to 19 had excellent liquid stability, and although they were kept at the same temperatures for two months as in Example 11, no crystals were formed in any of them.

【衚】 なお、実斜䟋11〜19におけるように、―Me
―△―THPA又は―Me―△―THPAに察
しお本発明の異性化方法を適甚したずきに液状生
成物を生ずるのは、異性化反応により数皮の幟䜕
及び構造異性䜓を生成し、それらの共存によ぀お
凝固点を䜎䞋させるず掚枬される。 実隓䟋 ゚ピコヌト828〔シ゚ル化孊瀟商品名、゚ポキ
シ圓量189、―ビス――ヒドロキシフ
゚ニルプロパンのグリシゞル゚ヌテル〕100郚
重量郚、以䞋同じ、実斜䟋11においお埗られた
液状―Me―△―THPA80郚及び硬化促進剀
のベンゞルゞメチルアミン郚を垞枩で均䞀に撹
拌混合し、枛圧䞋mmHg以䞋で脱泡しお゚
ポキシ暹脂組成物を調補した。この組成物の粘床
は25℃で玄20ポむズであり、泚型等が極めお容易
であ぀た。 この暹脂組成物を80℃で時間前硬化させ、次
いで120℃で時間硬化させたずころ、衚―に
瀺すずおり匷じんな硬化暹脂が埗られた。 なお、衚―には比范のために、公知の硬化剀
を配合した゚ポキシ暹脂組成物の配合及びその硬
化暹脂物性を付蚘した。
[Table] In addition, as in Examples 11 to 19, 4-Me
-△ 4 -THPA or 3-Me-△ 4 -The reason why a liquid product is produced when the isomerization method of the present invention is applied to THPA is that several geometric and structural isomers are generated by the isomerization reaction. However, it is assumed that their coexistence lowers the freezing point. Experimental example Epicoat 828 [trade name, Siel Kagaku Co., Ltd., epoxy equivalent weight 189, glycidyl ether of 2,2-bis-(4-hydroxyphenyl)propane] 100 parts (parts by weight, same hereinafter) obtained in Example 11 80 parts of liquid 4-Me- Δ4 -THPA and 1 part of benzyldimethylamine as a curing accelerator were uniformly stirred and mixed at room temperature, and defoamed under reduced pressure (2 mmHg or less) to prepare an epoxy resin composition. The viscosity of this composition was about 20 poise at 25°C, and casting etc. were extremely easy. When this resin composition was precured at 80°C for 3 hours and then at 120°C for 6 hours, a strong cured resin was obtained as shown in Table 3. For comparison, Table 3 also includes the formulations of epoxy resin compositions containing known curing agents and the physical properties of the cured resins.

【衚】【table】

【衚】 衚―からわかるように、実斜䟋11においお埗
られた液状の異性化生成物は、゚ポキシ暹脂硬化
剀ずしお、既存のヘキサヒドロ無氎フタル酞硬化
剀ず比范しおも、硬化物の機械的性質及び電気的
性質になんら遜色を認めなか぀た。たた、実斜䟋
12〜19においお埗られた液状の異性化生成物に぀
いおもほが同様の結果が埗られた。
[Table] As can be seen from Table 3, the liquid isomerization product obtained in Example 11 was more effective as an epoxy resin curing agent than the existing hexahydrophthalic anhydride curing agent. No inferiority was observed in the physical and electrical properties. Also, examples
Almost similar results were obtained for the liquid isomerization products obtained in Examples 12 to 19.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋における原料の△―THPA
実線ず生成物の△―THPA点線のNMR
スペクトルを瀺す。たた、第図は実斜䟋11にお
ける原料の―Me―△―THPA実線ず生
成物の―Me―△―THPA点線のNMRス
ペクトルを瀺す。
Figure 1 shows the raw material △ 4 -THPA in Example 1.
(solid line) and product △ 1 -THPA (dotted line) NMR
The spectrum is shown. Further, FIG. 2 shows the NMR spectra of the raw material 4-Me-Δ 4 -THPA (solid line) and the product 4-Me-Δ 1 -THPA (dotted line) in Example 11.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、は氎玠又は炭玠数〜のアルキル
基を瀺す。 で衚わされるテトラヒドロ無氎フタル酞及びその
誘導䜓を、臭玠、沃玠、臭化アルカリ金属、沃化
アルカリ金属、臭化アルカリ土類金属及び沃化ア
ルカリ土類金属よりなる矀から遞ばれた皮以䞊
の異性化觊媒の存圚䞋で加熱凊理するこずを特城
ずするテトラヒドロ無氎フタル酞及びその誘導䜓
の異性化方法。  テトラヒドロ無氎フタル酞及びその誘導䜓
が、Δ―テトラヒドロ―無氎フタル酞、―メ
チル―Δ―テトラヒドロ無氎フタル酞、―メ
チル―Δ―テトラヒドロ無氎フタル酞、又はこ
れらの任意の皮以䞊の混合物である特蚱請求の
範囲第項蚘茉の方法。  異性化觊媒の存圚量がテトラヒドロ無氎フタ
ル酞及びその誘導䜓に察しお0.005重量以䞊で
ある特蚱請求の範囲第項又は第項蚘茉の方
法。  加熱凊理枩床が120〜250℃である特蚱請求の
範囲第項、第項又は第項蚘茉の方法。
[Claims] 1. General formula (In the formula, R represents hydrogen or an alkyl group having 1 to 6 carbon atoms.) Tetrahydrophthalic anhydride and its derivatives represented by bromine, iodine, alkali metal bromide, alkali metal iodide, alkaline earth bromide 1. A method for isomerizing tetrahydrophthalic anhydride and its derivatives, the method comprising heating in the presence of one or more isomerization catalysts selected from the group consisting of metals and alkaline earth metal iodides. 2. Tetrahydrophthalic anhydride and its derivatives are Δ 4 -tetrahydrophthalic anhydride, 3-methyl-Δ 4 -tetrahydrophthalic anhydride, 4-methyl-Δ 4 -tetrahydrophthalic anhydride, or any two of these. The method according to claim 1, which is a mixture of the above. 3. The method according to claim 1 or 2, wherein the isomerization catalyst is present in an amount of 0.005% by weight or more based on tetrahydrophthalic anhydride and its derivatives. 4. The method according to claim 1, 2 or 3, wherein the heat treatment temperature is 120 to 250°C.
JP2200879A 1979-02-28 1979-02-28 Isomerization of tetrahydrophthalic anhydride and its derivative Granted JPS55115879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200879A JPS55115879A (en) 1979-02-28 1979-02-28 Isomerization of tetrahydrophthalic anhydride and its derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200879A JPS55115879A (en) 1979-02-28 1979-02-28 Isomerization of tetrahydrophthalic anhydride and its derivative

Publications (2)

Publication Number Publication Date
JPS55115879A JPS55115879A (en) 1980-09-06
JPS6221786B2 true JPS6221786B2 (en) 1987-05-14

Family

ID=12070967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200879A Granted JPS55115879A (en) 1979-02-28 1979-02-28 Isomerization of tetrahydrophthalic anhydride and its derivative

Country Status (1)

Country Link
JP (1) JPS55115879A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198725A (en) * 1981-06-01 1982-12-06 New Japan Chem Co Ltd Curable epoxy resin composition
JP4826256B2 (en) * 2003-11-20 2011-11-30 䞉菱瓊斯化孊株匏䌚瀟 Liquid cyclohexanetricarboxylic acid anhydride

Also Published As

Publication number Publication date
JPS55115879A (en) 1980-09-06

Similar Documents

Publication Publication Date Title
Dolbier Jr et al. Kinetic and thermodynamic effects in the thermal electrocyclic ring-openings of 3-fluorocyclobutene, 3, 3-difluorocyclobutene, and 3-(trifluoromethyl) cyclobutene
CN114149324B (en) Synthesis method of 6-hydroxy-8-chlorooctanoic acid ethyl ester, 6, 8-dichloro octanoic acid ethyl ester and lipoic acid
JPS6221786B2 (en)
US2028043A (en) Cumyl phenol
Barentsen et al. Intramolecular meta photocycloaddition of conformationally restrained 5-phenylpent-1-enes. Part II: Steric and electronic effects caused by 4-mono-and 4-disubstitution
US4332733A (en) Process for liquefying acid anhydride
EP0075238A2 (en) Process for the preparation of 3-alkyl-3-acyloxy-4-hydroxybutenes
US4048220A (en) Process for preparation of 1,4-haloallylic esters from dienes
JPS59116247A (en) Preparation of unsaturated fatty acid
US2197798A (en) Method of producing esters
JPH0339066B2 (en)
JP4774591B2 (en) Method for producing low-viscosity liquid acid anhydride and epoxy resin composition
JPS5850992B2 (en) Tetracarboxydiphenyl ether dianhydride
US3504036A (en) Process for the production of cycloalkane-1,3-diones
JPS5924986B2 (en) Liquefaction treatment method of anhydrous maleic acid of chain triene having 10 carbon atoms
JPS625151B2 (en)
Ford et al. Molecular Rearrangements in the Sterols. III. The Constitution of i-Cholesterol and of the Isomeric Ethers of Cholesterol
JPS6157530A (en) Manufacture of ionone
JPS61282326A (en) Manufacture of 1,3,5-undecatriene
Marty et al. Diastereoselective synthesis of (1S, 2S, 3R, 6S) 3-chloro-3-methyl-6-isopropenyl-1, 2-cyclohexanediol via Prins reaction induced by Zinc and trimethylsilyl chloride
JPS6058758B2 (en) Liquefaction treatment method for chain triene maleate having 10 carbon atoms
JP2001002670A (en) Alicyclic tetracarboxylic acid anhydride and its production
CN101134715A (en) Method for preparing 3-alkoxy-1-chloropropane
JP2002155069A (en) Method for producing low-viscosity liquid acid anhydride and epoxy resin composition
JP2005289949A (en) Method for preparing ketone compound