JPS62217853A - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JPS62217853A
JPS62217853A JP5952486A JP5952486A JPS62217853A JP S62217853 A JPS62217853 A JP S62217853A JP 5952486 A JP5952486 A JP 5952486A JP 5952486 A JP5952486 A JP 5952486A JP S62217853 A JPS62217853 A JP S62217853A
Authority
JP
Japan
Prior art keywords
duct
flow path
core
annular flow
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5952486A
Other languages
Japanese (ja)
Inventor
Hidetsugu Matsuzawa
松澤 秀貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5952486A priority Critical patent/JPS62217853A/en
Publication of JPS62217853A publication Critical patent/JPS62217853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To increase pump capacity easily to a high one by forming an annular flow path of liquid metal wound with a coil along the axial direction by coaxially providing a plurality of flow paths differing in the annular diameter. CONSTITUTION:Within a cylindrical pump casing 11, plural outside cores 13 of the same length are installed at equal spaces and outer coils 15 are wound around a plurality of axially provided slots. An outer duct 12 connected with Na inlet and outlet ports is inserted between the outside cores 13. Within the outer duct 12, an intermediate duct 16 and an inner duct 20 are secured by separators 17, 21 so that a larger annular flow path 19 and a small annular flow path 22 are formed coaxially. An intermediate core 18 is installed within the intermediate duct 16 while inner coils 23 wound around slots of an iron core 24 are arranged axially in the inner duct 20. A prescribed three-phase alternating current is applied to the outer coils 15 and inner coils 23 so that a shifting magnet field is generated between the outside core 13, intermediate core 18 and inside core 24 to make a molten Na flow in the direction of the arrow. In this manner, a pump capacity is increased easily.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電気的に良導体のナトリウム等の液体金属を輸
送する直線誘導型の電磁ポンプに係り、特に、液体金属
の流路を改良して人寄量化を図った電磁ポンプに関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a linear induction type electromagnetic pump for transporting a liquid metal such as sodium, which is an electrically good conductor. This invention relates to an electromagnetic pump that improves the number of people visiting the road.

(従来の技術) 従来、この種の直線誘導型の電磁ポンプは第5図に示す
ように構成され、吸込口1aと吐出口1bとを有する円
筒状の外ダクト1内に、これより小径の内ダクト2を径
方向に所定の間隙をおいて同軸状に収容し、両ダクト1
,2間に環状流路3を形成している。
(Prior Art) Conventionally, this type of linear induction type electromagnetic pump is constructed as shown in FIG. The inner duct 2 is housed coaxially with a predetermined gap in the radial direction, and both ducts 1
, an annular flow path 3 is formed between the two.

外ダクト1の外周には、その軸方向に沿ってコイル4を
巻回し、このコイル4を櫛状の外部鉄心5の各櫛状歯間
の溝内に嵌入して支持している。
A coil 4 is wound around the outer periphery of the outer duct 1 along its axial direction, and the coil 4 is supported by being fitted into a groove between each comb-shaped tooth of a comb-shaped outer iron core 5.

外部鉄心5は外ダクト1の外周面上に軸方向に沿って立
設され、周方向に等ビッヂで配設されて、その外周面は
外ダクト1と共に図示しないポンプケーシングに固定さ
れている。
The external iron core 5 is erected along the axial direction on the outer circumferential surface of the outer duct 1, is arranged with equal width in the circumferential direction, and its outer circumferential surface is fixed together with the outer duct 1 to a pump casing (not shown).

一方、内ダクト2はその内部に円柱状の内部鉄心6を収
容して、その両端を密閉し、外部鉄心5と内部鉄心6と
で磁気回路を形成し、コイル4の通電時には図中太線矢
印方向に移動する移動磁界を形成する。
On the other hand, the inner duct 2 accommodates a cylindrical inner core 6 therein, and its both ends are sealed, and the outer core 5 and the inner core 6 form a magnetic circuit, and when the coil 4 is energized, the thick line arrow in the figure It forms a moving magnetic field that moves in the direction.

この移動磁界により環状流路3内の液体ナトリウム中に
誘導電流が誘起され、この誘導電流と移動磁界との交差
により生ずる電磁力で導体としてのナトリウムを図中太
線矢印方向に流動させ、吐出口1bより吐出する。
This moving magnetic field induces an induced current in the liquid sodium in the annular flow path 3, and the electromagnetic force generated by the intersection of this induced current and the moving magnetic field causes the sodium as a conductor to flow in the direction of the thick arrow in the figure, and the discharge port Discharge from 1b.

(発明が解決しようとする問題点) このような従来の電磁ポンプでポンプ容量の大容爵化を
図る場合には、外ダクト1および内ダクト2を共に拡径
して、環状流路3の断面積を拡大すると共に、コイル4
の巻回数を増加させて、ポンプ吐出出力を高めていた。
(Problems to be Solved by the Invention) In order to increase the pump capacity of such a conventional electromagnetic pump, the diameters of both the outer duct 1 and the inner duct 2 are enlarged to increase the diameter of the annular flow path 3. In addition to expanding the cross-sectional area, the coil 4
By increasing the number of turns of the pump, the pump discharge output was increased.

このために、従来の電磁ポンプでは大型化と重量化を招
くという問題があった。
For this reason, conventional electromagnetic pumps have the problem of becoming larger and heavier.

そこで、本発明は小型で大容量の電磁ポンプを提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a small-sized, large-capacity electromagnetic pump.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は液体金属を流す環状流路を径を異にして複数段
()、これら環状流路を例えば2重環状に設けたもので
あり、液体金属が流れる環状流路の軸方向に沿ってコイ
ルを巻回し、液体金属の流れ方向に沿って移動する移動
磁界を形成する電磁ポンプにおいて、上記環状流路はそ
の環径を異にして複数有し、これら環状流路を同軸状に
設けている。
(Means for Solving the Problems) The present invention provides a plurality of annular channels with different diameters for flowing liquid metal (), and these annular channels are provided in, for example, a double annular shape. In an electromagnetic pump that winds a coil along the axial direction of a flowing annular flow path to form a moving magnetic field that moves along the flow direction of the liquid metal, the annular flow path has a plurality of different ring diameters, These annular channels are provided coaxially.

(作用) コイルが通電されると、複数の環状流路内の各液体金属
に、その流れ方向に沿って移動磁界が形成される。
(Operation) When the coil is energized, a moving magnetic field is formed in each of the liquid metals in the plurality of annular channels along the flow direction thereof.

このために、各環状流路内の液体金属に誘導電流が誘起
されて、この誘導電流が移動磁束と鎖交してff1ra
力を生じ、この電磁力がポンプ駆動力として液体金属に
作用して、各環状流路内の液体金属を共に流動させ、吐
出する。
For this reason, an induced current is induced in the liquid metal in each annular flow path, and this induced current interlinks with the moving magnetic flux, causing ff1ra
This electromagnetic force acts on the liquid metal as a pump driving force, causing the liquid metal in each annular channel to flow together and be discharged.

したがって、液体金属が複数の環状流路内を共に流れる
ので、ポンプ容量の人吉量化を図ることができ、しか6
、例えば小環状流路を大環状流路内に同軸状に収容して
いるので、ポンプの小型化を図ることができる。
Therefore, since the liquid metal flows together in the plurality of annular channels, it is possible to increase the pump capacity, and only 6
For example, since the small annular flow path is coaxially accommodated within the large annular flow path, the pump can be made smaller.

(実施例) 以下、本発明の実施例について第1図〜第4図を参照し
て説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 to 4.

第1図〜第3図は本発明の一実施例を示しており、円筒
状のポンプケーシング11内に、これより小径の円筒状
の外ダクト12を同軸状に設け、外ダクト12の一端を
図示しない液体金属のナトリウム源に接続される吸込口
12aに、その他端を吐出口12bに開口させている。
1 to 3 show an embodiment of the present invention, in which a cylindrical outer duct 12 with a smaller diameter is provided coaxially within a cylindrical pump casing 11, and one end of the outer duct 12 is The suction port 12a is connected to a liquid metal sodium source (not shown), and the other end thereof is opened to a discharge port 12b.

ポンプケーシング11内にはその軸方向に長手方向を一
致させて櫛状の外部鉄心13を取付金具14により固着
すると共に、周方向に等ピッチで複数個を配設している
Inside the pump casing 11, a plurality of comb-shaped external iron cores 13 are fixed with fittings 14 so that their longitudinal directions coincide with the axial direction, and are arranged at equal pitches in the circumferential direction.

これら櫛状の外部鉄心13の各櫛状歯間の溝は外ダクト
12の外周側で開口し、これら溝内には外コイル15が
嵌着され、外コイル15が外ダクト12の外周にて、そ
の軸方向に沿って巻回され、外ダクト12の吸込口12
aから吐出口12bへ向けて移動する移動磁界を形成す
るようになっている。
The grooves between the comb-shaped teeth of these comb-shaped external iron cores 13 open on the outer periphery of the outer duct 12, and the outer coil 15 is fitted into these grooves. , is wound along its axial direction, and the suction port 12 of the outer duct 12
A moving magnetic field is formed that moves from a to the discharge port 12b.

外ダクト12内にはこれより小径の円筒状の中間ダクト
16を同軸状に収容して、外サポート17により固定し
、中間ダクト16の管壁内には中間鉄心18を充填して
いる。第2図に示すように中間ダクト16の外周面と外
ダクト12の内周面とで画成される環状空間は液体ナト
リウムを流す大環状流路19に形成される。
A cylindrical intermediate duct 16 having a smaller diameter is coaxially accommodated within the outer duct 12 and fixed by an outer support 17, and the wall of the intermediate duct 16 is filled with an intermediate iron core 18. As shown in FIG. 2, an annular space defined by the outer peripheral surface of the intermediate duct 16 and the inner peripheral surface of the outer duct 12 is formed into a large annular flow path 19 through which liquid sodium flows.

また、中間ダクト16内にはこれより小径の円筒状の内
ダクト20が同軸状に収容され、内サポート21により
支持されている。この中間ダクト16の内周面と内ダク
ト20の外周面とで画成される環状空間は液体ナトリウ
ムを流す小環状流路22に形成される。
Further, a cylindrical inner duct 20 having a smaller diameter is coaxially accommodated within the intermediate duct 16 and supported by an inner support 21 . An annular space defined by the inner peripheral surface of the intermediate duct 16 and the outer peripheral surface of the inner duct 20 is formed into a small annular flow path 22 through which liquid sodium flows.

内ダクト20はその両端部を液密に書間すると共に、外
方に向けて先細となる流線形に形成し、その内部には内
コイル23を軸方向に沿って外周に巻回した内部鉄心2
4を充填している。
The inner duct 20 has both ends liquid-tightly spaced, and is formed into a streamlined shape that tapers outward, and has an inner core in which an inner coil 23 is wound around the outer periphery along the axial direction. 2
4 is filled.

内コイル23に接続されて3相の交流電力を給電する給
電線25の一端は第1図のA部を拡大して示す第3図で
図示するように内ダクト20と、内サポート21と、中
間ダクト16および中間鉄心18と、外サポート17と
、外ダクト12との各ケーブル孔26を径方向に挿通し
てポンプケーシング11内に伸びており、図示しない電
圧制御装置を介して電源に接続されている。
One end of the power supply line 25 that is connected to the inner coil 23 and feeds three-phase AC power is connected to an inner duct 20, an inner support 21, as shown in FIG. 3, which is an enlarged view of part A in FIG. The cable extends into the pump casing 11 by passing through each cable hole 26 of the intermediate duct 16, the intermediate iron core 18, the outer support 17, and the outer duct 12 in the radial direction, and is connected to a power source via a voltage control device (not shown). has been done.

また、この給電線25は、内、外コイル15゜23と同
様に高温でも信頼性の高い絶縁性を有するセラミックス
をコーティングしている。
Further, like the inner and outer coils 15 and 23, the power supply line 25 is coated with ceramics having highly reliable insulating properties even at high temperatures.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

外コイル15および内コイル23を所定の3相交流で通
電すると、外部鉄心13と中間鉄心18との間と、内部
鉄心24と中間鉄心18との間とで磁気回路がそれぞれ
形成され、大、車両環状流路19.22には液体ナトリ
ウムの流れ方向、すなわち、外ダクト12の吸込口12
aから吐出口12bへ向けて移動する移動磁界が形成さ
れる。
When the outer coil 15 and the inner coil 23 are energized with a predetermined three-phase alternating current, a magnetic circuit is formed between the outer core 13 and the intermediate core 18 and between the inner core 24 and the intermediate core 18, and The vehicle annular channel 19.22 has a flow direction of liquid sodium, i.e. an inlet 12 of the outer duct 12.
A moving magnetic field is formed that moves from a to the discharge port 12b.

これら移動磁界のために、大、車両環状流路19.22
内の液体ナトリウムに誘導?1fFがそれぞれ誘起され
、これら誘導電流と各移動磁束との交差により液体ナト
リウムに電磁力が生じ、この電磁ツノがポンプ駆動力と
して液体ナトリウムに作用して、大、車両環状流路19
.22内の液体ナトリウムが外ダクト12の吸込口12
aから吐出口12bへ向けて共に流動し、吐出口12b
より吐出される。
Because of these moving magnetic fields, large, vehicle annular channels 19.22
Induction into liquid sodium inside? 1 fF is induced respectively, and an electromagnetic force is generated in the liquid sodium by the intersection of these induced currents and each moving magnetic flux, and this electromagnetic horn acts on the liquid sodium as a pump driving force, and the large vehicle annular flow path 19
.. The liquid sodium in 22 flows into the suction port 12 of the outer duct 12.
a to the discharge port 12b, and the discharge port 12b
More is discharged.

このように液体ナトリウムを大、車両環状流路19.2
2を通して共に輸送することができるので、ポンプ容量
の大容聞化を図ることができる。
In this way, the liquid sodium is large, the vehicle annular flow path 19.2
2, the pump capacity can be increased.

しかも、小環状流路22を大環状流路19内に同軸状に
収容しているので、ポンプの小型化を図ることができる
Moreover, since the small annular flow path 22 is coaxially accommodated within the large annular flow path 19, the pump can be made smaller.

第4図は本発明の他の実施例の縦断面を示しており、上
述実施例が大環状流路19と小環状流路22とを並列に
設けて、両流路19,22に生ずる移動磁界の移動方向
を等しくしているのに対し、本実施例は大環状流路30
を小環状流路31に直列に接続して、両流路30.31
の移動磁界の移動方向を相互に逆方向にして、液体ナト
リウムの流れ方向を折返すようにした点に主な相違点が
ある。
FIG. 4 shows a longitudinal section of another embodiment of the present invention, in which the above-mentioned embodiment has a large annular flow path 19 and a small annular flow path 22 arranged in parallel, and the movement that occurs in both flow paths 19 and 22 is While the moving directions of the magnetic fields are made equal, in this embodiment, the large annular flow path 30
are connected in series to the small annular flow path 31 to form both flow paths 30 and 31.
The main difference is that the moving directions of the moving magnetic fields are opposite to each other, so that the flow direction of the liquid sodium is reversed.

すなわち、本実施例は第4図に示すように構成され、円
筒状のポンプケーシング32内に液体ナトリウムの吸込
口33aを有する円筒状の外ダクト33を同軸状に収容
し、さらに、外ダクト33内には、液体ナトリウムの吐
出口34aを有する中間ダクト34を同軸状に収容して
おり、この中間ダクト34の外周面と外ダクト33の内
周面とで画成される大環状流路30を形成している。
That is, this embodiment is constructed as shown in FIG. 4, in which a cylindrical outer duct 33 having a liquid sodium suction port 33a is coaxially accommodated in a cylindrical pump casing 32, and the outer duct 33 An intermediate duct 34 having a discharge port 34a for liquid sodium is coaxially accommodated therein, and a large annular flow path 30 defined by the outer circumferential surface of the intermediate duct 34 and the inner circumferential surface of the outer duct 33. is formed.

ポンプケーシング32内には外ダクト33の外周の軸方
向に外コイル35を巻回するように複数の外部鉄心36
が支持金具37により周方向にほぼ等ピッチで固着され
ている。
Inside the pump casing 32, a plurality of external iron cores 36 are arranged such that an outer coil 35 is wound in the axial direction around the outer duct 33.
are fixed by supporting metal fittings 37 at approximately equal pitches in the circumferential direction.

中間ダクト34はその内端を外ダクト33内の密K E
部内で開口して、外ダクト33の折返し部33bの一端
で連通しており、中間ダクト34の管壁内にはその外径
部に外側中間鉄心38を、その内径部には内側中間鉄心
39を互いに磁気シールド40で磁気シールして充填す
る鉄心収納部を有する。
The intermediate duct 34 connects its inner end to the inner end of the outer duct 33.
The intermediate duct 34 has an outer intermediate core 38 on its outer diameter and an inner intermediate core 39 on its inner diameter inside the tube wall of the intermediate duct 34. It has an iron core storage section in which the iron cores are magnetically sealed and filled with each other by a magnetic shield 40.

磁気シールド40は例えばパーマロイ等の高誘磁率材料
よりなる仕切板に例えばセラミックコーティングを施し
て電気絶縁を図ったものよりなり、あるいは単なる空隙
であってもよい。
The magnetic shield 40 may be made of a partition plate made of a high-permittivity material such as permalloy and coated with a ceramic coating for electrical insulation, or may be a simple air gap.

中間ダクト34の鉄心収納部の内周にはこれより小径の
内ダクト41が径方向に所定の間隙をおいて同軸状に収
容され、この内ダクト41の外周面と中間ダクト34の
内周面とで画成される小環状流路31が形成されている
。この小環状流路31の右端部(第4図参照)は大環状
流路30の折返し1W33bで連通している。
An inner duct 41 having a smaller diameter is housed coaxially with a predetermined gap in the radial direction on the inner periphery of the iron core housing portion of the intermediate duct 34, and the outer periphery of the inner duct 41 and the inner periphery of the intermediate duct 34 A small annular flow path 31 is formed. The right end portion of the small annular flow path 31 (see FIG. 4) communicates with the large annular flow path 30 at the fold 1W33b.

内ダクト41は内コイル42を軸方向に沿って外周に巻
回した内部鉄心43を内部に充填している。内コイル4
2に接続されて3相の交流電力を給電する給電線44は
内ダクト41の一端を固着する外ダクト33の固着部よ
り外部に延出している。
The inner duct 41 is filled with an inner core 43 having an inner coil 42 wound around the outer periphery along the axial direction. inner coil 4
A power supply line 44 that is connected to the inner duct 2 and supplies three-phase AC power extends outside from a fixed portion of the outer duct 33 that fixes one end of the inner duct 41.

そして、外コイル35と内コイル42とには大環状流路
30と、小環状流路31とに生ずる移動磁界の移動方向
が逆方向になるように3相の交流電力がそれぞれ印加さ
れる。
Three-phase AC power is applied to the outer coil 35 and the inner coil 42, respectively, so that the moving directions of the moving magnetic fields generated in the large annular flow path 30 and the small annular flow path 31 are opposite directions.

これにより、外部鉄心36と外側中間鉄心36とで形成
される磁気回路は大環状流路30内の液体すトリウムに
図中矢印で示す方向に移動する移動磁界を形成し、この
液体ナトリウムに誘導電流を誘起させる。この誘導電流
は移動磁界の磁束と鎖交して、液体ナトリウムには電磁
力がポンプ駆動力として作用し、図中矢印方向に液体ナ
トリウムが流動して、大環状流路30の右端部の折返し
部33bに流入し、ここで、反転して小環状流路31内
に流入する。
As a result, the magnetic circuit formed by the outer iron core 36 and the outer intermediate iron core 36 forms a moving magnetic field that moves the liquid sodium in the large annular flow path 30 in the direction shown by the arrow in the figure, and guides the liquid sodium. induces a current. This induced current interlinks with the magnetic flux of the moving magnetic field, and the electromagnetic force acts on the liquid sodium as a pump driving force, causing the liquid sodium to flow in the direction of the arrow in the figure, turning the right end of the large annular channel 30. It flows into the section 33b, where it is reversed and flows into the small annular channel 31.

一方、小環状流路31には内部鉄心43と内側中間鉄心
36とで形成される磁気回路により、大環状流路30の
移動磁界とは逆向きの移動磁界が形成されているので、
小環状流路31の一端部へ流入した液体ナトリウムはさ
らに、中間ダクト34の吐出口34aへ向けて流動し、
吐出口34aより吐出される。
On the other hand, in the small annular flow path 31, a moving magnetic field in the opposite direction to the moving magnetic field of the large annular flow path 30 is formed by the magnetic circuit formed by the inner iron core 43 and the inner intermediate iron core 36.
The liquid sodium that has flowed into one end of the small annular flow path 31 further flows toward the outlet 34a of the intermediate duct 34,
It is discharged from the discharge port 34a.

なお、第4図中、符号45は中間ダクト34を外ダクト
33内で支持する外サポートであり、符号46は内ダク
ト41を中間ダクト34で支持する内ザボートである。
In FIG. 4, reference numeral 45 is an outer support that supports the intermediate duct 34 within the outer duct 33, and reference numeral 46 is an inner support that supports the inner duct 41 within the intermediate duct 34.

このように本実施例では大、小雨環状流路30゜31の
液体ナトリウムに[1カのポンプ駆動力をそれぞれ与え
るので、ポンプ吐出力を高めることができ、しかも、大
、小雨環状流路30.31を折返し部33bで連結して
2重環状に構成しているので、ポンプ全体の小型化を図
ることができる。
As described above, in this embodiment, since a pump driving force of 1 force is applied to the liquid sodium in the large and light rain annular flow paths 30 and 31, the pump discharge force can be increased. .31 are connected at the folded portion 33b to form a double ring shape, so the entire pump can be miniaturized.

なお、上記各実施例では環状流路を、大環状流路19.
30と小環状流路22.31とで2重環状に構成した場
合について述べたが、本発明は環状流路を3重環状以上
に構成してもよい。
Note that in each of the above embodiments, the annular flow path is the large annular flow path 19.
30 and the small annular flow path 22, 31 have been described, the annular flow path may be configured to have a triple or more ring shape.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、液体金属が流れる環状流
路は、その環径を異にして複数有し、これら環状流路を
同軸状に設けている。
As explained above, in the present invention, a plurality of annular channels through which liquid metal flows are provided with different ring diameters, and these annular channels are provided coaxially.

したがって、本発明によれば、複数の環状流路を通して
液体金属を共に輸送することができるので、ポンプ古註
の大容量化を図ることができる。
Therefore, according to the present invention, since liquid metal can be transported together through a plurality of annular channels, it is possible to increase the capacity of the pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るM11ポンプの−≠施例の縦断面
図、第2図は第1図の■−■線矢8!断面図、第3図は
第1図のA部拡大図、第4図は本発明の他の実施例の縦
断面図、第5図は従来の′Fi磁ポンプを一部切欠して
示す斜視図である。 11.32・・・ポンプケーシング、12.33・・・
外ダクト、12a、33a・・・吸込口、12b。 34a・・・吐出口、13.36・・・外部鉄心、15
゜35・・・外コイル、16.34・・・中間ダクト、
18・・・中間鉄心、19.30・・・大環状流路、2
0・・・内ダクト、22.31・・・小環状流路、23
・・・内コイル。 代理人弁理士  則 近 恵 佑 同        三  俣  弘  文第2 図
FIG. 1 is a vertical cross-sectional view of the -≠embodiment of the M11 pump according to the present invention, and FIG. 3 is an enlarged view of part A in FIG. 1, FIG. 4 is a vertical sectional view of another embodiment of the present invention, and FIG. 5 is a partially cutaway perspective view of a conventional 'Fi magnetic pump. It is a diagram. 11.32...Pump casing, 12.33...
Outer duct, 12a, 33a... Suction port, 12b. 34a...Discharge port, 13.36...External iron core, 15
゜35...outer coil, 16.34...middle duct,
18... Intermediate iron core, 19.30... Large annular channel, 2
0...Inner duct, 22.31...Small annular flow path, 23
...Inner coil. Representative patent attorney Nori Chika Yudo Hirofumi Mimata Figure 2

Claims (1)

【特許請求の範囲】 1、液体金属が流れる環状流路の軸方向に沿ってコイル
を巻回し、液体金属の流れ方向に沿って移動する移動磁
界を形成する電磁ポンプにおいて、上記環状流路はその
環径を異にして複数有し、これら環状流路を同軸状に設
けていることを特徴とする電磁ポンプ。 2、液体金属が液体ナトリウムである特許請求の範囲第
1項に記載の電磁ポンプ。
[Claims] 1. An electromagnetic pump in which a coil is wound along the axial direction of an annular channel through which liquid metal flows to form a moving magnetic field that moves along the flow direction of the liquid metal, wherein the annular channel is An electromagnetic pump characterized in that it has a plurality of annular flow paths having different annular diameters, and these annular flow paths are provided coaxially. 2. The electromagnetic pump according to claim 1, wherein the liquid metal is liquid sodium.
JP5952486A 1986-03-19 1986-03-19 Electromagnetic pump Pending JPS62217853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5952486A JPS62217853A (en) 1986-03-19 1986-03-19 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5952486A JPS62217853A (en) 1986-03-19 1986-03-19 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JPS62217853A true JPS62217853A (en) 1987-09-25

Family

ID=13115740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5952486A Pending JPS62217853A (en) 1986-03-19 1986-03-19 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JPS62217853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213260A (en) * 1988-06-06 1990-01-17 General Electric Co (Ge) Linear pump
EP0607055A1 (en) * 1993-01-15 1994-07-20 General Electric Company Electromagnetic pump stator frame
CN110112888A (en) * 2019-04-17 2019-08-09 江苏大学 A kind of magnetic fluid pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189969A (en) * 1986-02-12 1987-08-19 Sukegawa Denki Kogyo Kk Double induction type ring passage-shaped linear induction electromagnetic pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189969A (en) * 1986-02-12 1987-08-19 Sukegawa Denki Kogyo Kk Double induction type ring passage-shaped linear induction electromagnetic pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213260A (en) * 1988-06-06 1990-01-17 General Electric Co (Ge) Linear pump
EP0607055A1 (en) * 1993-01-15 1994-07-20 General Electric Company Electromagnetic pump stator frame
US5420470A (en) * 1993-01-15 1995-05-30 General Electric Company Electromagnetic pump stator frame having power crossover struts
CN110112888A (en) * 2019-04-17 2019-08-09 江苏大学 A kind of magnetic fluid pump

Similar Documents

Publication Publication Date Title
KR20190006918A (en) Hollow toroidal magnetic power unit
US2786416A (en) Electro-magnetic pump
CA1243220A (en) Electromagnetic flow meter
JP2000511348A (en) Controllable inductor
EP0626109B1 (en) Ferromagnetic wire electromagnetic actuator
JPS62217853A (en) Electromagnetic pump
US3385983A (en) Magnetohydrodynamic energy converter
JPS6240053A (en) Electromagnetic pump with spiral groove for liquid metal
US2905089A (en) Dynamo-electric machines
US3280350A (en) Magnetohydrodynamic generator
US5420470A (en) Electromagnetic pump stator frame having power crossover struts
EP0446075B1 (en) A converged magnetic flux type electro-magnetic pump
US20230170130A1 (en) Inductor and a method of providing an inductor
SU913527A1 (en) Electromagnetic spiral pump
US3515912A (en) Magnetohydrodynamic apparatus
US2443104A (en) Induction motor
EP0058048B1 (en) Electromagnetic stirring apparatus
JP2911905B2 (en) Electromagnetic pump
BR102022023720A2 (en) INDUCTOR AND METHOD OF DELIVERING INDUCTOR
SU757017A1 (en) Winding of toroidal magnetic field of tokamak
JPH02228245A (en) Solenoid pump
JPS5842904Y2 (en) electromagnetic flowmeter detector
TW201628318A (en) Electromagnetic induction device
JPH04236162A (en) Induction type electromagnetic pump
JPS62174906A (en) Ring-shaped magnet structure