JP2911905B2 - Electromagnetic pump - Google Patents
Electromagnetic pumpInfo
- Publication number
- JP2911905B2 JP2911905B2 JP1001301A JP130189A JP2911905B2 JP 2911905 B2 JP2911905 B2 JP 2911905B2 JP 1001301 A JP1001301 A JP 1001301A JP 130189 A JP130189 A JP 130189A JP 2911905 B2 JP2911905 B2 JP 2911905B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- conductors
- electromagnetic pump
- duct
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
- Electromagnetic Pumps, Or The Like (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は導電性流体に外部より進行磁場を印加して、
流体のポンピング作用をおこさせる電磁ポンプに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention applies a traveling magnetic field to a conductive fluid from the outside,
The present invention relates to an electromagnetic pump that causes a pumping action of a fluid.
(従来の技術) 電磁ポンプの基本的な動作原理は、磁界中におかれた
導電性流体に電流を通電し、流体自身に発生する力(Bo
by Force)によりポンプ作用を生じさせるもので、フレ
ミング左手の法則をその基本としている。磁界の磁束密
度をB、流体中の電流密度をJとした時、流体単位体積
当たりに発生する力Fは次式で表される。(Prior art) The basic principle of operation of an electromagnetic pump is to apply a current to a conductive fluid placed in a magnetic field and generate a force (Bo
by Force) to generate a pump action, based on Fleming's left-hand rule. When the magnetic flux density of the magnetic field is B and the current density in the fluid is J, the force F generated per unit volume of the fluid is expressed by the following equation.
F=J×B 電磁ポンプの種類としては、この流体に電流を通電す
る方法によって次の2種類に大別できる。F = J × B Electromagnetic pumps can be broadly classified into the following two types depending on the method of applying a current to the fluid.
(1)直流電動機と同じ原理に基づいたもので、流体に
接した電極を解して外部から直接流体に電流を流す方法
である。これをコンダクション形(伝導形)という。(1) Based on the same principle as a DC motor, this is a method in which an electric current is directly applied to a fluid from the outside through an electrode in contact with the fluid. This is called a conduction type (conduction type).
(2)誘導電動機と同じ原理に基づいたもので、外部よ
り移動磁界を流体中に印加して、それにより流体内中に
電流を誘起させる方法である。これをインダクション形
(誘導形)という。(2) A method based on the same principle as that of an induction motor, in which a moving magnetic field is externally applied to a fluid to thereby induce a current in the fluid. This is called an induction type (induction type).
本発明はこのうち(2)の誘導形に関するものであ
り、特に三相交流を使用した三相誘導形電磁ポンプに関
するものである。The present invention relates to the induction type (2), and more particularly to a three-phase induction type electromagnetic pump using three-phase alternating current.
三相誘導形電磁ポンプは、三相交流巻線を電磁ポンプ
の流れの方向に各相の順に分布させて配置し、この巻線
に三相交流を流すと流体の流れの方向に進行磁界が発生
する。この進行磁界が導電性流体のあるダクトの中にも
通るようにしてあると、フレミングの右手の法則により
流体中に電圧が誘起され、それによって誘導電流が流れ
る。この誘導電流と進行磁界の一部の成分とが作用して
電磁力となり、流体が流れるように力を受けることによ
りポンプとして働くことになる。In a three-phase induction type electromagnetic pump, three-phase AC windings are arranged in the order of each phase in the direction of flow of the electromagnetic pump, and when three-phase AC is applied to these windings, a traveling magnetic field is generated in the direction of fluid flow. Occur. If this traveling magnetic field is made to pass through a duct having a conductive fluid, a voltage is induced in the fluid by Fleming's right-hand rule, and an induced current flows. The induced current and some components of the traveling magnetic field act to form an electromagnetic force, which acts as a pump by receiving a force so that the fluid flows.
この電磁力は誘導電動機におけるトルク,リニアモー
タにおける推力に相当する。This electromagnetic force corresponds to the torque in the induction motor and the thrust in the linear motor.
三相誘導形電磁ポンプは構造上大別して次の2種類に
分けられる。Three-phase induction type electromagnetic pumps are roughly classified into the following two types in terms of structure.
(1)フラットリニア電磁ポンプ フラットリニア電磁ポンプは、そのダクト形状から、
FLIP(Flat Linear Induction Pumpの略)と呼ばれてい
る。構造上の特徴として次のような点が挙げられる。(1) Flat linear electromagnetic pump The flat linear electromagnetic pump is
It is called FLIP (Flat Linear Induction Pump). The structural features include the following.
ダクトは薄肉のステンレス鋼板によって、偏平,矩
形断面の真直な流路が形づくられる。ポンプ外のループ
配管は円形であるため、その間は流路形状が徐々に変化
する広がり管で接続される。The duct is formed by a thin stainless steel plate to form a straight channel having a flat and rectangular cross section. Since the loop pipe outside the pump is circular, it is connected by a widening pipe in which the flow path shape gradually changes.
進行磁界を発生させる固定子は三相の交流巻線と積
層鉄心から成る。巻線は平面上で1つのループを作る亀
甲状のコイルの対向する直線部を鉄心の溝の中に納めて
固定されている。巻線と鉄心が一組となった固定子がダ
クトをはさんで対向するように組立てられている。The stator that generates the traveling magnetic field is composed of a three-phase AC winding and a laminated iron core. The winding is fixed by placing opposing straight portions of a tortoise-shaped coil forming one loop on a plane in a groove of an iron core. The stator, which is a set of a winding and an iron core, is assembled so as to face each other across a duct.
固定子とダクトの隙間は従来ダクトが冷却されないよ
うに断熱材により熱絶縁が施されている。Conventionally, the gap between the stator and the duct is thermally insulated by a heat insulating material so that the duct is not cooled.
上記のように固定子が上下に分かれているので、配
管やダクトを切断することなく、固定子の取外しが出来
るので、保守点検が容易にできる利点がある。Since the stator is divided into upper and lower parts as described above, the stator can be removed without cutting the pipes and ducts, so that there is an advantage that maintenance and inspection can be easily performed.
このような特徴とリニアモータ等なじみのある電気機
械と同じ構造であるため誘導形電磁ポンプとしては従来
最も多く製作されていた。Because of these features and the same structure as a familiar electric machine such as a linear motor, it has hitherto been most often produced as an induction type electromagnetic pump.
(2)アニュラリニア形電磁ポンプ アニュラリニア電磁ポンプは流路断面が環状であるこ
とからALIP(Annular Linear Induction Pumpの略)と
呼ばれている。ダクト構造の信頼性,安全性が高いの
で、近年主流となっている電磁ポンプである。(2) Annular Linear Electromagnetic Pump The annular linear electromagnetic pump is called ALIP (abbreviation of Annular Linear Induction Pump) because of its annular cross section. Due to the high reliability and safety of the duct structure, it is a mainstream electromagnetic pump in recent years.
第1図にALIPの基本的な構造を示す。構造上の特徴と
しては次のような点が挙げられる。Fig. 1 shows the basic structure of ALIP. The structural features include the following.
ダクトはステンレス製の同芯二重管で、アニュラス
流路を形成している。ダクト形状が円筒状となってお
り、強度的にすぐれているので、信頼性の高いダクト構
造といえる。The duct is a concentric double pipe made of stainless steel and forms an annulus flow path. Since the duct shape is cylindrical and the strength is excellent, it can be said that the duct structure has high reliability.
固定子はダクトの外側に設けられ、放射状の鉄心と
リング状のコイルからなっている。The stator is provided outside the duct and includes a radial iron core and a ring-shaped coil.
内側ダクトの内部には磁気回路を形成するための積
層内部鉄心が納められている。Inside the inner duct is housed a laminated inner core for forming a magnetic circuit.
これらの電磁ポンプのコイルは、流れの方向に沿って
各相グループ毎に相順に従って交互に並べられている。
各相のグループは全体にまとめられて電気的に直列に接
続されて1本の直列回路を形成し、各相の回路とY形又
は△形の回路網にそれぞれの要求に応じて結線されてい
る。The coils of these electromagnetic pumps are arranged alternately according to the phase order in each phase group along the flow direction.
The groups of each phase are grouped together and electrically connected in series to form one series circuit, and each phase circuit is connected to a Y- or △ -shaped network as required. I have.
(発明が解決しようとする課題) 一般に交流機では、これらの結線は設計上の自由度と
して各相グループの並列回路数はある程度自由に選定さ
れる。例えば、並列回路数が1の設計に対し並列回路数
をNとすれば、電流はN倍となるが電圧は1/N倍でよい
ことになる。従って電源や制御に応じた最適設計が可能
であった。また、この多数並列回路の形成はコイル間結
線によって行なっており、従ってコイル内の導体は全て
同じ並列回路に属するものであった。しかし、本電磁ポ
ンプの場合、流路入口と出口に鉄心端部があるため、並
列回路を構成するコイルの内、第8図に示す如く端部に
あるコイル10とそれ以外のコイル11,12とは、コイルの
インピーダンスが異なるため、第9図に示すような同相
の並列回路内に於いてインピーダンスの不平衡が生じ
る。ここでは説明を解りやすくするためU相についての
み示した。これらに電圧を印加した場合、並列回路毎に
負荷電流が異なり、あるコイルでは目的の電流が流れ
ず、逆に他のコイルでは目的の電流以上が流れ、コイル
の損失、コイルの温度が上昇したり、歪みの大きな進行
磁場しか得られず導電性流体に与える電磁力も効率的な
ものであるとは言えなかった。(Problems to be Solved by the Invention) Generally, in an AC machine, the number of parallel circuits of each phase group is freely selected to some extent as the degree of freedom in designing these connections. For example, if the number of parallel circuits is N for a design with one parallel circuit, the current will be N times but the voltage may be 1 / N times. Therefore, an optimal design according to the power supply and control was possible. Further, the formation of the multi-parallel circuit is performed by the connection between the coils, and therefore all the conductors in the coil belong to the same parallel circuit. However, in the case of the present electromagnetic pump, since there are iron core ends at the inlet and the outlet of the flow passage, among the coils constituting the parallel circuit, the coil 10 at the end and the other coils 11, 12 as shown in FIG. Since the impedances of the coils are different from each other, an imbalance of impedance occurs in a parallel circuit having the same phase as shown in FIG. Here, only the U phase is shown for easy understanding. When a voltage is applied to these, the load current differs for each parallel circuit, and the target current does not flow in one coil, and the target current or more flows in another coil, and the coil loss and the coil temperature rise. In addition, only a traveling magnetic field having a large distortion was obtained, and the electromagnetic force applied to the conductive fluid was not efficient.
従って、コイルの結線は、特に不平衡電流が問題とな
る大容量の電磁ポンプでは、並列回路数1の設計にしな
ければならず、このため、設計上の自由度がなく、大容
量機になればなる程、運転電圧が上昇し、電源、コイル
等の信頼性・経済性上、問題が生じていた。Therefore, the connection of the coil must be designed with one parallel circuit, especially in a large-capacity electromagnetic pump in which unbalanced current is a problem. Therefore, there is no design freedom and a large-capacity machine can be used. The higher the operating voltage, the higher the operating voltage, causing problems in the reliability and economy of power supplies, coils, and the like.
本発明は上記の様な問題を鑑みなされたものであり、
特に三相誘導形電磁ポンプの結線上並列回路数を任意に
選択出来る様にし、設計の自由度を飛躍的に増大し不平
衡電流のない信頼性の高い電磁ポンプを提供することを
目的とする。The present invention has been made in view of the above problems,
In particular, it is an object of the present invention to provide a highly reliable electromagnetic pump free of unbalanced current by drastically increasing the degree of freedom in design by allowing the number of parallel circuits on the connection of a three-phase induction type electromagnetic pump to be arbitrarily selected. .
(課題を解決するための手段) 上記目的を達成するため本発明の電磁ポンプにおいて
は、内部鉄心を有する内側ダクトと外部鉄心を有する外
側ダクトで導電性流体の流路が形成され、前記ダクトの
少なくとも一方に前記流路内の導電性流体内に進行波磁
場を形成する複数のコイルを、前記鉄心のうち少なくと
も外側鉄心に形成された複数の櫛歯状のスロット内の各
々に1つのみ配設し、このコイルの電源に三相交流を用
いる電磁ポンプにおいて、前記コイルは各々の両端に口
出し部を有する独立した複数本の導体から巻回され、こ
れらの導体は前記コイル内で前記導体の数だけ並列回路
を形成し、この各並列回路が略同一のインピーダンス値
を有するように前記導体が巻回されるとともに、前記各
導体の外部から電流を導入するための前記口出し部の対
を前記導体の数だけ前記コイルに形成する。(Means for Solving the Problems) In order to achieve the above object, in the electromagnetic pump of the present invention, a flow path of a conductive fluid is formed by an inner duct having an inner core and an outer duct having an outer core. At least one of a plurality of coils for forming a traveling wave magnetic field in the conductive fluid in the flow path is provided in each of at least one of a plurality of comb-shaped slots formed in at least an outer core of the core. In an electromagnetic pump using a three-phase alternating current as a power supply for the coil, the coil is wound from a plurality of independent conductors each having a lead portion at each end, and these conductors are formed in the coil by the conductors. A number of parallel circuits are formed, and the conductors are wound so that the respective parallel circuits have substantially the same impedance value, and the ports for introducing current from outside the conductors are formed. A pair of protrusions is formed in the coil by the number of the conductors.
(作 用) 本発明は上記のように構成されており、各相において
並列回路を構成する全ての回路の導体を、同一コイル内
に収納したことにより各回路のスロット位置に対する電
気的条件を全く同一のものとできるため、スロット位置
の相違による並列回路を構成するコイル間のインピーダ
ンスの違いや並列回路のインピーダンス不平衡をなくす
ことができ、不平衡電流をなくすことができる。(Operation) The present invention is configured as described above, and the conductors of all the circuits constituting the parallel circuit in each phase are housed in the same coil, so that the electrical condition for the slot position of each circuit is completely reduced. Since they can be the same, it is possible to eliminate the difference in impedance between the coils constituting the parallel circuit due to the difference in the slot position and the impedance imbalance of the parallel circuit, thereby eliminating the unbalanced current.
(実施例) 本発明の一実施例について図を用いて説明する。Example An example of the present invention will be described with reference to the drawings.
第1図はアニュラリニア形の電磁ポンプの要部断面図
であり、ダクトは内側ダクト6と外側ダクト5とからな
るステンレス製の同芯二重管で、環状の流路2が形成さ
れており、内側ダクト6の内部には磁気回路を形成する
ための内部鉄心4が納められている。また外側ダクト5
の外周には放射状に外部鉄心3が設けられ、外部鉄心に
形成されたスロット内にリング状のコイル1が収められ
ている。FIG. 1 is a sectional view of an essential part of an annular linear type electromagnetic pump. The duct is a stainless steel concentric double pipe composed of an inner duct 6 and an outer duct 5, and an annular flow path 2 is formed. Inside the inner duct 6, an inner core 4 for forming a magnetic circuit is accommodated. Outside duct 5
An outer iron core 3 is radially provided on the outer periphery of the coil, and a ring-shaped coil 1 is housed in a slot formed in the outer iron core.
次にコイル1内の導体の巻き方を第2図により説明す
る。Next, how to wind the conductor in the coil 1 will be described with reference to FIG.
第2図は並列回路3本の場合の巻き方の一例を示すも
のであり、3並列回路コイル15は導体16,17,18が各3回
巻きでパンケーキ状に巻回され左列19と右列20の2列構
成にて形成されている。図の21,22,23はそれぞれ導体1
6,17,18の左列19から右列20へのわたり部を示すもので
ある。なお、左列19と右列20は最終的に1体化されて1
本のコイルとされる。第3図は前記一体化されたコイル
15がスロット内に納められたときの断面図を示すもので
ある。FIG. 2 shows an example of a winding method in the case of three parallel circuits. The three parallel circuit coil 15 is formed by winding conductors 16, 17, and 18 three times each in a pancake shape, and The right row 20 is formed in a two-row configuration. In the figure, 21, 22, and 23 are conductors 1, respectively.
6 shows a section extending from the left column 19 to the right column 20 of 6, 17, and 18. The left row 19 and the right row 20 are finally unified into one
It is a book coil. FIG. 3 shows the integrated coil.
FIG. 15 shows a cross-sectional view when 15 is placed in the slot.
次に本実施例の作用効果について説明する。 Next, the operation and effect of this embodiment will be described.
導体16を流れる電流は、左列19の導体16の口出し部16
aから入り、左列19を1回転半した後、ちょうど口出し
部16aと180度反対側の所で導体16の左列19から右列20へ
の亘り21を通って右列20へ流れ込む。さらにこの右列20
で1回転半した後、右列20の導体16の口出し部16bに出
ていく。これによりコイル15の導体16における口出し部
16a,16bは同一箇所からの取り出しが可能となる。導体1
7,18についても同様の巻き方を施すことにより17aと17
b,18aと18bも同一箇所からの取り出しが可能であり、3
並列回路を構成する導体16,17,18を1つのコイル15内に
それぞれ円周上の同一箇所からの口出しが可能となる。
この様に構成されたコイル15の口出しの様子を第4図に
示す。The current flowing through the conductor 16 is the lead 16 of the conductor 16 in the left row 19.
After entering from a and rotating the left row 19 for one and a half turn, the conductor 16 flows into the right row 20 through the 21 from the left row 19 to the right row 20 of the conductor 16 exactly 180 degrees opposite to the outlet 16a. In addition, this right row 20
After one and a half rotations, the conductor 16 goes out to the lead portion 16b of the conductor 16 in the right row 20. As a result, the lead portion in the conductor 16 of the coil 15
16a and 16b can be taken out from the same place. Conductor 1
Apply the same winding method for 7 and 18 to 17a and 17
b, 18a and 18b can be taken out from the same place.
The conductors 16, 17, and 18 constituting the parallel circuit can be led out of the same location on the circumference of one coil 15 respectively.
FIG. 4 shows how the coil 15 thus constructed is exposed.
このように本実施例によれば、口出しを分散させるこ
とが可能となり、コイル間の結線上、結線上必要な空間
も分散できるため、電磁ポンプ自体を小形化することが
可能である。As described above, according to the present embodiment, it is possible to disperse the leads, and to disperse the space required for the connection between the coils and the connection, so that the electromagnetic pump itself can be downsized.
第5図には、並列回路数3の場合のコイル間の亘り線
27による結線の例を示す。この様に、各相のコイルを並
列回路で構成することが可能となると例えば並列回路の
1本が不良になったとしても、他の回路が使用できるた
め、電磁ポンプ自体が全く働かなくなる虞れもなくな
り、電磁ポンプの信頼性が飛躍的に向上する。FIG. 5 shows a crossover between the coils in the case of three parallel circuits.
An example of connection by 27 is shown. In this way, if the coils of each phase can be formed by a parallel circuit, for example, even if one of the parallel circuits becomes defective, another circuit can be used, and the electromagnetic pump itself may not work at all. And the reliability of the electromagnetic pump is dramatically improved.
また1つのコイル内の巻き方では、第2図に示した如
く左列19から右列20へのコイルの亘り部分が分散される
ため、導体の亘りを行なう際のコイルの高さ寸法の損失
を防ぐことも可能となり、同一並列数,同一巻き回数の
コイルとして最も小形化できる。Further, in the winding method in one coil, as shown in FIG. 2, since the portion of the coil extending from the left row 19 to the right row 20 is dispersed, the loss of the height of the coil at the time of conducting the conductor is lost. Can be prevented, and the coil can be miniaturized most as the coil having the same number of parallel windings and the same number of turns.
他の実施例として、並列回路数が2,4,6の場合のコイ
ル24,25,26の口出しの様子を第6図に示す。As another embodiment, FIG. 6 shows how the coils 24, 25, and 26 are exposed when the number of parallel circuits is 2, 4, and 6.
さらに、第7図の如く、2列のパンケーキ形の巻線を
外周側で接続することにより口出し部29aと29b,30aと30
bは同一箇所からの口出しが可能であり、任意の偶数列
の巻き線を持つ1つのコイル28の実現も可能である。Further, as shown in FIG. 7, two rows of pancake-shaped windings are connected on the outer peripheral side to form lead portions 29a and 29b, 30a and 30a.
b can be exposed from the same place, and it is possible to realize one coil 28 having windings of an arbitrary even number of rows.
以上説明したとおり、本発明によれば、各相の並列回
路を構成する複数の回路の導体を同一のコイルに収納し
たことにより、並列回路数によらずコイルの口出しの分
散化,コイル内の導体の亘りの分散化によるコイルの小
形化などが実現でき、電磁ポンプの小形化,信頼性を大
きく向上させることができる。また、並列回路数が任意
に選択可能になったことから、電源や制御に応じた最適
な電磁ポンプ設計が可能となる。更に、並列回路間のイ
ンピーダンス不平衡がなくなることによる不平衡電流の
抑制、この電流によるコイルの余分な損失、コイルの局
所的な過熱等も抑制し、この面からもポンプの信頼性向
上や性能向上に大きく寄与できる。As described above, according to the present invention, the conductors of a plurality of circuits constituting the parallel circuit of each phase are housed in the same coil, so that the opening of the coil is dispersed regardless of the number of parallel circuits, The size of the coil can be reduced by dispersing the conductors, and the size and reliability of the electromagnetic pump can be greatly improved. In addition, since the number of parallel circuits can be arbitrarily selected, it is possible to design an optimal electromagnetic pump according to the power supply and control. Furthermore, suppression of unbalanced current due to the elimination of impedance imbalance between parallel circuits, suppression of extra loss of coil due to this current, local overheating of coil, etc., also improve pump reliability and performance from this aspect. It can greatly contribute to improvement.
第1図は本発明の一実施例のアニュラリニア形電磁ポン
プの要部横断面図、第2図は第1図のコイル内の導体の
巻き方を示す図、第3図は第1図のスロット内導体の断
面図、第4図は第2図のコイル15の口出しの様子を示す
図、第5図は第2図のコイル15のコイル間結線の一例を
示す図、第6図(a),(b),(c)はそれぞれ並列
回路数2,4,6のときのコイルの口出しの様子を示す図、
第7図は導体横並び数4列のコイルの外形図、第8図は
従来の電磁ポンプのスロット及びコイルの構成図、第9
図は第8図において1相を3並列回路で構成した回路図
を示す。 1……コイル、2……導電性流体流路、 3……外部鉄心、4……内部鉄心、 5……外側ダクト、6……内側ダクト、 15……3並列回路のコイル、 15a,15b,15c……コイル断面部、 16,17,18……並列回路を構成する導体、 16a,17a,18a……導体の左列部の口出し、 16b,17b,18b……導体の右列部の口出し、 19……コイル導体の左列、 20……コイル導体の右列、 21,22,23……導体の左列・右列間の亘り。FIG. 1 is a cross-sectional view of an essential part of an annular linear type electromagnetic pump according to an embodiment of the present invention, FIG. 2 is a view showing a winding method of a conductor in a coil of FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the conductor in the slot, FIG. 4 is a view showing the appearance of the coil 15 in FIG. 2, FIG. 5 is a view showing an example of connection between the coils of the coil 15 in FIG. 2, and FIG. ), (B), and (c) are diagrams showing the appearance of coil tapping when the number of parallel circuits is 2, 4, and 6, respectively.
FIG. 7 is an external view of a coil having four rows of horizontal conductors, FIG. 8 is a configuration diagram of a slot and a coil of a conventional electromagnetic pump, and FIG.
The figure shows a circuit diagram in which one phase is constituted by three parallel circuits in FIG. 1 ... coil, 2 ... conductive fluid flow path, 3 ... outer core, 4 ... inner core, 5 ... outer duct, 6 ... inner duct, 15 ... coil of three parallel circuits, 15a, 15b , 15c ... coil cross section, 16, 17, 18 ... conductors constituting a parallel circuit, 16a, 17a, 18a ... lead in the left row of conductors, 16b, 17b, 18b ... right row of conductors Outlet, 19: Left row of coil conductors, 20: Right row of coil conductors, 21, 22, 23 ...: Between left and right rows of conductors.
Claims (1)
有する外側ダクトで導電性流体の流路が形成され、前記
ダクトの少なくとも一方に前記流路内の導電性流体内に
進行波磁場を形成する複数のコイルを、前記鉄心のうち
少なくとも外側鉄心に形成された複数の櫛歯状のスロッ
ト内の各々に1つのみ配設し、このコイルの電源に三相
交流を用いる電磁ポンプにおいて、前記コイルは各々の
両端に口出し部を有する独立した複数本の導体から巻回
され、これらの導体は前記コイル内で前記導体の数だけ
並列回路を形成し、この各並列回路が略同一のインピー
ダンス値を有するように前記導体が巻回されるととも
に、前記各導体の外部から電流を導入するための前記口
出し部の対を前記導体の数だけ前記コイルに形成したこ
とを特徴とする電磁ポンプ。A conductive fluid flow path is formed by an inner duct having an inner core and an outer duct having an outer core, and a traveling wave magnetic field is formed in at least one of the ducts in the conductive fluid in the flow path. A plurality of coils to be disposed in at least one of a plurality of comb-shaped slots formed in at least an outer core of the iron core, and the electromagnetic pump using a three-phase alternating current as a power source of the coil. The coil is wound from a plurality of independent conductors having protruding portions at both ends, and these conductors form parallel circuits in the coil by the number of the conductors, and each parallel circuit has substantially the same impedance value. Wherein the conductors are wound so as to have a plurality of conductors, and a pair of the lead portions for introducing a current from the outside of each conductor are formed in the coil by the number of the conductors. Amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1001301A JP2911905B2 (en) | 1989-01-09 | 1989-01-09 | Electromagnetic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1001301A JP2911905B2 (en) | 1989-01-09 | 1989-01-09 | Electromagnetic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02184259A JPH02184259A (en) | 1990-07-18 |
JP2911905B2 true JP2911905B2 (en) | 1999-06-28 |
Family
ID=11497653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1001301A Expired - Fee Related JP2911905B2 (en) | 1989-01-09 | 1989-01-09 | Electromagnetic pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2911905B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3049808B2 (en) * | 1991-03-29 | 2000-06-05 | 石川島播磨重工業株式会社 | Liquid transfer pump |
KR20010057267A (en) * | 1999-12-21 | 2001-07-04 | 신현준 | Improved electromagnetic ash extractor for galvanizing process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52135405A (en) * | 1976-05-07 | 1977-11-12 | Toyota Motor Corp | Induction coil winding method for linear flat type inductive electro-magnetic pump |
GB1556258A (en) * | 1977-03-23 | 1979-11-21 | Atomic Energy Authority Uk | Electromagnetic pumps |
JPS6044157A (en) * | 1983-08-17 | 1985-03-09 | Sumitomo Metal Ind Ltd | Electromagnetic stirrer |
JPH01171587U (en) * | 1988-05-17 | 1989-12-05 | ||
US4859885A (en) * | 1988-06-06 | 1989-08-22 | General Electric Company | Winding for linear pump |
-
1989
- 1989-01-09 JP JP1001301A patent/JP2911905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02184259A (en) | 1990-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5221966B2 (en) | Coil assembly for rotating electrical machine, stator for rotating electrical machine, and rotating electrical machine | |
US5710476A (en) | Armature design for an axial-gap rotary electric machine | |
US3482131A (en) | Polyphase alternator winding arrangement | |
JP3693100B2 (en) | Multiphase traverse flux machine | |
KR100676237B1 (en) | A rotary electric machine | |
US3469134A (en) | Electrical machines | |
US5325007A (en) | Stator windings for axial gap generators | |
US20140084716A1 (en) | Rotating electrical machine with so-called double homopolar structure | |
JP2017184394A (en) | Stator for rotary electric machine | |
US3436571A (en) | Dynamoelectric machine having corresponding ferromagnetic coils on alternating rotor and stator disks | |
US7777388B2 (en) | Distributed coil stator for external rotor three phase electric motors | |
US4151433A (en) | Cooled spiral winding for electrical rotating machine stator | |
US1708909A (en) | Rotor for induction motors | |
JP2911905B2 (en) | Electromagnetic pump | |
JP4188597B2 (en) | Electric motor water-cooled stator winding | |
JP2016101018A (en) | Stator of dynamo-electric machine, and dynamo-electric machine including the same | |
US2675494A (en) | Adjustable pole pitch dynamoelectric machinery | |
JP6976038B2 (en) | Manufacturing method of magnetic member of rotating machine | |
WO1991001585A1 (en) | Toothless stator construction for electrical machines | |
US1607288A (en) | Dynamo-electric machine | |
EP1727263A2 (en) | Water cooled stator winding of an electric motor | |
US5420470A (en) | Electromagnetic pump stator frame having power crossover struts | |
CN113595267A (en) | Motor and equipment | |
EP0446075B1 (en) | A converged magnetic flux type electro-magnetic pump | |
JP6332150B2 (en) | Stator structure of axial gap type rotating electrical machine and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |