JPH02184259A - Solenoid pump - Google Patents

Solenoid pump

Info

Publication number
JPH02184259A
JPH02184259A JP130189A JP130189A JPH02184259A JP H02184259 A JPH02184259 A JP H02184259A JP 130189 A JP130189 A JP 130189A JP 130189 A JP130189 A JP 130189A JP H02184259 A JPH02184259 A JP H02184259A
Authority
JP
Japan
Prior art keywords
coil
coils
duct
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP130189A
Other languages
Japanese (ja)
Other versions
JP2911905B2 (en
Inventor
Masanori Kodaira
政宣 小平
Kenji Katsuki
健治 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1001301A priority Critical patent/JP2911905B2/en
Publication of JPH02184259A publication Critical patent/JPH02184259A/en
Application granted granted Critical
Publication of JP2911905B2 publication Critical patent/JP2911905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To increase the degree of freedom of designing and restrict nonequilibrium current by a method wherein an least one of inside and outside ducts is provided with a plurality of coils 3-phase AC winding, which forms the magnetic field of traveling wave in electroconductive fluid, and a plurality of circuit conductors constituting a parallel circuit in respective phases, is received in the same coil. CONSTITUTION:A concentric double-tube of stainless steel, which is constituted of an inside duct 6 and an outside duct 5, is provided with the annular flow passage 2 of electroconductive fluid while coils 1, forming the magnetic field of traveling wave in an outer core 3, are provided in the outer core 3. Three pieces of parallel circuit coils are provided in the slots of the core 3 and conductors, constituting three pieces of parallel circuits, are received in one coil so as to be capable of being led out of the same place on the circumference of the core respectively. According to this method, the degree of freedom in the designing of a solenoid pump may be increased and nonequilibrated current may be restricted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は導電性流体に外部より進行磁場を印加して、流
体のボンピング作用をおこさせる電磁ポンプに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnetic pump that applies a traveling magnetic field to a conductive fluid from the outside to cause a pumping action of the fluid.

(従来の技術) 電磁ポンプの基本的な動作原理は、磁界中におかれた導
電性流体に電流を通電し、流体自身に発生する力(Bo
by Force)によりポンプ作用を生じさせるもの
で、フレミング左手の法則をその基本、としている。磁
界の磁束密度をB1流体中の電流密度をJとした時、流
体単位体積当たりに発生する力Fは次式で表される。
(Prior art) The basic operating principle of an electromagnetic pump is to apply current to a conductive fluid placed in a magnetic field, and to generate a force (Bo
by Force), and is based on Fleming's left-hand rule. When the magnetic flux density of the magnetic field is B1 and the current density in the fluid is J, the force F generated per unit volume of fluid is expressed by the following equation.

−JXB 電磁ポンプの種類としては、この流体に電流を通電する
方法によって次の2種類に大別できる。
-JXB Electromagnetic pumps can be roughly divided into the following two types depending on the method of applying current to the fluid.

(1)直流電動機と同じ原理に基づいたもので、流体に
接した電極を介して外部から直接流体に電流を流す方法
である。これをコンダクション形(伝導形)という。
(1) It is based on the same principle as a DC motor, and is a method in which a current is passed directly into the fluid from the outside via electrodes in contact with the fluid. This is called a conduction type.

(2)誘導電動機と同じ原理に基づいたもので、外部よ
り移動磁界を流体中に印加して、それにより流体的中に
電流を誘起させる方法である。これをインダクション形
(誘導形)という。
(2) It is based on the same principle as an induction motor, and is a method in which a moving magnetic field is applied to a fluid from the outside, thereby inducing a current in the fluid. This is called an induction type.

本発明はこのうち(2)の誘導形に関するものであり、
特に三相交流を使用した三相誘導形電磁ポンプに関する
ものである。
The present invention relates to the derived form (2) of these,
In particular, it relates to a three-phase induction type electromagnetic pump that uses three-phase alternating current.

三相誘導形電磁ポンプは、三相交流巻線を電磁ポンプの
流れの方向に各相の順に分布させて配置し、この巻線に
三相交流を流すと流体の流れの方向に進行磁界が発生す
る。この進行磁界が導電性流体のあるダクトの中にも通
るようにしであると、フレミングの右手の法則により流
体中に電圧が誘起され、それによって誘導電流が流れる
。この誘導電流と進行磁界の一部の成分とが作用して電
磁力となり、流体が流れるように力を受けることにより
ポンプとして働くことになる。
A three-phase induction electromagnetic pump has three-phase AC windings distributed in the order of each phase in the direction of flow of the electromagnetic pump, and when three-phase AC is applied to these windings, a traveling magnetic field is generated in the direction of fluid flow. Occur. If this traveling magnetic field also passes through a duct containing a conductive fluid, a voltage will be induced in the fluid according to Fleming's right-hand rule, which will cause an induced current to flow. This induced current and some components of the traveling magnetic field act to create an electromagnetic force, which acts as a pump by receiving force so that the fluid flows.

この電磁力は誘導電動機におけるトルク、リニアモータ
における推力に相当する。
This electromagnetic force corresponds to the torque in an induction motor and the thrust in a linear motor.

三相誘導形電磁ポンプは構造上大別して次の2種類に分
けられる。
Three-phase induction electromagnetic pumps can be roughly divided into the following two types based on their structure.

(1)フラットリニア電磁ポンプ フラットリニア電磁ポンプは、そのダクト形状から、F
LIP(Flat Linear Induction
 Pumpの略)と呼ばれている。構造上の特徴として
次のような点が挙げられる。
(1) Flat linear electromagnetic pump Due to its duct shape, the flat linear electromagnetic pump
LIP (Flat Linear Induction)
(abbreviation of Pump). The following points can be mentioned as structural features.

■ ダクトは薄肉のステンレス鋼板によって、偏平、矩
形断面の真直な流路が形づくられる。ポンプ外のループ
配管は円形であるため、その間は流路形状が徐々に変化
する広がり管で接続される。
■ The duct is made of thin stainless steel plates to form a straight flow path with a flat, rectangular cross section. Since the loop piping outside the pump is circular, it is connected with a widening pipe whose flow path shape gradually changes.

■ 進行磁界を発生させる固定子は三相の交流巻線と積
層鉄心から成る。巻線は平面上で1つのループを作る亀
甲状のコイルの対向する直線部を鉄心の溝の中に納めて
固定されている。巻線と鉄心が一組となった固定子がダ
クトをはさんで対向するように組立てられている。
■ The stator that generates the traveling magnetic field consists of three-phase AC windings and a laminated iron core. The winding is fixed by placing the opposing straight parts of the hexagonal coil, which form one loop on a plane, into the grooves of the iron core. A stator consisting of a winding and an iron core is assembled to face each other with a duct in between.

固定子とダクトの隙間は従来ダクトが冷却されないよう
に断熱材により熱絶縁が施されている。
Conventionally, the gap between the stator and the duct is thermally insulated with a heat insulating material to prevent the duct from being cooled.

■ 上記のように固定子が上下に分かれているので、配
管やダクトを切断することなく、固定子の取外しが出来
るので、保守点検が容易にできる利点がある。
■ Since the stator is divided into upper and lower sections as described above, the stator can be removed without cutting the pipes or ducts, which has the advantage of facilitating maintenance and inspection.

このような特徴とりニアモータ等なじみのある電気機械
と同じ構造であるため誘導形電磁ポンプとしては従来最
も多く製作されていた。
Because of these characteristics and the same structure as familiar electric machines such as near motors, it has been the most commonly manufactured induction type electromagnetic pump to date.

(2)アニユラリニア形電磁ポンプ アニユラリニア電磁ポンプは流路断面が環状であること
からALIP(Annul ar Linear In
ductionPumoの略)と呼ばれている。ダクト
構造の信頼性、安全性が高いので、近年主流となってい
る電磁ポンプである。
(2) Annular linear electromagnetic pump Since the annual linear electromagnetic pump has an annular flow path cross section, it is called ALIP (Annual Linear In
It is called duction (abbreviation of Pumo). Electromagnetic pumps have become mainstream in recent years because of their highly reliable and safe duct structure.

第1図にAL(Pの基本的な構造を示す。構造上の特徴
としては次のような点が挙げられる。
FIG. 1 shows the basic structure of AL(P.The following points are listed as structural features.

■ ダクトはステンレス製の同志二重管で、アニユラス
流路を形成している。ダクト形状が円筒状となっており
、強度的にすぐれているので、信頼性の高いダクト構造
といえる。
■ The duct is a stainless steel double-pipe tube that forms an annulus flow path. The duct has a cylindrical shape and has excellent strength, so it can be said to be a highly reliable duct structure.

■ 固定子はダクトの外側に設けられ、放射状の鉄心と
リング状のコイルからなっている。
■ The stator is installed outside the duct and consists of a radial iron core and a ring-shaped coil.

■ 内側ダクトの内部には磁気回路を形成するための積
層内部鉄心が納められている。
■ A laminated internal iron core for forming a magnetic circuit is housed inside the inner duct.

これらの電磁ポンプのコイルは、流れの方向に沿って各
相グループ毎に相順に従って交互に並べられている。各
相のグループは全体にまとめられて電気的に直列に接続
されて1本の直列回路を形成し、各相の回路とY形又は
Δ形の回路鋼にそれぞれの要求に応じて結線されている
The coils of these electromagnetic pumps are arranged alternately in phase order for each phase group along the flow direction. Each phase group is electrically connected together in series to form a series circuit, and each phase circuit is connected to a Y-shaped or Δ-shaped circuit steel according to each requirement. There is.

(発明が解決しようとする課題) 一般に交流機では、これらの結線は設計上の自由度とし
て各相グループの並列回路数はある程度自由に選定され
る。例えば、並列回路数が1の設計に対し並列回路数を
Nとすれば、電流はN倍となるが電圧は1/N倍でよい
ことになる。従って電源や制御に応じた最適設計が可能
であった。また、この多数並列回路の形成はコイル間結
線によって行なっており、従ってコイル内の導体は全て
同じ並列回路に属するものであった。しかし、本電磁ポ
ンプの場合、流路入口と出口に鉄心端部があるため、並
列回路を構成するコイルの内、第8図に示す如く端部に
あるコイル10とそれ以外のコイル11.12とは、コ
イルのインピーダンスが異なるため、第9図に示すよう
な同相の並列回路内に於いてインピーダンスの不平衡が
生じる。ここでは説明を解りやすくするためU相につい
てのみ示した。これらに電圧を印加した場合、並列回路
毎に負荷電流が異なり、あるコイルでは目的の電流が流
れず、逆に他のコイルでは目的の電流以上が流れ、コイ
ルの損失、コイルの温度が上昇したり、歪みの大きな進
行磁場しか得られず導電性流体に与える電磁力も効率的
なものであるとは言えなかった。
(Problem to be Solved by the Invention) Generally, in an AC machine, the number of parallel circuits in each phase group is selected freely to some extent as a degree of freedom in designing these connections. For example, if the number of parallel circuits is N for a design in which the number of parallel circuits is 1, the current will be N times higher, but the voltage will only need to be 1/N times higher. Therefore, it was possible to create an optimal design depending on the power supply and control. Furthermore, this multi-parallel circuit is formed by wiring between coils, and therefore all the conductors within the coil belong to the same parallel circuit. However, in the case of this electromagnetic pump, since there are iron core ends at the inlet and outlet of the flow path, among the coils forming the parallel circuit, the coil 10 at the end and the other coils 11, 12, as shown in FIG. Since the impedances of the coils are different, impedance imbalance occurs in the in-phase parallel circuit as shown in FIG. Here, only the U phase is shown to make the explanation easier to understand. When voltage is applied to these, the load current differs for each parallel circuit, and the desired current does not flow in some coils, while in other coils more than the desired current flows, causing coil loss and coil temperature to rise. In addition, only a traveling magnetic field with large distortion can be obtained, and the electromagnetic force applied to the conductive fluid cannot be said to be efficient.

従って、コイルの結線は、特に不平衡電流が問題となる
大容量の電磁ポンプでは、並列回路数1の設計にしなけ
ればならず、このため、設計上の自由度がなく、大容量
機になればなる程、運転電圧が上昇し、電源、コイル等
の信頼性・経済性上、問題が生じていた。
Therefore, the coil connection must be designed with one parallel circuit, especially in large-capacity electromagnetic pumps where unbalanced currents are a problem.Therefore, there is no degree of freedom in design, and it is difficult to create a large-capacity machine. The more the operating voltage increases, the more reliability and economics problems arise in the power supply, coils, etc.

本発明は上記の様な問題を鑑みなされたものであり、特
に三相誘導形電磁ポンプの結線上並列回路数を任意に選
択出来る様にし、設計の自由度を飛躍的に増大し不平衡
電流のない信頼性の高い電磁ポンプを提供することを目
的とする。
The present invention was made in view of the above-mentioned problems, and in particular, it allows the number of parallel circuits to be arbitrarily selected in the wiring of a three-phase induction electromagnetic pump, dramatically increasing the degree of freedom in design, and reducing unbalanced current. The purpose is to provide a highly reliable electromagnetic pump without any problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明の電磁ポンプにおいては
、内部鉄心を有する内側ダクトと外部鉄心を有する外側
ダクトで導電性流体の流路が形成され、前記ダクトの少
くとも一方に前記流路内の導電性流体内に進行波磁場を
形成する複数のコイルからなる三相交流巻線を備えた電
磁ポンプにおいて、各相の並列回路を構成する複数の回
路の導体を同一のコイルに収納する。
(Means for Solving the Problems) In order to achieve the above object, in the electromagnetic pump of the present invention, a conductive fluid flow path is formed by an inner duct having an internal iron core and an outer duct having an outer iron core, and In an electromagnetic pump equipped with a three-phase AC winding consisting of a plurality of coils that forms a traveling wave magnetic field in a conductive fluid in the flow path on at least one side, conductors of a plurality of circuits forming parallel circuits of each phase. are stored in the same coil.

(作 用) 本発明は上記のように構成されており、各相において並
列回路を構成する全ての回路の導体を、同一コイル内に
収納したことにより各回路のスロット位置に対する電気
的条件を全く同一のものとできるため、スロット位置の
相違による並列回路を構成するコイル間のインピーダン
スの違いや並列回路のインピーダンス不平衡をなくすこ
とができ、不平衡電流をなくすことができる。
(Function) The present invention is constructed as described above, and by housing the conductors of all the circuits forming the parallel circuit in each phase in the same coil, the electrical conditions for the slot positions of each circuit are completely eliminated. Since they can be made the same, it is possible to eliminate differences in impedance between coils constituting a parallel circuit due to differences in slot positions and impedance unbalance of the parallel circuit, and it is possible to eliminate unbalanced current.

(実施例) 本発明の一実施例について図を用いて説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

第1図はアニスラリシア形の電磁ポンプの要部断面図で
あり、ダクトは内側ダクト6と外側ダクト5からなるス
テンレス製の同志二重管で、環状の流路2が形成さけれ
ており、内側ダクト6の内部には磁気回路を形成するた
めの内部鉄心4が納められている。また外側ダクト5の
外周には放射状に外部鉄心3が設けられ、外部鉄心に形
成されたスロット内にリング状のコイル1が収められて
いる。
Figure 1 is a cross-sectional view of the main parts of an Anislaricia type electromagnetic pump.The duct is a stainless steel double pipe consisting of an inner duct 6 and an outer duct 5. An internal iron core 4 for forming a magnetic circuit is housed inside the duct 6. Further, an outer core 3 is provided radially around the outer periphery of the outer duct 5, and a ring-shaped coil 1 is housed in a slot formed in the outer core.

次にコイル1内の導体の巻き方を第2図により説明する
Next, the method of winding the conductor in the coil 1 will be explained with reference to FIG.

廁2図は並列回路3本の場合の巻き方の一例を示すもの
であり、3並列回路コイル15は導体1B。
Figure 2 shows an example of the winding method in the case of three parallel circuits, and the three parallel circuit coils 15 are the conductors 1B.

17、18が各3回巻きでパンケーキ状に巻回され左列
19と右列20の2列構成にて形成されている。図の2
1.22.23はそれぞれ導体1B、 17.18の左
列19から右列20へのわたり部を示すものである。
17 and 18 are wound three times each in a pancake shape, and are formed in two rows, a left row 19 and a right row 20. Figure 2
1, 22, and 23 indicate the transition portions of the conductors 1B and 17.18 from the left column 19 to the right column 20, respectively.

第3図に前記コイル15がスロット内に納められたとき
の断面図を示すものである。
FIG. 3 shows a cross-sectional view of the coil 15 housed in the slot.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

導体1Bを流れる電流は、左列19の導体1Bの口出し
部teaから入り、左列19を1回転半した後、ちょう
ど口出し部leaと180度反何例の所で導体1Bの左
列19から右列20への亘り21を通って右列20へ流
れ込む。さらにこの右列20で1回転半した後、右列2
0の導体16の口出し部18bに出ていく。これにより
コイル15の導体16における口出し部16a。
The current flowing through the conductor 1B enters from the outlet tea of the conductor 1B in the left row 19, and after making one and a half revolutions around the left column 19, the current flows from the left row 19 of the conductor 1B at a point exactly 180 degrees opposite to the outlet lea. It flows into the right column 20 through the crossing 21 to the right column 20. Furthermore, after one and a half rotations in this right row 20, right row 2
0 to the lead-out portion 18b of the conductor 16. As a result, the lead portion 16a of the conductor 16 of the coil 15 is formed.

18bは同一箇所からの取り出しが可能となる。導体1
7.18についても同様の巻き方を施すことにより17
aと17b 、 18aと18bも同一箇所からの取り
出しが可能であり、3並列回路を構成する導体16゜1
7、18を1つのコイル15内にそれぞれ円周上の同一
箇所からの口出しが可能と、なる。この様に構成された
コイル15の口出しの様子を第4図に示す。
18b can be taken out from the same location. Conductor 1
By applying the same winding method to 7.18, 17
a and 17b, 18a and 18b can also be taken out from the same location, and the conductors 16°1 making up the 3 parallel circuit
7 and 18 can be inserted into one coil 15 from the same location on the circumference. FIG. 4 shows how the coil 15 constructed in this manner is led out.

このように本実施例によれば、口出しを分散させること
が可能となり、コイル間の結線上、結線上必要な空間も
分散できるため、電磁ポンプ自体を小形化することが可
能である。
As described above, according to this embodiment, it is possible to disperse the lead-out, and the space required for wiring between the coils can also be distributed, so that it is possible to downsize the electromagnetic pump itself.

第5図には、並列回路数3の場合のコイル間の亘り線2
7による結線の例を示す。この様に、各相のコイルを並
列回路で構成することが可能となると例えば並列回路の
1本が不良になったとしても、他の回路が使用できるた
め、電磁ポンプ自体が全く働かなくなる虞れもなくなり
、電磁ポンプの信顕性が飛曜的に向上する。
Figure 5 shows two crossover wires between coils when the number of parallel circuits is 3.
An example of connection according to 7 is shown. In this way, if it becomes possible to configure the coils of each phase with parallel circuits, for example, even if one of the parallel circuits becomes defective, other circuits can be used, so there is a risk that the electromagnetic pump itself will not work at all. This will dramatically improve the reliability of the electromagnetic pump.

また1つのコイル内の巻き方では、第2図に示した如く
左列19から右列20へのコイルの亘り部分が分散され
るため、導体の亘りを行なう際のコイルの高さ寸法“の
損失を防ぐことも可能となり、同一並列数、同−巻き回
数のコイルとして最も小形化できる。
Furthermore, in the winding method within one coil, the crossing portion of the coil from the left column 19 to the right column 20 is distributed as shown in Figure 2, so the height dimension of the coil when the conductor is crossed is It is also possible to prevent loss, and it can be made the most compact as a coil with the same number of parallel connections and the same number of turns.

他の実施例として、並列回路数が2.4.6の場合のコ
イル24.25.2Gの口出しの様子を第6図に示す。
As another example, FIG. 6 shows how the coils 24, 25, 2G are connected when the number of parallel circuits is 2,4,6.

さらに、第7図の如く、2列のパンケーキ形の巻線を外
周側で接続することにより口出し部29aと29b 、
 30aと30bは同一箇所からの口出しが可能であり
、任意の偶数列の巻き線を持つ1つのコイル28の実現
も可能である。
Furthermore, as shown in FIG. 7, by connecting two rows of pancake-shaped windings on the outer circumferential side, openings 29a and 29b,
30a and 30b can be led out from the same location, and it is also possible to realize one coil 28 having any even number of windings.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、各相の並列回路
を構成する複数の回路の導体を同一のコイルに収納した
ことにより、並列回路数によらずコイルの口出しの分散
化、コイル内の導体の亘りの分散化によるコイルの小形
化などが実現でき、電磁ポンプの小形化、信頼性を大き
く向上させることができる。また、並列回路数が任意に
選択可能になったことから、電源や制御に応じた最適な
電磁ポンプ設計が可能となる。更に、並列回路間のイン
ピーダンス不平衡がなくなることによる不平衡電流の抑
制、この電流によるコイルの余分な損失、コイルの局所
的な過熱等も抑制し、この面からもポンプの信頼性向上
や性能向上に大きく寄与できる。
As explained above, according to the present invention, the conductors of the plurality of circuits constituting the parallel circuit of each phase are housed in the same coil. By dispersing the conductor, the coil can be made smaller, and the electromagnetic pump can be made smaller and its reliability can be greatly improved. Additionally, since the number of parallel circuits can be selected arbitrarily, it is possible to design the electromagnetic pump optimally according to the power supply and control. Furthermore, unbalanced current is suppressed by eliminating impedance unbalance between parallel circuits, excess loss in the coil due to this current, localized overheating of the coil, etc. are also suppressed, improving pump reliability and performance. It can greatly contribute to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のアニユラリニア形電磁ポン
プの要部横断面図、第2図は第1図のコイル内の導体の
巻き方を示す図、第3図は第1図のスロット内導体の断
面図、第4図は第2図のコイル15の口出しの様子を示
す図、第5図は第2図のコイル15のコイル間結線の一
例を示す図、節会6図(a) 、 (b) 、(c)は
それぞれ並列回路数2. 4. 6のときのコイルの口
出しの様子を示す図、第7図は導体横並び数4列のコイ
ルの外形図、第8図は従来の電磁ポンプのスロット及び
コイルの構成図、第9図は第8図において1相を3並列
回路で構成した回路図を示す。 1・・・コイル、     2・・・導電性流体流路、
3・・・外部鉄心、   4・・・内部鉄心、5・・・
外側ダクト、   6・・・内側ダクト、15・・・3
並列回路のコイル、 15a、15b、158 ・・・コイル断面部、16.
17.18・・・並列回路を構成する導体、16a、 
17a、 18a・・・導体の左列部の口出し、16b
、17b、18b・・・導体の右列部の口出し、19・
・・コイル導体の左列、 20・・・コイル導体の右列、 21.22.23・・・導体の左列・右列間の亘り。 代理人 弁理士 則 近 憲 佑 同  第子丸 健 革系 第 図 (C) 第 図 第 図 第 図 第 図
Fig. 1 is a cross-sectional view of essential parts of an annular linear electromagnetic pump according to an embodiment of the present invention, Fig. 2 is a diagram showing how to wind the conductor in the coil shown in Fig. 1, and Fig. 3 is a diagram showing the slots shown in Fig. 1. 4 is a cross-sectional view of the inner conductor, FIG. 4 is a diagram showing how the coil 15 in FIG. ), (b), and (c) each have a parallel circuit count of 2. 4. Figure 7 is a diagram showing the outline of a coil with 4 rows of conductors arranged horizontally, Figure 8 is a diagram showing the configuration of slots and coils of a conventional electromagnetic pump, and Figure 9 is a diagram showing the configuration of a coil with 4 rows of conductors arranged horizontally. The figure shows a circuit diagram in which one phase is composed of three parallel circuits. 1... Coil, 2... Conductive fluid flow path,
3... External iron core, 4... Internal iron core, 5...
Outer duct, 6...Inner duct, 15...3
Coils of parallel circuit, 15a, 15b, 158... Coil cross section, 16.
17.18...Conductor forming a parallel circuit, 16a,
17a, 18a... Leading out of the left row part of the conductor, 16b
, 17b, 18b... Output of the right row part of the conductor, 19.
...Left row of coil conductors, 20...Right row of coil conductors, 21.22.23...Bridge between left and right rows of conductors. Agent Patent Attorney Nori Ken Yudo Daishimaru Health Insurance System (C)

Claims (1)

【特許請求の範囲】[Claims] 内部鉄心を有する内側ダクトと外部鉄心を有する外側ダ
クトで導電性流体の流路が形成され、前記ダクトの少く
とも一方に前記流路内の導電性流体内に進行波磁場を形
成する複数のコイルからなる三相交流巻線を備えた電磁
ポンプにおいて、前記巻線の各相の並列回路を構成する
複数の回路の導体を同一のコイルに収納したことを特徴
とする電磁ポンプ。
A flow path for a conductive fluid is formed by an inner duct having an internal iron core and an outer duct having an outer iron core, and at least one of the ducts includes a plurality of coils forming a traveling wave magnetic field in the conductive fluid in the flow path. An electromagnetic pump comprising a three-phase AC winding, characterized in that conductors of a plurality of circuits constituting parallel circuits of each phase of the winding are housed in the same coil.
JP1001301A 1989-01-09 1989-01-09 Electromagnetic pump Expired - Fee Related JP2911905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001301A JP2911905B2 (en) 1989-01-09 1989-01-09 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001301A JP2911905B2 (en) 1989-01-09 1989-01-09 Electromagnetic pump

Publications (2)

Publication Number Publication Date
JPH02184259A true JPH02184259A (en) 1990-07-18
JP2911905B2 JP2911905B2 (en) 1999-06-28

Family

ID=11497653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001301A Expired - Fee Related JP2911905B2 (en) 1989-01-09 1989-01-09 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JP2911905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304157A (en) * 1991-03-29 1992-10-27 Ishikawajima Harima Heavy Ind Co Ltd Liquid transfer pump
KR20010057267A (en) * 1999-12-21 2001-07-04 신현준 Improved electromagnetic ash extractor for galvanizing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135405A (en) * 1976-05-07 1977-11-12 Toyota Motor Corp Induction coil winding method for linear flat type inductive electro-magnetic pump
JPS53119408A (en) * 1977-03-23 1978-10-18 Atomic Energy Authority Uk Electromagnetic pump
JPS6044157A (en) * 1983-08-17 1985-03-09 Sumitomo Metal Ind Ltd Electromagnetic stirrer
JPH01171587U (en) * 1988-05-17 1989-12-05
JPH0213260A (en) * 1988-06-06 1990-01-17 General Electric Co (Ge) Linear pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135405A (en) * 1976-05-07 1977-11-12 Toyota Motor Corp Induction coil winding method for linear flat type inductive electro-magnetic pump
JPS53119408A (en) * 1977-03-23 1978-10-18 Atomic Energy Authority Uk Electromagnetic pump
JPS6044157A (en) * 1983-08-17 1985-03-09 Sumitomo Metal Ind Ltd Electromagnetic stirrer
JPH01171587U (en) * 1988-05-17 1989-12-05
JPH0213260A (en) * 1988-06-06 1990-01-17 General Electric Co (Ge) Linear pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304157A (en) * 1991-03-29 1992-10-27 Ishikawajima Harima Heavy Ind Co Ltd Liquid transfer pump
KR20010057267A (en) * 1999-12-21 2001-07-04 신현준 Improved electromagnetic ash extractor for galvanizing process

Also Published As

Publication number Publication date
JP2911905B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US9973065B2 (en) Method for manufacturing a coil module for a stator for a tubular linear motor
CN105308832B (en) Liquid cooled stator for high efficiency machines
US9712011B2 (en) Electric machine with modular stator coils and cooling tubes
US10622858B2 (en) Rotating electrical machine and specially adapted method for producing said rotating electrical machine
US3469134A (en) Electrical machines
US3497737A (en) Connecting means for dynamoelectric machine cooling system
US5325007A (en) Stator windings for axial gap generators
EP4024668A1 (en) Rotor comprising wedges and winding head support with integrated wedge cooling distribution
JP2017184394A (en) Stator for rotary electric machine
US7777388B2 (en) Distributed coil stator for external rotor three phase electric motors
US4151433A (en) Cooled spiral winding for electrical rotating machine stator
US1708909A (en) Rotor for induction motors
CN104868630A (en) Rotary electric machine
JPH02184259A (en) Solenoid pump
US4336474A (en) Phase interleaved peripheral connector ring end winding
JP4188597B2 (en) Electric motor water-cooled stator winding
EP1727263A2 (en) Water cooled stator winding of an electric motor
US9941759B2 (en) Stator winding arrangement of superconducting rotating machine
US3719844A (en) Dynamo-electric machines
JP4064584B2 (en) Electromagnetic pump
JP2007089359A (en) Stator of dynamo-electric machine
EP3979273B1 (en) Split winding assembly for a transformer
JP2012205334A (en) Rotary electric machine
US2260833A (en) Cooling means for electrical induction apparatus
JP2760640B2 (en) Electromagnetic pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees