JPS62217152A - Thick film type gas sensitive body element - Google Patents

Thick film type gas sensitive body element

Info

Publication number
JPS62217152A
JPS62217152A JP6117486A JP6117486A JPS62217152A JP S62217152 A JPS62217152 A JP S62217152A JP 6117486 A JP6117486 A JP 6117486A JP 6117486 A JP6117486 A JP 6117486A JP S62217152 A JPS62217152 A JP S62217152A
Authority
JP
Japan
Prior art keywords
catalyst
grain size
layer
gas sensitive
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6117486A
Other languages
Japanese (ja)
Other versions
JPH0675051B2 (en
Inventor
Keizo Furusaki
圭三 古崎
Mineji Nasu
峰次 那須
Toshitaka Matsuura
松浦 利孝
Akio Takami
高見 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP6117486A priority Critical patent/JPH0675051B2/en
Priority to US07/027,357 priority patent/US4857275A/en
Priority to DE8787104020T priority patent/DE3767736D1/en
Priority to EP87104020A priority patent/EP0238081B1/en
Publication of JPS62217152A publication Critical patent/JPS62217152A/en
Priority to US07/517,749 priority patent/USRE33980E/en
Publication of JPH0675051B2 publication Critical patent/JPH0675051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To considerably decrease the deterioration of a metallic catalyst in a surface layer by making the grain size of ceramics and grain size of metallic catalyst in the surface layer respectively larger than the grain size of the ceramics and grain size of the metallic catalyst in the remaining layer across the part near electrodes. CONSTITUTION:The calcination temp. of the ceramic grains to be used for the surface layer is adjusted to 1,200 deg.C, more preferably to 1,300 deg.C, by which the grain size thereof is adjusted to 1-5mum to prevent a structural change. The catalyst used in said part is also calcined at >=1,200 deg.C simultaneously with the ceramic grains and therefore, the average grain size thereof is made >=0.5mum to provide the similar effect. On the other hand, the calcination temp. of the ceramic grains to be used in the layer near the electrodes is adjusted to <=1,200 deg.C to make the grain size 0.5-3mum, by which the gas sensitive characteristic is assured and similarly the function of the catalyst grains is maintained. The stable gas sensitive characteristic is thus assured. An Rh catalyst which has extremely high activity and provides good durability is preferably deposited on said part at >=0.1mol% in order to intensity the gas sensitive characteristic.

Description

【発明の詳細な説明】 (産業上の利用分野) 酸素センサ、その他ガスセンサとして有用な、厚膜式ガ
ス感応体素子のとくに表面層における金属触媒の劣化に
由来する性能の変調、たとえば自動車用の3元触媒用フ
ィードバックコントロールにおける制御空燃比点の耐久
試験後におけるり一ン側へのシフトを来す欠点について
の有利な回避を1指して開発した、厚膜式ガス感応体素
子を提案しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) Performance modulation resulting from deterioration of metal catalysts, especially in the surface layer, of thick-film gas sensitive elements useful as oxygen sensors and other gas sensors, such as those used in automobiles. We would like to propose a thick film type gas sensing element that was developed to advantageously avoid the disadvantage of shifting the control air-fuel ratio point to the 1 side after a durability test in feedback control for a three-way catalyst. It is something to do.

(従来の技術) 厚膜式ガス感応体素子については、さきにチタニア厚膜
中に5〜30モル%の白金族元素の金属触媒を分散存在
させることに関連して特開昭60−158346号公報
に開示したところであるがその後の研究の進展により、
表面層付近の金属触媒が、このガス感応体素子を使った
自動車用の3元触媒用フィードバックコントロールにお
いて、制御空燃比点に影響を与えること、すなわち、耐
久試験のあと制御空燃比点かり−ン側にシフトする欠点
が、とくに表面層付近における金属触媒の劣化に基因し
ていることが明らかになった。
(Prior art) Regarding thick film type gas sensitive elements, Japanese Patent Application Laid-Open No. 158346/1983 relates to the dispersion of 5 to 30 mol% of a platinum group element metal catalyst in a titania thick film. This was disclosed in the official bulletin, but due to subsequent research progress,
The metal catalyst near the surface layer affects the control air-fuel ratio point in feedback control for a three-way catalyst for automobiles using this gas sensitive element. It has become clear that the side-shifting defect is caused by the deterioration of the metal catalyst, especially near the surface layer.

ところで特開昭56−106147号公報には、とくに
ベレット状の感ガス素子につき、表面層の触媒量を電極
間に比し、より少くすることにより、耐久性の向上を図
ることが開示されている。しかしこの場合上記のリーン
シフトの抑制には寄与し得る反面、表面層付近の触媒の
使用中における劣化そのものを防止することはできず、
さらにこの触媒が、排ガスから素子への被毒物質(Pb
、 Pなど)をトラップすべき機能に関して、触媒量の
減少は明らかに望ましくない。
By the way, JP-A-56-106147 discloses that the durability of a gas-sensitive element in the form of a pellet can be improved by reducing the amount of catalyst in the surface layer compared to the amount between the electrodes. There is. However, in this case, while it may contribute to suppressing the lean shift mentioned above, it cannot prevent the deterioration itself during use of the catalyst near the surface layer.
Furthermore, this catalyst removes poisonous substances (Pb) from the exhaust gas to the elements.
, P, etc.), a reduction in the amount of catalyst is clearly undesirable.

(発明が解決しようとする問題点) 上掲特開昭60−158346号公報に開示した、厚膜
式ガス感応素子について、その後研究を進めた結果、表
面層付近のセラミック粒径および触媒粒径の変化がこの
ガス感応体素子を使用した自動車用の3元触媒用フィー
ドバックコントロールにおいて制御周波数および制御空
燃比に影響を与えることを見出した。すなわち従来の素
子は耐久層に制御周波数が高くなり、制御点がリーン側
にシフI・する欠点があり、これは主に表面層のセラミ
ック粒が構造変化することに帰因し、また同時に進行す
る触媒粒の構造変化もこの作用を助長することも究明さ
れた。
(Problems to be Solved by the Invention) As a result of subsequent research on the thick film type gas sensing element disclosed in the above-mentioned Japanese Patent Application Laid-open No. 158346/1983, the ceramic particle size and catalyst particle size near the surface layer were found to be It has been found that changes in this gas sensitive element affect the control frequency and control air-fuel ratio in feedback control for a three-way catalyst for automobiles. In other words, conventional elements have the disadvantage that the control frequency increases in the durable layer and the control point shifts to the lean side.This is mainly due to structural changes in the ceramic grains in the surface layer, and at the same time It has also been found that structural changes in the catalyst particles also promote this effect.

すなわち表面層のセラミック粒を粗大化させることは初
期の制御周波数を高め制御空燃比シフトを防ぐがその効
果はこの部分に使用する触媒粒および触媒種によって左
右され、表面層の触媒粒径を大きくし、比較的低活性な
触媒種、具体的にはRh使用量がセラミックに対して0
.1mo1%未満を使用すると上記効果が最大限に発揮
されることを発見した。この理由は耐久中に必然的に生
じることになるセラミック粒径の変化、金属触媒の変化
をあらかじめ全て進行させ°ζおくことにより、結果的
に耐久前肩のシフトをなくすからである。
In other words, coarsening the ceramic grains in the surface layer increases the initial control frequency and prevents the control air-fuel ratio shift, but the effect depends on the catalyst grains and catalyst species used in this area. However, relatively low activity catalyst species, specifically Rh usage amount is 0 compared to ceramics.
.. It has been discovered that the above effects are maximized when less than 1 mo 1% is used. The reason for this is that by allowing all the changes in ceramic particle size and metal catalyst that will inevitably occur during durability to proceed in advance, the shift before durability can be eliminated.

(問題点を解決するための手段) すなわちこの発明では表面層に使用するセラミック粒の
仮焼温度を1200℃望ましくは1300°Cにするこ
とによりその粒径を1〜5μ輪にし、構造変化を防いで
いる。またこの部分に使用する触媒もセラミック粒と同
時に1200℃以上で焼成されるためその平均粒径が0
.5μm以上になり同様の効果を与える。ここに130
0°C以下であれば、この温度よりも高い温度での仮焼
によってセラミック粒の感ガス性が低下し、また触媒性
も粒成長によりその機能を大幅に低下させるようなうれ
いがないからであり、一方、この感ガス体が使用される
最高温度が通常は1000℃でこれに対し十分高くする
必要があるため1200℃以」二とすべきである。
(Means for Solving the Problems) That is, in this invention, the calcination temperature of the ceramic grains used for the surface layer is set to 1200°C, preferably 1300°C, so that the grain size is 1 to 5 μm, and structural changes are prevented. Preventing. In addition, the catalyst used in this part is fired at 1200℃ or higher at the same time as the ceramic particles, so the average particle size is 0.
.. 5 μm or more, giving the same effect. 130 here
If it is below 0°C, calcination at a temperature higher than this temperature will reduce the gas sensitivity of the ceramic grains, and the catalytic properties will not be affected by grain growth, which will significantly reduce its function. On the other hand, the maximum temperature at which this gas-sensitive body is used is normally 1000°C and it is necessary to be sufficiently higher than this, so it should be 1200°C or higher.

一方電極近傍層に使用するセラミック粒の仮焼温度は1
200℃以下にして、粒径を0.5〜3itmにし惑ガ
ス性を保持させ、同様に触媒粒の機能も保持させ、安定
した惑ガス性を確保している。またこの部分には掻めて
高活性で良好な耐久性を与えるRh触媒を0.in+o
1%以上担持させ、上記の感ガス性を補強するのがよい
On the other hand, the calcination temperature of the ceramic grains used in the layer near the electrode is 1
At 200° C. or lower, the particle size is set to 0.5 to 3 itm to maintain gas-perturbing properties. Similarly, the function of the catalyst particles is maintained to ensure stable gas-perturbing properties. In addition, 0.0% Rh catalyst is added to this area to give it high activity and good durability. in+o
It is preferable to support the above-mentioned gas sensitivity by carrying 1% or more.

以上の処置により素子は高活性な電橿近傍層と低活性な
表面層という通常は耐久層形成されるべき素子構造を初
期から有することにより、耐久前肩での性能変化がほと
んどなくなり、このガス感応体素子を使用した自動車の
3元触媒用フィードバックコントロールシステムを安定
に作動させる結果となる。
As a result of the above measures, the element has an element structure from the beginning consisting of a highly active layer near the electric wire and a low active surface layer, which would normally form a durable layer, so that there is almost no change in performance before durability, and the gas This results in stable operation of an automotive three-way catalyst feedback control system using a sensitive element.

また上記の素子形成はその厚膜構造の利点により多層構
造を極めて容易に提供することができ、経済的な工業化
を促進することになる。
Moreover, the above-mentioned device formation can provide a multilayer structure very easily due to its thick film structure, which will promote economical industrialization.

(作 用) この厚膜素子を形成するセラミック基板としては通常用
いられるセラミック基板でよ(、例えばアルミナ、ベリ
リア、ムライト、ステアタイト等を主成分として焼成し
たセラミック基板が挙げられる。また、電極層としては
、セラミック基板を焼成する際に充分耐え得る導電体で
あればよいが、通常、金または白金族元素を主成分とし
たものが用いられ、特に白金は電気抵抗を有しそのまま
電気回路として用いることができるので白金を用いるこ
とが好ましい。
(Function) The ceramic substrate forming this thick film element may be a commonly used ceramic substrate (for example, a fired ceramic substrate containing alumina, beryllia, mullite, steatite, etc. as a main component). As long as the material is a conductor that can withstand the firing of the ceramic substrate, a material containing gold or a platinum group element as its main component is usually used, and platinum in particular has electrical resistance and cannot be used as an electrical circuit as it is. It is preferable to use platinum because it can be used.

白金属元素としては、特に価格、触媒能等の点で白金又
は、白金ロジウム合金を用いる。
As the platinum metal element, platinum or a platinum-rhodium alloy is used especially from the viewpoint of cost, catalytic ability, etc.

またガス検出素子層としては5nOz、 rto、、 
Cod。
In addition, as a gas detection element layer, 5nOz, rto,...
Cod.

ZnO,Nt)zOs+ Cr2O2の酸化物半導体を
用いればよいが、耐熱性の点からSnO□、 TiO□
が好ましく、特にTiO□を用いることが望ましい。そ
してこのガス検出素子層は100〜500μmの厚みを
有するものが使われる。
An oxide semiconductor such as ZnO, Nt)zOs+ Cr2O2 may be used, but from the viewpoint of heat resistance, SnO□, TiO□
is preferable, and it is particularly desirable to use TiO□. The gas detection element layer used has a thickness of 100 to 500 μm.

チタニア層の電極付近の層と表面付近の層との比率は安
定した感ガス層を所有するためには、下層は最小限50
,1jI11以上、耐久変動の少ない表面層を持つ為に
は上層は最小限50μm以上が望ましく、全体の厚みが
厚いほど制御の速さはお(れるが耐久性は良く、適応エ
ンジンによって各々最適量を選ぶことができる。
In order to have a stable gas-sensitive layer, the ratio of the titania layer near the electrode to the layer near the surface must be at least 50% in the lower layer.
, 1jI11 or more, and in order to have a surface layer with little variation in durability, it is desirable that the upper layer be at least 50 μm thick.The thicker the overall thickness, the slower the control speed (but the better the durability. You can choose.

更にガス検出素子はある程度温度が高くないと充分な惑
ガス特性を得ることができないことから、周囲温度が低
い場合にはヒータ等を用いて加熱する必要があり、セン
サを小型化したり生産性を向上させる上でセラミック基
板にヒータ層を設けることが望ましい、また、ヒータ層
としてはガス検出素子の耐鉛性を劣化させないために、
ガス検出素子層を500°C以上に加熱できるようにす
る。
Furthermore, the gas detection element cannot obtain sufficient gas properties unless the temperature is high to a certain extent, so if the ambient temperature is low, it is necessary to heat it using a heater, etc., which reduces the size of the sensor and improves productivity. It is desirable to provide a heater layer on the ceramic substrate in order to improve the lead resistance of the gas detection element.
To be able to heat a gas detection element layer to 500°C or higher.

以下本発明のガスセンサを内燃機関排気中の酸素濃度を
検出する酸素センサに適用した場合を例にとり、その構
造や作製手順を本発明の実施例として、またその酸素セ
ンサを実際に内燃機関に搭載して空燃比制御を行なった
場合を本発明の実験例として説明する。
Taking as an example the case where the gas sensor of the present invention is applied to an oxygen sensor that detects the oxygen concentration in the exhaust gas of an internal combustion engine, its structure and manufacturing procedure will be described as an example of the present invention, and the oxygen sensor will actually be installed in an internal combustion engine. A case in which air-fuel ratio control is performed will be described as an experimental example of the present invention.

第1図に素子センサの部分断面をあられし、図において
10は、セラミック基板上に配設した1対の電極を覆う
ガス感応体厚膜よりなる検出素子11をそなえ、これに
より酸素濃度を検出するための検出部であり、12は、
検出部10を把持して、酸素センサを内燃機関に取り付
けるための筒状に形成された主体金具、また、13は主
体金具12の内燃機関側先端部12aに取り付けた、検
出部10の保護を司るプロテクタ、そして14は主体金
具12と共に検出部10を把持する内筒である。
Fig. 1 shows a partial cross section of the element sensor, and in the figure, 10 is equipped with a detection element 11 made of a thick gas sensitive film covering a pair of electrodes arranged on a ceramic substrate, and detects the oxygen concentration. 12 is a detection unit for
A metal shell formed in a cylindrical shape for gripping the detection part 10 and attaching the oxygen sensor to the internal combustion engine, and 13 is a metal shell attached to the tip 12a of the metal shell 12 on the internal combustion engine side to protect the detection part 10. 14 is an inner cylinder that holds the detection part 10 together with the metal shell 12.

検出部IOはスペーサ15、充填粉末16及びガラスシ
ールI7を介して主体金具12及び内筒14に把持する
The detection part IO is held by the metal shell 12 and the inner cylinder 14 via the spacer 15, the filling powder 16, and the glass seal I7.

また主体金具12の外周には内燃機関取付用のねじ12
bを刻み、その内燃機関壁面に当る取付は壁には排気が
漏れないようにガスケット18を設ける。
Also, on the outer periphery of the metal shell 12 are screws 12 for mounting the internal combustion engine.
When the internal combustion engine is mounted against the wall surface of the internal combustion engine, a gasket 18 is provided on the wall to prevent exhaust gas from leaking.

ここで充填粉末16は滑石及びガラスの1=1の混合粉
末からなり、検出部10を内筒14内に固定する。
Here, the filling powder 16 is made of a mixed powder of talc and glass in a ratio of 1=1, and fixes the detection section 10 within the inner cylinder 14.

またガラスシール17は低融点ガラスからなり、検出ガ
スの漏れを防止すると共に検出部10の端子を保護する
ように、検出部10の基板の一部及び後述する白金リー
ド線と端子との接続部を覆い内筒14内に充填する。
Further, the glass seal 17 is made of low melting point glass, and is designed to prevent leakage of the detection gas and protect the terminals of the detection unit 10 from a part of the substrate of the detection unit 10 and the connection area between the platinum lead wire and the terminal, which will be described later. is covered and filled into the inner cylinder 14.

19は内筒14を覆うように主体金具12に取り付けた
外筒、また20はシリコンゴムからなるシール材であっ
て、リード線21ないし23と、第2図に示すガラスシ
ール17より突出する検出部10からの端子31ないし
33との接続部を絶縁保3Wする。このリードVA21
ないし23と端子31ないし33とは、第3図に示すよ
うに、予め外筒19内にシール材20及びリード線2I
ないし23を収めると共に、各リード綿21ないし23
の先端にかしめ金具24ないし26を設けて、このかし
め金具24ないし26を端子31ないし33と接続する
ことにより導通させる。
19 is an outer cylinder attached to the metal shell 12 so as to cover the inner cylinder 14, and 20 is a sealing material made of silicone rubber, which includes lead wires 21 to 23 and a detection member protruding from the glass seal 17 shown in FIG. The connection portions from the portion 10 to the terminals 31 to 33 are insulated by 3W. This lead VA21
As shown in FIG.
21 to 23, and each lead cotton 21 to 23
The caulking metal fittings 24 to 26 are provided at the tips of the terminals, and the caulking metal fittings 24 to 26 are connected to the terminals 31 to 33 to establish electrical continuity.

次に検出部lOは、第4図ないし第8図に示す手順に従
って作成するがここに第4図ないし第8図に示す(イ)
は検出部10の正面、(0)はA−A線断面をあられす
Next, the detection unit IO is created according to the procedure shown in FIGS. 4 to 8, and is shown in FIGS.
(0) shows the front side of the detection unit 10, and (0) shows the cross section taken along the line A-A.

ここで上記第4図ないし第8図の各図において40及び
41は、平均粒径1.5μmの八h(h 92重量%、
5iot 41i”1%、CaO2重量%及びMgO2
重量%からなる混合粉末100重量部に対してブチラー
ル樹脂12重量部及びジブチルフタレート(DBP) 
 6重量部を添加し、有機溶剤中で混合してスラリーと
し、ドクターブレードを用いて形成したセラミ・ツク基
(反のグリーンシートであり、グリーンシート40は厚
さl am、グリーンシート41は厚さ0 、3 n+
に作成したものである。
Here, 40 and 41 in each of the above-mentioned figures 4 to 8 are 8h (h 92% by weight,
5iot 41i”1%, CaO2wt% and MgO2
12 parts by weight of butyral resin and dibutyl phthalate (DBP) per 100 parts by weight of mixed powder consisting of % by weight
6 parts by weight was added, mixed in an organic solvent to form a slurry, and formed using a doctor blade. Sa0, 3 n+
It was created in .

また42ないし47はptに対し7%の八1□0:lを
添加した白金ペーストにて厚膜印刷したパターンであっ
て、そのうら42及び43は、検出素子11の電極とな
る電極パターン、また44は検出素子11を加熱するだ
めの発熱抵抗体パターン、そして45ないし47は発熱
抵抗体パターン44や検出素子itに電源を印加あるい
は検出信号を抽出するだめの導電パターンである。
Further, 42 to 47 are patterns printed with a thick film using platinum paste added with 7% of 81□0:l based on pt, and the other 42 and 43 are electrode patterns that will become the electrodes of the detection element 11; Further, 44 is a heating resistor pattern for heating the detection element 11, and 45 to 47 are conductive patterns for applying power to the heating resistor pattern 44 and the detection element it or extracting a detection signal.

第4図に示す如く、まずグリーンシー1−40上に各パ
ターン42〜47を白金ペーストで厚膜印刷し、次いで
第5図に示すように、電極パターン45ないし47上に
直径0.2msの白金リード線48ないし50を夫々配
設する。なお発熱抵抗体パターン44を厚膜印刷する際
には、この発熱抵抗体パターン44への所定電圧印加に
よって、検出素子11を、加熱できるよう、パターン幅
を調整するのはいうまでもない。
As shown in FIG. 4, each pattern 42 to 47 is first thick-film printed with platinum paste on Green Sea 1-40, and then, as shown in FIG. Platinum lead wires 48 to 50 are provided, respectively. Note that when printing the heating resistor pattern 44 as a thick film, it goes without saying that the width of the pattern is adjusted so that the detection element 11 can be heated by applying a predetermined voltage to the heating resistor pattern 44.

次に第6図から明らかなように、予めグリーンシート4
1には、電極パターン42及び43の先端部が露出する
よう打ち抜きによって開口51を形成しておき、電極パ
ターン42及び43の先端部を除く全てのパターンを覆
って、グリーンシート40上にグリーンシート41を積
層熱圧着する。
Next, as is clear from FIG. 6, the green sheet 4 is
1, an opening 51 is formed by punching so that the tips of the electrode patterns 42 and 43 are exposed, and a green sheet is placed on the green sheet 40 covering all patterns except the tips of the electrode patterns 42 and 43. 41 is laminated and thermocompressed.

このようにして、白金リード線48ないし50の一部が
突出し、電極パターン42及び43の先端部が開口5I
に露出した積層板を作成し、引続き、この積層板の間口
51上にグリーンシート40.41と同一の材質からな
る80〜150メツシエの球形造粒粒子(2次粒子)5
2を分散付着させ、1500℃の大気中に2時間放置す
ることによって、第6図(ハ)に拡大図示すように各粒
子52が一重に分散してできた凹凸面を有するセラミッ
ク基板を形成させ、ここに粒子52でできた凸部52′
間における凹部52″が末広がりとなって、後述のガス
検知性金属酸化物ペーストを塗布焼付けしたとき、その
ガス検知性金属酸化物層が上記四部52#にくい込んで
積層され、セラミック基板に対し強固に固着されるよう
にする。
In this way, parts of the platinum lead wires 48 to 50 protrude, and the tips of the electrode patterns 42 and 43 are brought into contact with the opening 5I.
A laminate plate is prepared which is exposed to the laminate plate, and subsequently, 80 to 150 mesh spherical granulated particles (secondary particles) 5 made of the same material as the green sheet 40 and 41 are placed on the frontage 51 of the laminate plate.
By dispersing and adhering the particles 52 and leaving them in the atmosphere at 1500° C. for 2 hours, a ceramic substrate having an uneven surface formed by uniformly dispersing each particle 52 is formed as shown in the enlarged view in FIG. 6 (c). and a convex portion 52' made of particles 52 is formed here.
The concave portions 52'' in between widen toward the end, and when a gas-sensing metal oxide paste (described later) is coated and baked, the gas-sensing metal oxide layer sinks into the four parts 52# and is laminated, making it strong against the ceramic substrate. so that it is fixed to the

次にガス検知素子を形成するためにまず、チタニア原料
粉末を大気中1200℃に2時間仮焼し、しかる後ブチ
ルカルピトールを粉末100gに対して100 g加え
ボールミル内で24hr混合粉砕した後BM52gを加
えlhrさらに混合する。こうしてできたペーストを第
7図の凹部に塗付する。この際、所望する厚みに応じた
ペースト量を選択し、コントロールすることが可能であ
る。乾燥を100−150℃で30分行なった後大気中
1100℃にて2hr焼成する。
Next, in order to form a gas detection element, titania raw material powder was first calcined at 1200°C in the atmosphere for 2 hours, then 100 g of butyl calpitol was added to 100 g of powder, mixed and ground in a ball mill for 24 hours, and then 52 g of BM was prepared. Add lhr and mix further. The paste thus prepared is applied to the recesses shown in FIG. At this time, it is possible to select and control the amount of paste depending on the desired thickness. After drying at 100-150°C for 30 minutes, it is fired in the air at 1100°C for 2 hours.

焼成後の素子に金属塩溶液を含浸させる。触媒金属とし
てはPt、 Pd、 Rh及びそれらの合金が望ましく
、特にRhはその担持量が0.1モル%以上に必らずな
るようにする。これは001モル5未満であると良好な
耐久性を示さないからである。含浸後、大気中に250
0℃以上で熱分解しTie、に焼付ける。
The fired element is impregnated with a metal salt solution. As the catalyst metal, Pt, Pd, Rh, and alloys thereof are preferable, and in particular, the amount of Rh supported must be 0.1 mol % or more. This is because if the amount is less than 0.001 mol 5, good durability will not be exhibited. 250 in the atmosphere after impregnation
It is thermally decomposed at temperatures above 0°C and baked into a tie.

触媒粒径を0.5μI以下に保つためには500〜to
oo℃が望ましい。これで電極近傍層の素子形成が終了
する。
In order to keep the catalyst particle size below 0.5μI,
oo°C is desirable. This completes the element formation of the layer near the electrode.

次に表面層を形成するためにTi0z原料粉末にPL。Next, PL was applied to the TiOz raw powder to form a surface layer.

Pdを主とする金属塩溶液を含浸せしめる。この際チタ
ニア素子のRh含量は0.1モル%以下、pt及びPd
はその合計量が2モル%以上になるようにする。
It is impregnated with a metal salt solution containing mainly Pd. At this time, the Rh content of the titania element is 0.1 mol% or less, pt and Pd
The total amount should be 2 mol% or more.

含浸後200〜250℃で24hr乾燥した後、大気中
にて1200℃以上の高温で焼成する。この処置により
触媒金属粒は0.5#m以上、チタニア粉末粒はI〜5
μ川になり電極近傍層の粒に比較して大きい粒径を持つ
ことになり、目的を達する。次にこの粉末を前述の方法
によりペースト化し、第8図の如く塗付乾燥し、110
0℃にて2時間焼成する。
After the impregnation, it is dried at 200 to 250°C for 24 hours, and then fired in the atmosphere at a high temperature of 1200°C or higher. With this treatment, the catalyst metal grains are 0.5 #m or more, and the titania powder grains are I~5 #m.
It becomes a μ river and has a larger grain size compared to the grains in the layer near the electrode, thus achieving the purpose. Next, this powder was made into a paste by the method described above, applied and dried as shown in FIG.
Bake at 0°C for 2 hours.

以上によって素子形成が終了し、電極近傍層と表面層は
異なる触媒種、粒径、セラミック粒径を有することにな
る。
With the above steps, the element formation is completed, and the electrode vicinity layer and the surface layer have different catalyst species, particle sizes, and ceramic particle sizes.

このようにして作製されたセンサは市販の21のl!I
’I付き3元触媒車に第10図のように取付け、米国U
PA HOT TRANS4ENT MODEを走行し
、走行中の排ガス量をCvSにてエミッション量を測定
した。
The sensor fabricated in this way has a commercially available 21 l! I
'Installed on a three-way catalyst vehicle with I as shown in Figure 10,
The vehicle was driven in PA HOT TRANS4ENT MODE, and the amount of exhaust gas was measured using CvS while driving.

(実施例) センサを第12図に示す耐久パターンでエンジン排ガス
中で耐久をし、劣化させ、その後再び上記エミッション
を測定し、センサの制御空燃比のシフトを測定し、初期
と耐久后の変化量を測定し、評価とした。
(Example) The sensor was subjected to durability in engine exhaust gas according to the durability pattern shown in Fig. 12, and then allowed to deteriorate.Then, the above emissions were measured again, and the shift in the control air-fuel ratio of the sensor was measured, and the changes between the initial stage and after the durability were evaluated. The amount was measured and evaluated.

結果を表1に示すように、発明品は従来品にくらべ、耐
久部活のエミッション変動が少く、安定した特性を示す
As shown in Table 1, the invented product exhibits stable characteristics with less fluctuation in emissions during endurance club activities than the conventional product.

以上この発明の実施例では、2層構造の例にて説明した
が3層以上の場合ももらろん、表面層上へさらに絶縁性
コーティング層を設ける場合でも、上記したところと同
様の効果が得られる。
In the above embodiments of the present invention, an example of a two-layer structure has been explained, but the same effect as described above can be obtained not only in the case of three or more layers, but also in the case where an insulating coating layer is further provided on the surface layer. can get.

(発明の効果) この発明によれば厚膜式ガス感応体素子のとくに表面層
における金属触媒の劣化が激減し、触媒劣化に由来する
変調を来す不利がなくなる。
(Effects of the Invention) According to the present invention, the deterioration of the metal catalyst, especially in the surface layer of the thick film type gas sensitive element, is drastically reduced, and the disadvantage of causing modulation due to catalyst deterioration is eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第9図はこの発明に従う厚膜式ガス感応体
素子を酸素センサに適用する実施例を示し、 第1図は酸素センサの全体構成を示す要部の断面図、 第2図は内筒14及びガラスシール17より突出する端
子31ないし33部分を断面とした分解図、第3図は外
筒19及び予め外筒19内に収納したシール材20の関
係を断面で示す分解図、第4図ないし第8図は検出部1
0の組立て工程順序の説明図、 第9図は端子31〜33の接続要領説明図、  。 第10図及び第11図は酸素センサを内P!、+MIi
関に使用する耐久実験要領説明図、 第12図は耐久パターン図である。 40、41・・・セラミック基板 42、43・・・電極パターン 11・・・検出部(ガス感応体W−膜)特許出願人 日
本特殊陶業株式会社 第2図   第3図 第4図   第5図   第6図 t舒tmW 第7図   第8面 第1θ図 第11図
1 to 9 show an embodiment in which the thick film gas sensing element according to the present invention is applied to an oxygen sensor, FIG. 1 is a cross-sectional view of the main parts showing the overall configuration of the oxygen sensor, FIG. 3 is an exploded view showing the relationship between the outer cylinder 19 and the sealing material 20 stored in the outer cylinder 19 in advance; Figures 4 to 8 show the detection unit 1.
FIG. 9 is an explanatory diagram of the assembly process sequence of No. 0. FIG. 9 is an explanatory diagram of the connection procedure of terminals 31 to 33. Figures 10 and 11 show the oxygen sensor inside P! ,+MIi
Figure 12 is an explanatory diagram of the durability test procedure used for the test. Figure 12 is a diagram of the durability pattern. 40, 41... Ceramic substrate 42, 43... Electrode pattern 11... Detection section (gas sensitive body W-membrane) Patent applicant NGK Spark Plug Co., Ltd. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 tmW Figure 7 Figure 8 1θ Figure 11

Claims (1)

【特許請求の範囲】 1、セラミック基板上に配設した1対の電極を覆う、セ
ラミック半導体と金属触媒よりなるガス感応体厚膜にし
て、このガス感応体厚膜が、その表面層でのセラミック
粒径及び金属触媒粒径につき、電極付近にわたる残余層
におけるセラミック粒径及び金属触媒粒径に比し、それ
ぞれより大きいことを特徴とする、厚膜式ガス感応体素
子。 2、表面層の金属触媒に対し残余層の金属触媒が異種で
ある1記載の素子。 3、ガス感応体厚膜が金属塩溶液のセラミック半導体ペ
ースト焼成層への含浸、熱分解による、それぞれ異種の
金属触媒の分散になるセラミック半導体の積層構造であ
る1又は2記載の素子。
[Claims] 1. A thick gas sensitive film made of a ceramic semiconductor and a metal catalyst that covers a pair of electrodes disposed on a ceramic substrate; 1. A thick film gas sensitive element, characterized in that the ceramic particle size and the metal catalyst particle size are each larger than those of the ceramic particle size and the metal catalyst particle size in the residual layer extending near the electrode. 2. The device according to 1, wherein the metal catalyst in the remaining layer is different from the metal catalyst in the surface layer. 3. The device according to 1 or 2, wherein the gas sensitive thick film has a laminated structure of ceramic semiconductors in which different types of metal catalysts are dispersed by impregnating a fired ceramic semiconductor paste layer with a metal salt solution and thermally decomposing each layer.
JP6117486A 1986-03-19 1986-03-19 Thick film gas sensor element Expired - Fee Related JPH0675051B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6117486A JPH0675051B2 (en) 1986-03-19 1986-03-19 Thick film gas sensor element
US07/027,357 US4857275A (en) 1986-03-19 1987-03-18 Thick-film gas-sensitive element
DE8787104020T DE3767736D1 (en) 1986-03-19 1987-03-19 GAS SENSITIVE THICK FILM ELEMENT.
EP87104020A EP0238081B1 (en) 1986-03-19 1987-03-19 Thick-film gas-sensitive element
US07/517,749 USRE33980E (en) 1986-03-19 1990-05-02 Thick-film gas-sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117486A JPH0675051B2 (en) 1986-03-19 1986-03-19 Thick film gas sensor element

Publications (2)

Publication Number Publication Date
JPS62217152A true JPS62217152A (en) 1987-09-24
JPH0675051B2 JPH0675051B2 (en) 1994-09-21

Family

ID=13163522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117486A Expired - Fee Related JPH0675051B2 (en) 1986-03-19 1986-03-19 Thick film gas sensor element

Country Status (1)

Country Link
JP (1) JPH0675051B2 (en)

Also Published As

Publication number Publication date
JPH0675051B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
JPH051901B2 (en)
US20070095662A1 (en) Structure of gas element ensuring high catalytic activity and conductivity and production method thereof
JPS61108953A (en) Electrical connecting terminal of sensor element using ceramics
US6562212B2 (en) Gas sensor element
US4265724A (en) Electrochemical sensor, particularly oxygen sensor to determine exhaust gas composition from automotive internal combustion engines
EP0238081B1 (en) Thick-film gas-sensitive element
US5707503A (en) Oxygen sensor element
JP3525532B2 (en) Oxygen concentration detector
JPH02276956A (en) Oxygen sensor and production thereof and method for preventing poisoning
JPS6275244A (en) Semiconductor type gas sensor
US4652849A (en) Gas sensor
JPS62217152A (en) Thick film type gas sensitive body element
US4909066A (en) Thick-film gas sensor of a laminar structure and a method of producing the same
JP2582135B2 (en) Method of manufacturing thick film type gas sensing element
USRE33980E (en) Thick-film gas-sensitive element
JPH07113618B2 (en) Oxygen gas detector
JPS62217151A (en) Thick film type gas sensitive body element
JP3106971B2 (en) Oxygen sensor
JPH055305B2 (en)
JPH0675050B2 (en) Thick film type gas sensitive element and its manufacturing method
JPS63250556A (en) Gaseous component detecting element
US5202154A (en) Method of producing thick-film gas sensor element having improved stability
JPS63231255A (en) Manufacture of thin film type gas sensing body element
JPS63124952A (en) Gas sensitive body element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees