JPS63231255A - Manufacture of thin film type gas sensing body element - Google Patents

Manufacture of thin film type gas sensing body element

Info

Publication number
JPS63231255A
JPS63231255A JP6505587A JP6505587A JPS63231255A JP S63231255 A JPS63231255 A JP S63231255A JP 6505587 A JP6505587 A JP 6505587A JP 6505587 A JP6505587 A JP 6505587A JP S63231255 A JPS63231255 A JP S63231255A
Authority
JP
Japan
Prior art keywords
platinum
gas sensing
electrode
sensing body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6505587A
Other languages
Japanese (ja)
Inventor
Toshitaka Matsuura
松浦 利孝
Keizo Furusaki
圭三 古崎
Akio Takami
高見 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP6505587A priority Critical patent/JPS63231255A/en
Publication of JPS63231255A publication Critical patent/JPS63231255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the stability and durability of an element by impregnating a ceramic substrate where a thick porous gas sensing body film is formed by coating with a solution of a platinum compound, and carrying out a heat treatment in a gaseous hydrogen furnace and depositing platinum between an electrode and the thick film on the substrate. CONSTITUTION:Patterns 44 and 49 of platinum paste are printed in thick films on a green sheet 40 and platinum lead wires 51 and 53 are further connected. Then a green sheet 41 with an opening 55 is laminated and other green sheets 42 and 43 are also laminated in steps. Then this laminate plate is calcined in an atmosphere, TiO2 paste is charged in the opening 55, and the plate is calcined again to form a detecting element 11 of a porous gas sensing body. Then a chloroplatinic acid solution is dripped on the detecting element 11, which is calcined in a hydrogen atmosphere. Consequently, a conductive material formed by the condensation deposition of platinum is interposed in the TiO2- electrode interface to improve the stability of the operation and the durability of the gas sensing body element.

Description

【発明の詳細な説明】 (産業上の利用分野) 厚膜型ガス感応体素子の製法に関してこの明細書には、
セラミック基板上に設けた電極と、この電極表面を被覆
する多孔質ガス感応体厚膜とよりなる厚膜型ガス感応体
素子の作動安定性と性能劣化防止による耐久性増強につ
いての開発研究の成果に関し以下に述べる。
[Detailed Description of the Invention] (Industrial Application Field) This specification describes the method for manufacturing a thick film gas sensitive element.
Results of research and development on increasing durability by preventing operational stability and performance deterioration of thick-film gas-sensor elements, which consist of an electrode provided on a ceramic substrate and a porous gas-sensor thick film covering the electrode surface. This will be discussed below.

(従来の技術) この種の厚膜型ガス感応体素子では、平坦な基板上に厚
膜を備えるので、両者の熱膨張の差から容易にはがれを
来たしやすい。
(Prior Art) This type of thick film type gas sensitive element has a thick film on a flat substrate, and therefore tends to easily peel off due to the difference in thermal expansion between the two.

これに対し基板に人工的な凹凸を設け、密着を改善でき
ることをさきに開示した(特願昭58−203222号
)が、ミクロ的な基板と厚膜との間の密着は、なお不十
分なうらみがあり、電極と厚膜の間に内部抵抗にばらつ
きが生じやす(、また使用中に不純物がマイグレートし
これらの界面に凝縮して更に内部抵抗を高めて惑ガス性
能を劣化させる欠点があった。
To address this problem, we have previously disclosed that the adhesion can be improved by providing artificial irregularities on the substrate (Japanese Patent Application No. 58-203222), but the adhesion between the microscopic substrate and the thick film is still insufficient. (Also, impurities migrate during use and condense on these interfaces, further increasing internal resistance and deteriorating gas performance.) there were.

つまり電極表面と厚膜素子が面で接している為に、応力
により両者の密着が悪くなり、内部抵抗を高めることが
わかった。
In other words, it was found that because the electrode surface and the thick film element are in plane contact, the stress deteriorates the adhesion between the two and increases the internal resistance.

そこで、両者の接合界面を、2次元から3次元的にする
ことによって、接触抵抗を安定化し得ることを企て(特
開昭62−5156号公報参照)たが、ときとして炉の
条件の如何により白金の凝縮析出に、ばらつきを生じる
ことが見出された。
Therefore, attempts were made to stabilize the contact resistance by changing the bonding interface between the two from two-dimensional to three-dimensional (see Japanese Patent Laid-Open No. 62-5156), but sometimes the furnace conditions It has been found that variations occur in the condensation and precipitation of platinum.

(発明が解決しようとする問題点) 炉の条件で白金の凝縮析出条件がばらつくことに注目し
て白金を安定的に析出させる新規手法を与えることがこ
の発明の目的である。
(Problems to be Solved by the Invention) It is an object of the present invention to provide a new method for stably depositing platinum, paying attention to the fact that the conditions for condensation and precipitation of platinum vary depending on the furnace conditions.

(問題点を解決するための手段) この発明は電極を具備させたセラミック基板上に、多孔
質ガス感応体厚膜を焼成により被覆形成し、ついで白金
を主成分とする化合物溶液を含浸させて60〜180 
’Cの水素ガス炉中にて熱処理を行い、厚膜と電極との
界面に白金の凝縮析出による、導電材を介在させること
からなる、厚膜型ガス感応体素子の製法である。
(Means for Solving the Problems) This invention involves coating a ceramic substrate equipped with electrodes with a porous gas sensitive thick film by firing, and then impregnating it with a compound solution containing platinum as a main component. 60-180
This is a method for producing a thick film type gas sensitive element, which involves performing heat treatment in a hydrogen gas furnace of 'C' and interposing a conductive material by condensing and depositing platinum at the interface between the thick film and the electrode.

この発明において電極を具備させたセラミック基板とい
うのは、アルミナ、ムライト、ステアタイト、フォルス
テライトなど、耐熱性の高い平板形状のものでこのセラ
ミック基板上に電極が印刷される。
In the present invention, the ceramic substrate provided with the electrodes is made of alumina, mullite, steatite, forsterite, or the like, and has a flat plate shape with high heat resistance, and the electrodes are printed on this ceramic substrate.

電極は、少なくとも一対の金属材料による厚膜であり、
高温用の用途にはptを主成分とする電極膜(以下pt
メタライズ電極と呼ぶ)が用いられる。
The electrode is a thick film made of at least one pair of metal materials,
For high-temperature applications, electrode films containing PT as the main component (hereinafter referred to as PT) are used.
metallized electrodes) are used.

一方多孔質ガス感応体厚膜(以下感ガス膜という)は、
周囲のガス濃度の変化に応じて電気抵抗の変化する遷移
金属酸化物を主体とするものでSnO2,ZnO,Fe
zO,、などがプロパンガスセンサー、湿度センサーと
して使われ、またTi0z+ Cooの如きが酸素セン
サーとして使われる。
On the other hand, a porous gas-sensitive thick film (hereinafter referred to as a gas-sensitive film) is
Mainly composed of transition metal oxides whose electrical resistance changes according to changes in the surrounding gas concentration, such as SnO2, ZnO, and Fe.
zO, etc. are used as propane gas sensors and humidity sensors, and TiOz+Coo and the like are used as oxygen sensors.

この発明に従い電極と感ガス膜との界面に充填する導電
材は、感ガス膜に悪影響を与えずして、界面に充填可能
な物質であれば何でもよいが、電極材と感ガス膜の両者
と密着して両者の間の電気的導通の良いことが必要であ
り、電極材と類似したものが望ましく、ptメタライズ
電極に対しては、pt及びPt/Rh、 Pt/Paな
どのpt族金合金もっとも適している。
The conductive material to be filled at the interface between the electrode and the gas-sensitive membrane according to the present invention may be any material as long as it can be filled at the interface without adversely affecting the gas-sensitive membrane. It is necessary to have good electrical conductivity between the two, and a material similar to the electrode material is desirable.For PT metalized electrodes, PT and PT group metals such as Pt/Rh, Pt/Pa Alloy is most suitable.

この界面層の形成には、感ガス膜を基板に焼きつけたの
ち、導電材を含む溶液を多孔質感ガス層をとおして滲み
込ませ、その後とくに60〜180 ”Cの水素ガス炉
中で加熱することにより電極周辺に導電材を安定的に分
解析出させることができる。
To form this interfacial layer, after baking the gas-sensitive film onto the substrate, a solution containing the conductive material is allowed to seep through the porous gas layer, followed by heating in a hydrogen gas oven, especially at 60-180"C. This allows the conductive material to be stably separated and deposited around the electrode.

(作 用) 導電材が多孔質ガス感応体の電極界面近傍に分散介在す
る、3次元的な接合によってとくに接触抵抗の安定化が
もたらされ、内部抵抗のばらつきや変動が適切に回避さ
れ得る。
(Function) The three-dimensional bonding in which the conductive material is dispersed near the electrode interface of the porous gas sensitive body particularly stabilizes the contact resistance, and can appropriately avoid variations and fluctuations in the internal resistance. .

(実施例) 以下、ガス検出器として内燃機関排気中の酸素濃度を検
出する酸素センサーに適用した場合を例にとり図面に従
い説明する。
(Example) Hereinafter, a case where the present invention is applied to an oxygen sensor for detecting the oxygen concentration in the exhaust gas of an internal combustion engine as a gas detector will be described with reference to the drawings.

第1図は酸素センサーの部分断面図である。図において
10は、セラミック基板上に多孔質ガス感応体としての
検出素子11を備え、酸素濃度を検出するガス検出器、
12はガス検出器10を把持して酸素センサーを内燃機
関に取り付ける筒状の主体金具、13は主体金具12の
内燃機関側先端部12aに取り付けられて、ガス検出器
10の保護を司るプロテクタ、14は主体金具12とと
もにガス検出器10を把持する内筒である。
FIG. 1 is a partial cross-sectional view of the oxygen sensor. In the figure, 10 is a gas detector that includes a detection element 11 as a porous gas sensitive body on a ceramic substrate and detects oxygen concentration;
12 is a cylindrical metal shell that holds the gas detector 10 and attaches the oxygen sensor to the internal combustion engine; 13 is a protector that is attached to the internal combustion engine side end portion 12a of the metal shell 12 and protects the gas detector 10; 14 is an inner cylinder that holds the gas detector 10 together with the metal shell 12.

ガス検出器10は保持用スペーサ15、充填粉末16を
介し主体金具12および内筒14内に収容固定する。
The gas detector 10 is housed and fixed within the metal shell 12 and the inner cylinder 14 via a holding spacer 15 and a filling powder 16.

17はガラスシールである。17 is a glass seal.

主体金具12の外周は内燃機関取付用のねじ部12bを
刻設し、内燃機関壁面当接部分には排気が漏れないよう
ガスケット18を設ける。
The outer periphery of the metal shell 12 is provided with a threaded portion 12b for attaching the internal combustion engine, and a gasket 18 is provided at the portion that contacts the wall of the internal combustion engine to prevent exhaust gas from leaking.

ここで充填粉末16は滑石およびガラスの1:1の混合
粉末からなり、ガス検出器10を内筒14内に固定する
。また、ガラスシール17は低融点ガラスからなり、検
出ガスの漏れを防止すると共にガス検出器10の端子を
保護する。
Here, the filling powder 16 is made of a 1:1 mixed powder of talc and glass, and fixes the gas detector 10 within the inner cylinder 14. Further, the glass seal 17 is made of low melting point glass, and prevents leakage of the detection gas and protects the terminals of the gas detector 10.

なお、19は内筒14を覆うように主体金具12に取り
付けた外筒、20はシリコンゴムからなるシール材であ
って、リード21ないし23とガラスシール17より突
出したガス検出器10の端子との接続部を絶縁保護する
。また、このリード線21ないし23と端子31ないし
33との接続は予め外筒19内にシール材20およびリ
ード線21ないし23を納めると共に、各リード線21
ないし23の先端にかしめ金具を接続し、その後かしめ
金具端子とかしめ接続することによって行うとよい。
Note that 19 is an outer cylinder attached to the metal shell 12 so as to cover the inner cylinder 14, and 20 is a sealing material made of silicone rubber, which connects the leads 21 to 23 and the terminals of the gas detector 10 protruding from the glass seal 17. Insulate and protect the connections. In addition, to connect the lead wires 21 to 23 and the terminals 31 to 33, the sealing material 20 and the lead wires 21 to 23 are placed in the outer cylinder 19 in advance, and each lead wire 21 to 23 is connected to the terminals 31 to 33.
It is preferable to connect the caulking metal fittings to the tips of the terminals 23 to 23, and then connect them to the caulking metal terminals by caulking.

ガス検出器10は第2図ないし第7図に示す如き手順に
従って作成する。
The gas detector 10 is manufactured according to the procedure shown in FIGS. 2 to 7.

図において、(イ)はガス検出器10の組み立て工程に
おける平面図、(ロ)はそのA−A線断面図、または端
面図を示し、ここで、各図はガス検出器10の製造工程
を単に解り易(説明するだけの為、各部の寸法は第1図
に示すガス検出器と必ずしも対応させてな(この点、後
述の第8図および第9図についても同様である。
In the figures, (a) shows a plan view of the gas detector 10 in its assembly process, and (b) shows its sectional view along the line A-A or end view, and each figure shows the manufacturing process of the gas detector 10. For ease of understanding (for the sake of explanation, the dimensions of each part do not necessarily correspond to those of the gas detector shown in FIG. 1 (this point also applies to FIGS. 8 and 9, which will be described later).

ここで上記第2図ないし第7図の各図において、40〜
43は、平均粒径1.5 pmのA1zO+ 92重量
%、5iOz4重景’1. 、Ca02重4JXおよび
MgO2重lxの組成からなる混合粉末100重量部に
対して、ブチラール樹脂12重量部およびジブチルフタ
レート(BDP)  6重量部を添加し、有機溶剤中で
混合してスラリーとしてドクターブレードを用いて形成
したグリーンシートであり、この内グリーンシート40
は厚さ1mm、グリーンシート41は厚さ0.2鵬、グ
リーンシート42および43は厚さ0.8mmに予め作
成した。
Here, in each of the above-mentioned figures 2 to 7, 40 to
43 is A1zO+ 92% by weight with an average particle size of 1.5 pm, 5iOz4 heavy view'1. , 12 parts by weight of butyral resin and 6 parts by weight of dibutyl phthalate (BDP) were added to 100 parts by weight of a mixed powder consisting of , Ca02 heavy 4JX and MgO2 heavy Ix, and mixed in an organic solvent to form a slurry with a doctor blade. This is a green sheet formed using green sheet 40.
The green sheet 41 was prepared in advance to have a thickness of 1 mm, the green sheet 41 to have a thickness of 0.2 mm, and the green sheets 42 and 43 to have a thickness of 0.8 mm.

更に図中44ないし49は、pt粉末に7%のA1□0
3粉を添加した配合の白金ペーストにより厚膜印刷した
パターンであって導電部に相当し、その内44および4
5は検出素子11の電極となる電極パターン、46は検
出素子11を加熱するためのヒーターとなる発熱抵抗体
パターン、そして47ないし49は発熱抵抗体パターン
46や検出素子11に電源を印加したり又は検出信号を
抽出するための端子パターンである。
Furthermore, 44 to 49 in the figure indicate 7% A1□0 in the PT powder.
This is a thick film printed pattern using a platinum paste containing 3 powders, which corresponds to the conductive part, of which 44 and 4 powders are added.
5 is an electrode pattern serving as an electrode of the detection element 11; 46 is a heating resistor pattern serving as a heater for heating the detection element 11; and 47 to 49 are used to apply power to the heating resistor pattern 46 and the detection element 11. Or it is a terminal pattern for extracting a detection signal.

ガス検出器10の製造は第2図に示す如く、まずグリー
ンシート40上に上記44ないし49の各パターンを白
金ペーストで厚膜印刷することにより始められ、次いで
第3図に示す如く端子パターン47ないし49上に線径
0.2 rrtmの白金リード線51ないし53を夫々
接続する。
As shown in FIG. 2, the manufacturing of the gas detector 10 begins by thickly printing each of the patterns 44 to 49 on a green sheet 40 using platinum paste, and then, as shown in FIG. 3, a terminal pattern 47 is printed. Platinum lead wires 51 to 53 having a wire diameter of 0.2 rrtm are connected to the wires 51 to 49, respectively.

次に第4図に示す如く、グリーンシート41にあらかじ
め電極パターン44および45の先端部が露出するよう
打抜きによって形成した開口55を設けておいて、電極
パターン44および45の先端部を除くすべてののパタ
ーンを覆って、グリーンシート40上にグリーンシート
41を積層熱圧着する。この積層熱圧着されたグリーン
シート40とグリーンシート41との積層体は、セラミ
ック基板Bに相当し、後に開口55内に素子層に相当す
る検出素子11を積層する。
Next, as shown in FIG. 4, an opening 55 is punched out in advance in the green sheet 41 so that the tips of the electrode patterns 44 and 45 are exposed. A green sheet 41 is laminated and thermocompressed onto the green sheet 40, covering the pattern. This laminate of the green sheets 40 and 41 which are laminated and bonded by thermocompression corresponds to the ceramic substrate B, and later the detection element 11 which corresponds to the element layer is laminated inside the opening 55.

続いて第5図に示す如く、グリーンシート41上にグリ
ーンシート42を積層熱圧着し、さらに第6図に示す如
くグリーンシート42上にグリーンシート43を階段状
に積層熱圧着する。
Subsequently, as shown in FIG. 5, a green sheet 42 is laminated and thermocompressed onto the green sheet 41, and further, a green sheet 43 is laminated and thermocompressed onto the green sheet 42 in a stepped manner as shown in FIG.

ここで上記グリーンシート42は第1のセラミック層r
に相当し、又グリーンシート43は第2のセラミック層
Sに相当するものである。
Here, the green sheet 42 is the first ceramic layer r.
The green sheet 43 corresponds to the second ceramic layer S.

その後、グリーンシートと同一材質になる粒径約100
 umのセラミックボールをグリーンシート41の開口
55内にてグリーンシート41の表面に塗布し、凹凸層
を設ける。
After that, the particle size of about 100 becomes the same material as the green sheet.
um ceramic balls are applied to the surface of the green sheet 41 within the openings 55 of the green sheet 41 to provide an uneven layer.

このようにして、白金リード線51ないし53の一部が
突出し、又、電極パターン44および45の先端部がセ
ラミック基板Bの開口55内に露出した階段状の積層板
を作成する。
In this way, a step-like laminated plate is created in which a portion of the platinum lead wires 51 to 53 protrude and the tips of the electrode patterns 44 and 45 are exposed within the opening 55 of the ceramic substrate B.

次にこの積層板を1500℃の大気雰囲気焼成炉内にて
2時間放置することによって、第1のセラミック層fと
第2のセラミック層Sをセラミック基板Bと合体焼成す
る。
Next, this laminate is left in an atmospheric firing furnace at 1500° C. for 2 hours to fire the first ceramic layer f and the second ceramic layer S together with the ceramic substrate B.

その後第7図に示す如く開口55内に検出素子11を設
けるのであるが、この検出素子11は例えば平均粒径1
.2μmのTie2粉末100モル部に対して3重量%
のエチルセルロースを添加し、ブチルカルピトール(2
−(2−ブトキシエトキシ)エタノールの商品名)内で
混合し300ポアズに粘度調整した、TiO□ペースト
を開口55内に充塞し、かつ電極パターン44および4
5の先端に被着するよう厚膜印刷した後、再び1200
℃の大気雰囲気焼成炉内に1時間放置して焼付け、多孔
質ガス感応体として成形する。
Thereafter, as shown in FIG.
.. 3% by weight based on 100 mol parts of 2 μm Tie2 powder
of ethyl cellulose and butyl carpitol (2
- (trade name of (2-butoxyethoxy)ethanol)) and the viscosity was adjusted to 300 poise.
After printing a thick film to cover the tip of No. 5, print again at 1200
The sample was left in an air atmosphere firing furnace at ℃ for 1 hour and baked to form a porous gas sensitive material.

このようにして焼成した検出素子11に対し、表1に示
した試料1〜12を製作した。
Samples 1 to 12 shown in Table 1 were manufactured using the detection element 11 fired in this manner.

まず塩化白金酸(200g/l )またそれに必要に応
じ塩化ロジウムを添加して、何れも2μl宛素子の上よ
り滴下して種々の熱処理を実施した。
First, chloroplatinic acid (200 g/l) and rhodium chloride were added thereto as needed, and 2 μl of each was added dropwise from above the element to perform various heat treatments.

次に、得られた各ガス検出器10の外部に突出した白金
リード線51ないし53と端子31ないし33との接続
は9.第8図に示す如く、厚さ0.3mmのニッケル板
にエツチング加工によって一体形成されたランナ一つき
端子31ないし33を、白金リード線51ないし53に
夫々適合させて溶接した。なお、この端子31ないし3
3が一体形成されたニッケル板はガス検出器10が主体
金具12に固定され、その後ガス検出器10の基板の一
部及び白金リード線51ないし53と端子31ないし3
3との接合部分がガラスシール17によって保護され、
内筒14  内に固定された後に所定の長さに切断して
ランナは切捨てる。なお第8図における(イ)はガス検
出器10の平面図、(ロ)はその右側面図である。
Next, the connections between the platinum lead wires 51 to 53 protruding to the outside of each of the obtained gas detectors 10 and the terminals 31 to 33 are made in step 9. As shown in FIG. 8, terminals 31 to 33 with one runner, which were integrally formed by etching on a 0.3 mm thick nickel plate, were adapted to platinum lead wires 51 to 53 and welded to them. Note that this terminal 31 to 3
The gas detector 10 is fixed to the metal shell 12, and then a part of the substrate of the gas detector 10, the platinum lead wires 51 to 53, and the terminals 31 to 3 are connected to the nickel plate on which the gas detector 10 is integrally formed.
3 is protected by a glass seal 17,
After being fixed in the inner cylinder 14, the runner is cut to a predetermined length. In FIG. 8, (a) is a plan view of the gas detector 10, and (b) is a right side view thereof.

発熱抵抗体パターン46を加熱し、検出素子11を活性
化させ、リード線22及び23間に亘る検出素子11の
酸素濃度に依存した抵抗値の変化を検出することによっ
てその酸素濃度が検出できるのは云うまでもない。
The oxygen concentration can be detected by heating the heating resistor pattern 46, activating the detection element 11, and detecting a change in the resistance value of the detection element 11 between the lead wires 22 and 23 depending on the oxygen concentration. Needless to say.

この酸素センサーを、λ=0.9、ガス温350℃のプ
ロパンバーナー中で内部抵抗を測定し、ついで900℃
Oガス温のブンゼンバーナー中で、5分加熱、5分冷却
の0N−OFFサイクルを500サイクル行った後、上
記と同様条件で内部抵抗を測定した結果を表2に示す。
The internal resistance of this oxygen sensor was measured in a propane burner with λ = 0.9 and a gas temperature of 350°C, and then heated to 900°C.
Table 2 shows the results of measuring the internal resistance under the same conditions as above after performing 500 ON-OFF cycles of 5 minutes of heating and 5 minutes of cooling in a Bunsen burner at O gas temperature.

熱処理温度が低すぎた試料1でptは素子中に大きなド
ロップレット状に析出していたためptの析出は良好で
あっても、電極に活性がなく、電極周辺には析出しなか
った。
In sample 1, in which the heat treatment temperature was too low, pt was precipitated in the shape of large droplets in the element, so even though pt was well-precipitated, the electrode had no activity and did not precipitate around the electrode.

熱処理温度上限をこえていた試料10. ’11でpt
は、素子中に微細に分散し、ptが電極部へ移動析出す
るよりもはやく分解したためと推定されるがいずれにし
ても電極と素子の界面部への析出が少なかった。
Sample 10 where the heat treatment temperature exceeded the upper limit. '11 pt
It is presumed that this is because the pt was finely dispersed in the element and was decomposed faster than the pt moved to the electrode and was deposited, but in any case, there was little precipitation at the interface between the electrode and the element.

表   2 測定及び耐久試験中には、リード線51に+12V、同
じ<53にアース、そして52−53間に50 kΩの
固定抵抗を接続した。
Table 2 During measurements and durability tests, +12V was connected to the lead wire 51, ground was connected to the same <53, and a fixed resistance of 50 kΩ was connected between 52 and 53.

この発明に従う検出素子はチタニア−電極界面にてpt
導電材が有効に充てんされ、チタニア−電極間の空間を
みたして両者を立体的に電気的接合を保っていることが
わかる。
The detection element according to the present invention has pt at the titania-electrode interface.
It can be seen that the conductive material is effectively filled, filling the space between the titania and the electrode, and maintaining a three-dimensional electrical connection between the two.

(発明の効果) この発明によると厚膜型ガス感応体素子の作動安定性と
耐久性の顕著な改善の下に、高性能のこの種検出素子の
安定かつ能率的な生産が可能である。
(Effects of the Invention) According to the present invention, it is possible to stably and efficiently produce this type of high-performance detection element while significantly improving the operational stability and durability of the thick-film gas sensing element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は左半の断面を表した側面図、 第2回ないし第7図は酸素センサーに適用した実施例の
工程説明図、 第8図はガス検出器の正面図と断面図である。 第1図 ?? 第2図  第3図  第4図 第
Fig. 1 is a side view showing a cross section of the left half, Figs. 2 to 7 are process explanatory diagrams of an embodiment applied to an oxygen sensor, and Fig. 8 is a front view and a sectional view of a gas detector. Figure 1? ? Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、電極を具備させたセラミック基板上に、多孔質ガス
感応体厚膜を焼成により被覆形成し、ついで白金を主成
分とする化合物溶液を含浸させて60〜180℃の水素
ガス炉中にて熱処理を行い、厚膜と電極との界面に白金
の凝縮析出による、導電材を介在させることからなる、
厚膜型ガス感応体素子の製法。
1. A thick porous gas sensitive film is formed on a ceramic substrate equipped with electrodes by firing, and then impregnated with a compound solution containing platinum as a main component, and heated in a hydrogen gas furnace at 60 to 180°C. It consists of heat treatment and the interposition of a conductive material by condensation and precipitation of platinum at the interface between the thick film and the electrode.
Manufacturing method for thick film gas sensitive element.
JP6505587A 1987-03-19 1987-03-19 Manufacture of thin film type gas sensing body element Pending JPS63231255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6505587A JPS63231255A (en) 1987-03-19 1987-03-19 Manufacture of thin film type gas sensing body element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6505587A JPS63231255A (en) 1987-03-19 1987-03-19 Manufacture of thin film type gas sensing body element

Publications (1)

Publication Number Publication Date
JPS63231255A true JPS63231255A (en) 1988-09-27

Family

ID=13275883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6505587A Pending JPS63231255A (en) 1987-03-19 1987-03-19 Manufacture of thin film type gas sensing body element

Country Status (1)

Country Link
JP (1) JPS63231255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360159A2 (en) * 1988-09-19 1990-03-28 NGK Spark Plug Co. Ltd. Method of producing thick-film gas sensor element having improved stability
US5202154A (en) * 1988-09-19 1993-04-13 Ngk Spark Plug Co., Ltd. Method of producing thick-film gas sensor element having improved stability
EP1180681A1 (en) * 2000-08-07 2002-02-20 Denso Corporation Gas sensing element and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360159A2 (en) * 1988-09-19 1990-03-28 NGK Spark Plug Co. Ltd. Method of producing thick-film gas sensor element having improved stability
US5202154A (en) * 1988-09-19 1993-04-13 Ngk Spark Plug Co., Ltd. Method of producing thick-film gas sensor element having improved stability
EP1180681A1 (en) * 2000-08-07 2002-02-20 Denso Corporation Gas sensing element and method for manufacturing the same
US6478941B2 (en) 2000-08-07 2002-11-12 Denso Corporation Gas sensing element and method for manufacturing the same
US6849291B2 (en) 2000-08-07 2005-02-01 Denso Corporation Gas sensing element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
US4660407A (en) Gas sensor
JPH051901B2 (en)
JPH07190863A (en) Temperature sensor
JPH0215017B2 (en)
EP0896219B1 (en) Improved structure of oxygen sensing element
JPH0617891B2 (en) Oxygen concentration detector
JPH0430537Y2 (en)
US4857275A (en) Thick-film gas-sensitive element
US4909066A (en) Thick-film gas sensor of a laminar structure and a method of producing the same
JPS63231255A (en) Manufacture of thin film type gas sensing body element
US4652849A (en) Gas sensor
JPH0287032A (en) Thermistor for high temperature
JP2582135B2 (en) Method of manufacturing thick film type gas sensing element
JPH055305B2 (en)
USRE33980E (en) Thick-film gas-sensitive element
JPH052848Y2 (en)
JPS58100746A (en) Detector of oxygen concentration
CA1088626A (en) Resistance-type ceramic sensor element and sensor for combustion gas sensing device
JPH0536205Y2 (en)
JPS6311644Y2 (en)
JPH03103760A (en) Gas detector
JPH0672855B2 (en) Gas sensitive element
JPH0814552B2 (en) Sensor for detecting the functional state of catalytic devices
JPS62217151A (en) Thick film type gas sensitive body element