JPH055305B2 - - Google Patents

Info

Publication number
JPH055305B2
JPH055305B2 JP14384885A JP14384885A JPH055305B2 JP H055305 B2 JPH055305 B2 JP H055305B2 JP 14384885 A JP14384885 A JP 14384885A JP 14384885 A JP14384885 A JP 14384885A JP H055305 B2 JPH055305 B2 JP H055305B2
Authority
JP
Japan
Prior art keywords
catalyst
titania
thick film
gas sensitive
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14384885A
Other languages
Japanese (ja)
Other versions
JPS625166A (en
Inventor
Akio Takami
Toshitaka Matsura
Keizo Furusaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP14384885A priority Critical patent/JPS625166A/en
Publication of JPS625166A publication Critical patent/JPS625166A/en
Publication of JPH055305B2 publication Critical patent/JPH055305B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) ガス感応体素子は、ガス検出器として種々な使
途に利用され、一般にチタニア質セラミツクス
と、担持触媒とから構成される。 高温下のガス感応体素子、それもいわゆる厚膜
型ガス感応体素子も含めてこの明細書では触媒の
耐熱性を上げその焼結による粗大化を有利に抑制
することについての開発研究の成果に関し以下に
述べる。 (従来の技術) ガス感応体素子は、すでに触れたようにチタニ
ア質セラミツクスと担持触媒とからなり、たとえ
ば次の特許公報特開昭55−136949号が参照され
る。 (発明が解決しようとする問題点) この種のガス感応体素子が高温にさらされる
と、まず触媒が焼結を始めて粗大化することによ
つて劣化を生じるに至る。このため耐熱性の高い
ガス感応体素子を提供するには、触媒の耐熱性を
上げ、焼結を防止することが必要である。 (問題を解決するための手段) この発明は、チタニアを主成分とするガス感応
体であつて、触媒として白金属元素又はその合金
を担持させて成る、ガス感応体素子において、 触媒にその量に対し10〜250mol%に当る、
Zro2、CeO2のうち少なくとも1種を配合したこ
とを特徴とする、ガス感応体素子ならびに、セラ
ミツク基板上に設けた極電を被覆するチタニア厚
膜からなり、このチタニア厚膜とセラミツク基板
上の電極との間の界面にて高濃度に白金属元素又
はその合金を折出させた界面層を有し、かつ、チ
タニア厚膜が、10〜250mol%のZro2、CeO2のう
ち少なくとも1種を含み残部白金属元素又はその
合金の組成に成る触媒を担持することを特徴とす
る、厚膜型ガス感応体素子である。 すなわち、担持触媒の中に、Zro2、CeO2を添
加することにより、触媒の耐熱性を有利に高め得
ることの知見に基づいてこの発明の完成が導かれ
た。 触媒としては、白金属元素又はその合金が使わ
れ、なかでもPt量で1〜20モル%合金としてRh
がPtの10%以下が望ましい。 触媒量は素子の用途に応じて使いわけられる
が:一般に無鉛ガソリンで汚損の少ない用途に対
しては、1〜5モル%、またガソリン中にPb、
Pなどの汚損物質が混入している用途に対しては
5〜20モル%でより多量の添加が適しているが、
添加量の多いほど素子の応答性が悪くなる。 とくに厚膜型のガス感応体素子の場合、触媒の
耐熱性が高くなつても、素子と電極との界面での
接触が不安定であつて、このとき上記触媒を使用
する場合でも界面の接触の向上にはあまり効果が
ないことが判明した。 このとき、電極とチタニア厚膜との界面にあら
かじめ高濃度の白金属元素を充てんしておきその
後チタニア膜中に均一に上記触媒を担持させるの
が良いことが判明した。 (作用) 触媒中のZro2、CeO2の添加量については、触
媒に対して10〜250モル%の添加が望ましく、10
%以下では効果はなく、250以上では製造工程が
不安定であつて均一な触媒担持が不可能となる。 (実施例) 以下、ガス検出器として内燃機関排気中の酸素
濃度を検出する酸素センサーに適合した場合を例
にとり図面に従い説明する。 第1図は酸素センサーの部分断面図である。図
においては10はセラミツク基板上に多孔質ガス
感応体としての検出素子11を備え、酸素濃度を
検出するガス検出器、12はガス検出器10を把
持して酸素センサーを内燃機関に取り付ける筒状
の主体金具、13は主体金具12の内燃機関側先
端部12aに取り付けられて、ガス検出器10の
保護を司るプロテクタ、14は主体金具12とと
もにガス検出器10を把持する内筒である。 ガス検出器10は保持用スペーサ15、充填粉
末16を介し主体金具12および内筒14内に収
容固定する。17はガラスシールである。 主体金具12の外周には内燃機関取付用ねじ部
12bを刻設し、内燃機関壁面当接部分には排気
が漏れないようガスケツト18を設ける。 ここで充填粉末16は滑石およびガラスの1:
1の混合粉末からなり、ガス検出器10を内筒1
4内に固定する。また、ガラスシール17は低融
点ガラスからなり、検出ガスの漏れを防止すると
共にガス検出器10の端子を保護する。 なお、19は内筒14を覆うように主体金具1
2に取り付けた外筒、20はシリコンゴムからな
るシール材であつて、リード21ないし23とガ
ラスシール17より突出したガス検出器10の端
子との接続部を絶縁保護する。また、このリード
線21ないし23と端子31ないし33との接続
は予め外筒19内にシール材20およびリード線
21ないし23を納めると共に、各リード線21
ないし23の先端にかしめ金具を接続し、その後
かしめ金具端子とかしめ接続することによつて行
うとよい。 ガス検出器10は第2図ないし第7図に示す如
き手順に従つて作成する。 図において、イはガス検出器10の組み立て工
程における平面図、ロはそのA−A線断面図、ま
たは端面図を示し、ここで、各図はガス検出器1
0の製造工程を単に解り易く説明するだけの為、
各部の寸法は第1図に示すガス検出器と必ずしも
対応させてなくこの点、後述の第8図および第9
図についも同様である。 ここで上記第2図ないし第7図の各図におい
て、40〜43は、平均粒径1.5μmのAl2O392重
量%、SiO24重量量%、CaO2重量%およびMgO2
重量%の組成からなる混合粉末100重量部に対し
て、ブチラール樹脂12重量部およびジブチルフタ
レート(BDP)6重量部を添加し、有機溶剤中
で混合してスラリーとしてドクターレードを用い
て形成したグリーンシートであり、この内グリー
ンシート40は厚さ1mm、グリーンシート41は
厚さ0.2mm、グリーンシート42および43は厚
さ0.8mmに予め作成した。更に図中44ないし4
9は、Pt粉末に7%のAl2O3粉を添加した配合の
白金ペーストにより厚膜印刷したパターンであつ
て導電部に相当し、その内44および45は検出
素子11の電極となる電極パターン、46は検出
素子11を加熱するためのヒーターとなる発熱抵
抗体パターン、そして47ないし49は発熱抵抗
体パターン46や検出素子11に、電源を印加し
たり又は検出信号を抽出するための端子パターン
である。 ガス検出器10の製造は第2図に示す如く、ま
ずグリーンシート40上に上記44ないし49の
各パターンを白金ペーストで厚膜印刷することに
より始められ、次いで第3図に示す如く端子パタ
ーン47ないし49上に線径0.2mmの白金リード
線51ないし53を夫々接続する。 次に第4図に示す如く、グリーンシート41に
あちらかじめ電極パターン44および45の先端
部が露出するよう打抜きによつて形成した開口5
5を設けておいて、電極パターン44および45
の先端部を除くすべてののパターンを覆つて、グ
リーンシート40上にグリーンシート41を積層
熱圧着する。この積層熱圧着されたグリーンシー
ト40とグリーンシート41との積層体は、セラ
ミツク基板Bに相当し、後に開口55内に素子層
に相当する検出素子11を積層する。 続いて第5図に示す如く、グリーンシート41
上にグリーンシート42を積層熱圧着し、さらに
第6図に示す如くグリーンシート42上にグリー
ンシート43を階段状に積層熱圧着する。 ここで上記グリーンシート42は第1のセラミ
ツク層fに相当し、又グリーンシート43は第2
のセラミツク層sに相当するものである。 その後、グリーンシートと同一材質になる粒径
約100μmのセラミツクボールをグリーンシート
41上の開口55内にてグリーンシート41の表
面に塗布し、凹凸層を設ける。 このようにして、白金リード線51ないし53
の一部が突出し、又、電極パターン44および4
5の先端部がセラミツク基板Bの開口55内に露
出した階段状の積層板を作成する。 次にこの積層板を1500℃の大気雰囲気焼成炉内
にて2時間放置することによつて、第1のセラミ
ツク層fと第2のセラミツク層sをセラミツク基
板Bと合体焼成する。 その後第7図に示す如く開口55内に検出素子
11を設けるのであるが、この検出素子11は例
えば平均粒径1.2μmのTiO2粉末100モル部に対し
て3重量%のエチルセルロースを添加し、プチル
カルビトール(2−(2−ブトキシエトキシ)エ
タノールの商品名)内で混合し300ポアズに粘度
調整した、TiO2ぺーストを開口55内に充塞し、
かつ電極パターン44および45の先端に被着す
るよう厚膜印刷した後、再び1200℃の大気雰囲気
焼成炉内に1時間放置して焼付け、多孔質ガス感
応体として成形する。 このようにして焼成した検出器素子11につい
て、塩化白金酸(200g/)液中で、白金リー
ド線51,52,53を陰極に白金電極を陽極と
して2V、10分で電気めつきを実施したのち、塩
化白金溶液に所定のZrO2、Ce(NO32を溶解した
水溶液を、2μ滴下し、プロパンバーナー中よ
て950℃にて急熱分解し、素子中に均一にPt触媒
を担持させた。 次に、得られた各ガス検出器10の外部に突出
した白金リード線51ないし53と端子31ない
し33との接続は、第8図に示す如く、厚さ0.3
mmのニツケル板にエツチング加工によつて一体形
成されたランナーつき端子31ないし33を、白
金リード線51ないし53に夫々適合させて溶接
した。なお、この端子31ないし33が一体形成
されたニツケル板はガス検出器10が主体金具1
2に固定され、その後ガス検出器10の基板の一
部及び白金リード線51ないし53と端子31な
いし33との接合部分ガラスシール17によつて
保護され、内筒14内に固定された後に所定の長
さに切断してランナは切捨てる。なお第8図にお
けるEはガス検出器10の平面図、ロはその右側
面図である。 発熱抵抗体パターン46を加熱し、検出素子1
1を活性化させ、リード線22および23間に亘
る検出素子11の酸素濃度に依存した抵抗値の変
化を検出することによつてその酸素濃度が検出で
きる。 このセンサをλ=1.1、950℃のガス中に100Hr
放置し、その後350℃のプロパンバーナー測定機
でセンサー特性を調べた。 測定機はλ=0.9と1.1を1secごと切りかえ、セ
ンサーはこれに応じて約1Vと0V出力を示す。 触媒の特性は300mvから600mvへ昇圧する時
間(Tlrと記す)に相関があるので、添加量と
Tlrとの関係を表1に示す。尚耐久度の測定中に
は、リード線51に+12V、リード線53をアー
ス、52−53間には50kΩの固定抵抗を接続し
た。
(Industrial Application Field) Gas sensitive elements are used for various purposes as gas detectors, and are generally composed of titania-based ceramics and supported catalysts. This specification describes the results of research and development on improving the heat resistance of catalysts and advantageously suppressing their coarsening due to sintering, including gas sensitive elements under high temperatures, including so-called thick-film gas sensitive elements. It is described below. (Prior Art) As mentioned above, a gas sensitive element is composed of titania ceramics and a supported catalyst, and for example, the following patent publication JP-A-55-136949 is referred to. (Problems to be Solved by the Invention) When this type of gas sensitive element is exposed to high temperatures, the catalyst first begins to sinter and become coarse, leading to deterioration. Therefore, in order to provide a gas sensitive element with high heat resistance, it is necessary to increase the heat resistance of the catalyst and prevent sintering. (Means for Solving the Problem) The present invention provides a gas sensitive element which is a gas sensitive material mainly composed of titania and which supports a platinum metal element or an alloy thereof as a catalyst. corresponding to 10 to 250 mol% of
The gas sensitive element is characterized by containing at least one of Zro 2 and CeO 2 and a titania thick film covering an electrode provided on a ceramic substrate. The titania thick film has an interface layer in which a platinum metal element or its alloy is precipitated at a high concentration at the interface between the electrode and the titania electrode, and the titania thick film contains at least one of Zro 2 and CeO 2 of 10 to 250 mol%. The present invention is a thick film type gas sensitive element characterized in that it supports a catalyst containing seeds and having a composition of a platinum metal element or an alloy thereof. That is, the present invention was completed based on the knowledge that the heat resistance of the catalyst can be advantageously increased by adding Zro 2 and CeO 2 to the supported catalyst. As a catalyst, a platinum metal element or its alloy is used, especially R h as an alloy with a Pt content of 1 to 20 mol%.
is preferably 10% or less of Pt. The amount of catalyst can be selected depending on the application of the element: Generally, for applications with unleaded gasoline and low pollution, it is 1 to 5 mol%, and Pb in gasoline is
For applications where pollutants such as P are mixed, it is appropriate to add a larger amount of 5 to 20 mol%.
The greater the amount added, the worse the response of the element becomes. Particularly in the case of thick-film type gas sensitive elements, even if the heat resistance of the catalyst is high, the contact at the interface between the element and the electrode is unstable, and even when the above-mentioned catalyst is used, the contact at the interface is unstable. It was found that it was not very effective in improving. At this time, it has been found that it is better to fill the interface between the electrode and the titania thick film in advance with a high concentration of platinum metal element, and then to uniformly support the catalyst in the titania film. (Function) Regarding the amount of Zro 2 and CeO 2 added in the catalyst, it is desirable to add 10 to 250 mol % with respect to the catalyst.
If it is less than 250%, there is no effect, and if it is more than 250%, the manufacturing process becomes unstable and uniform catalyst support becomes impossible. (Example) Hereinafter, a case will be described with reference to the drawings, taking as an example a case where the gas detector is adapted to an oxygen sensor for detecting the oxygen concentration in the exhaust gas of an internal combustion engine. FIG. 1 is a partial cross-sectional view of the oxygen sensor. In the figure, 10 is a gas detector that includes a detection element 11 as a porous gas sensitive material on a ceramic substrate and detects oxygen concentration, and 12 is a cylindrical shape that holds the gas detector 10 and attaches the oxygen sensor to the internal combustion engine. 13 is a protector that is attached to the internal combustion engine side end portion 12a of the metal shell 12 and protects the gas detector 10; and 14 is an inner cylinder that holds the gas detector 10 together with the metal shell 12. The gas detector 10 is housed and fixed within the metal shell 12 and the inner cylinder 14 via a holding spacer 15 and a filling powder 16. 17 is a glass seal. A threaded portion 12b for attaching an internal combustion engine is formed on the outer periphery of the metal shell 12, and a gasket 18 is provided at a portion where the internal combustion engine comes into contact with the wall surface to prevent exhaust gas from leaking. Here, the filling powder 16 is made of talc and glass.
1, and the gas detector 10 is connected to the inner cylinder 1.
Fixed within 4. Further, the glass seal 17 is made of low melting point glass, and prevents leakage of the detection gas and protects the terminals of the gas detector 10. In addition, 19 is a metal shell 1 so as to cover the inner cylinder 14.
The outer cylinder 20 attached to the glass seal 2 is a sealing material made of silicone rubber, and insulates and protects the connection portion between the leads 21 to 23 and the terminal of the gas detector 10 that protrudes from the glass seal 17. In addition, to connect the lead wires 21 to 23 and the terminals 31 to 33, the sealing material 20 and the lead wires 21 to 23 are placed in the outer cylinder 19 in advance, and each lead wire 21 to 23 is connected to the terminals 31 to 33.
It is preferable to connect the caulking metal fittings to the tips of the terminals 1 to 23, and then connect the caulking metal fittings with the caulking metal terminals. The gas detector 10 is manufactured according to the procedure shown in FIGS. 2 to 7. In the figures, A shows a plan view of the gas detector 10 in the assembly process, B shows a cross-sectional view taken along the line A-A, or an end view, and each figure shows the gas detector 10.
In order to simply explain the manufacturing process of 0 in an easy-to-understand manner,
The dimensions of each part do not necessarily correspond to the gas detector shown in Figure 1.
The same applies to figures. Here, in each of the above figures 2 to 7, 40 to 43 are 92% by weight of Al 2 O 3 with an average particle size of 1.5 μm, 4% by weight of SiO 2 , % by weight of CaO2, and MgO2
To 100 parts by weight of mixed powder having a composition of The green sheet 40 was prepared in advance to have a thickness of 1 mm, the green sheet 41 to have a thickness of 0.2 mm, and the green sheets 42 and 43 to have a thickness of 0.8 mm. Furthermore, 44 to 4 in the figure
9 is a pattern printed with a thick film using a platinum paste containing 7% Al 2 O 3 powder added to Pt powder, and corresponds to a conductive part, of which 44 and 45 are electrodes that become electrodes of the detection element 11 46 is a heating resistor pattern serving as a heater for heating the detection element 11, and 47 to 49 are terminals for applying power to the heating resistor pattern 46 and the detection element 11 or for extracting a detection signal. It's a pattern. As shown in FIG. 2, the manufacturing of the gas detector 10 begins by thickly printing each of the patterns 44 to 49 on a green sheet 40 using platinum paste, and then, as shown in FIG. 3, a terminal pattern 47 is printed. Platinum lead wires 51 to 53 having a wire diameter of 0.2 mm are connected to wires 51 to 49, respectively. Next, as shown in FIG. 4, openings 5 are formed in advance in the green sheet 41 by punching so that the tips of the electrode patterns 44 and 45 are exposed.
5 are provided, and electrode patterns 44 and 45 are provided.
A green sheet 41 is laminated and thermocompressed onto the green sheet 40, covering all the patterns except for the leading edge of the green sheet 40. The stacked body of the green sheets 40 and 41 which are laminated and bonded by thermocompression corresponds to the ceramic substrate B, and later the detection element 11 corresponding to the element layer is laminated inside the opening 55. Next, as shown in FIG. 5, a green sheet 41 is
A green sheet 42 is laminated and thermocompression bonded thereon, and further, a green sheet 43 is laminated and thermocompression bonded in a stepped manner on the green sheet 42 as shown in FIG. Here, the green sheet 42 corresponds to the first ceramic layer f, and the green sheet 43 corresponds to the second ceramic layer f.
This corresponds to the ceramic layer s of . Thereafter, ceramic balls made of the same material as the green sheet and having a particle diameter of approximately 100 μm are applied to the surface of the green sheet 41 within the openings 55 on the green sheet 41 to form an uneven layer. In this way, the platinum lead wires 51 to 53
A part of the electrode patterns 44 and 4 protrude.
A step-shaped laminated plate in which the tips of the ceramic substrates 5 and 5 are exposed in the openings 55 of the ceramic substrate B is prepared. Next, this laminate is left in an air atmosphere firing furnace at 1500° C. for 2 hours to fire the first ceramic layer f and the second ceramic layer s together with the ceramic substrate B. Thereafter, as shown in FIG. 7, a detection element 11 is provided in the opening 55, and this detection element 11 is made by adding, for example, 3% by weight of ethyl cellulose to 100 mol parts of TiO 2 powder with an average particle size of 1.2 μm. TiO 2 paste mixed in butyl carbitol (trade name of 2-(2-butoxyethoxy) ethanol) and adjusted to a viscosity of 300 poise is filled in the opening 55,
After printing a thick film so as to cover the tips of the electrode patterns 44 and 45, it is baked again by leaving it in an air atmosphere baking oven at 1200° C. for 1 hour to form a porous gas sensitive body. The thus fired detector element 11 was electroplated in a chloroplatinic acid (200 g/) solution at 2V for 10 minutes using the platinum lead wires 51, 52, and 53 as cathodes and the platinum electrode as an anode. Afterwards, 2μ of an aqueous solution containing the specified ZrO 2 and Ce(NO 3 ) 2 dissolved in the platinum chloride solution was added dropwise, and the solution was rapidly thermally decomposed at 950°C in a propane burner to uniformly support the Pt catalyst in the element. I let it happen. Next, the connections between the platinum lead wires 51 to 53 protruding to the outside of each of the obtained gas detectors 10 and the terminals 31 to 33 have a thickness of 0.3 as shown in FIG.
Terminals 31 to 33 with runners integrally formed by etching on a nickel plate having a diameter of 2 mm were adapted to platinum lead wires 51 to 53 and welded to them, respectively. The nickel plate on which the terminals 31 to 33 are integrally formed has the gas detector 10 connected to the metal shell 1.
2, and then a part of the substrate of the gas detector 10 and the joint portion between the platinum lead wires 51 to 53 and the terminals 31 to 33 are protected by a glass seal 17, and after being fixed in the inner cylinder 14, a predetermined Cut it to length and discard the runner. Note that E in FIG. 8 is a plan view of the gas detector 10, and B is a right side view thereof. The heating resistor pattern 46 is heated and the detection element 1
The oxygen concentration can be detected by activating the sensor 1 and detecting a change in the resistance value of the detection element 11 between the lead wires 22 and 23 depending on the oxygen concentration. This sensor was placed in gas at 950℃ for 100 hours at λ=1.1.
The sensor characteristics were then examined using a 350°C propane burner measuring device. The measuring device switches between λ = 0.9 and 1.1 every second, and the sensor outputs approximately 1V and 0V accordingly. The characteristics of the catalyst are correlated with the time to increase the pressure from 300 mv to 600 mv (denoted as Tlr), so the amount added and
Table 1 shows the relationship with Tlr. During the durability measurement, the lead wire 51 was connected to +12V, the lead wire 53 was connected to ground, and a fixed resistor of 50 kΩ was connected between 52 and 53.

【表】【table】

【表】 (発明の効果) この発明によれば触媒の耐熱性を向上して焼結
が防止されガス感応体素子の耐久寿命が延長され
る。
[Table] (Effects of the Invention) According to the present invention, the heat resistance of the catalyst is improved, sintering is prevented, and the durable life of the gas sensitive element is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は左半の断面を表した側面図、第2図な
いし第7図は酸素センサーに適用した実施例の工
程説明図、第8図はガス検出器の正面図と断面図
である。
FIG. 1 is a side view showing a cross section of the left half, FIGS. 2 to 7 are process explanatory diagrams of an embodiment applied to an oxygen sensor, and FIG. 8 is a front view and a sectional view of a gas detector.

Claims (1)

【特許請求の範囲】 1 チタニアを主成分とするガス感応体であつ
て、触媒として白金属元素又はその合金を担持さ
せて成る、ガス感応体素子において、 触媒にその量に対し10〜250mol%に当る、
Zro2、CeO2のうち少なくとも1種を配合したこ
とを特徴とする、ガス感応体素子。 2 セラミツク基板上に設けた電極を被覆するチ
タニア厚膜からなり、このチタニア厚膜とセラミ
ツク基板上の極電との間の界面にて高濃度に白金
属元素又はその合金を折出させた界面層を有し、
かつ、チタニア厚膜が、10〜250mol%のZro2
CeO2のうち少なくとも1種を含み残部白金属元
素又はその合金の組成に成る触媒を担持すること
を特徴とする、厚膜型ガス感応体素子。
[Scope of Claims] 1. A gas sensitive element comprising titania as a main component and supporting a platinum metal element or an alloy thereof as a catalyst, wherein the amount of the catalyst is 10 to 250 mol% based on the amount thereof. corresponds to,
A gas sensitive element characterized in that it contains at least one of Zro 2 and CeO 2 . 2. An interface consisting of a titania thick film covering an electrode provided on a ceramic substrate, with a platinum metal element or its alloy precipitated at a high concentration at the interface between the titania thick film and the electrode on the ceramic substrate. has a layer,
and the titania thick film contains 10 to 250 mol% Zro 2 ,
1. A thick film type gas sensitive element, characterized in that it supports a catalyst having a composition of at least one of CeO 2 and the remainder being a platinum metal element or an alloy thereof.
JP14384885A 1985-07-02 1985-07-02 Gas sensitive element Granted JPS625166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14384885A JPS625166A (en) 1985-07-02 1985-07-02 Gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14384885A JPS625166A (en) 1985-07-02 1985-07-02 Gas sensitive element

Publications (2)

Publication Number Publication Date
JPS625166A JPS625166A (en) 1987-01-12
JPH055305B2 true JPH055305B2 (en) 1993-01-22

Family

ID=15348362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14384885A Granted JPS625166A (en) 1985-07-02 1985-07-02 Gas sensitive element

Country Status (1)

Country Link
JP (1) JPS625166A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542372Y2 (en) * 1987-06-05 1993-10-26
JPS6480845A (en) * 1987-09-24 1989-03-27 Toyota Motor Corp Catalyst carrying method for oxygen sensor
CN1035213A (en) * 1987-12-29 1989-08-30 精工电子工业株式会社 Travelling wave motor
JPH01212342A (en) * 1988-02-19 1989-08-25 Ngk Spark Plug Co Ltd Gas detector and preparation thereof
JP2501169Y2 (en) * 1994-08-26 1996-06-12 日産自動車株式会社 Oxygen sensor

Also Published As

Publication number Publication date
JPS625166A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
JPH051901B2 (en)
GB2046921A (en) Measuring sensor for determining the constituents of flowing gases
US4857275A (en) Thick-film gas-sensitive element
JPH055305B2 (en)
JPH08122297A (en) Oxygen concentration detector
US4652849A (en) Gas sensor
US4909066A (en) Thick-film gas sensor of a laminar structure and a method of producing the same
JPH0287032A (en) Thermistor for high temperature
JP2582135B2 (en) Method of manufacturing thick film type gas sensing element
USRE33980E (en) Thick-film gas-sensitive element
JPH03246458A (en) Assembly structure of sensor
JPS63231255A (en) Manufacture of thin film type gas sensing body element
JPH0672855B2 (en) Gas sensitive element
JP2002357589A (en) Gas sensor element and gas sensor
JP2695938B2 (en) Gas detector
JPH052848Y2 (en)
JP3874691B2 (en) Gas sensor element and gas sensor
JPH0713602B2 (en) Thick film gas sensor element
JPH07107523B2 (en) Gas detector manufacturing method
JPH0814552B2 (en) Sensor for detecting the functional state of catalytic devices
JPH0675050B2 (en) Thick film type gas sensitive element and its manufacturing method
JPH0617885B2 (en) Oxygen sensor intermediate assembly
JPH03233351A (en) Sensor structure
JPH0754312B2 (en) Gas detector