JPS62216987A - Production of single crystal ferrite - Google Patents

Production of single crystal ferrite

Info

Publication number
JPS62216987A
JPS62216987A JP61058918A JP5891886A JPS62216987A JP S62216987 A JPS62216987 A JP S62216987A JP 61058918 A JP61058918 A JP 61058918A JP 5891886 A JP5891886 A JP 5891886A JP S62216987 A JPS62216987 A JP S62216987A
Authority
JP
Japan
Prior art keywords
single crystal
ferrite
magnetite
crystal ferrite
hematite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61058918A
Other languages
Japanese (ja)
Inventor
Michiaki Yamauchi
山内 道章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61058918A priority Critical patent/JPS62216987A/en
Publication of JPS62216987A publication Critical patent/JPS62216987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled desired single crystal ferrite in high yield by using the hematite formed by roasting magnetite at a temp. lower than before as the raw material of polycrystal ferrite when single crystal ferrite is produced by a solid-phase reaction. CONSTITUTION:The seed of single crystal ferrite is bonded to the end face of polycrystal ferrite, the material is heated, and polycrystal ferrite is grown into single crystal ferrite to produce single crystal ferrite. In this case, the hematite to be used as the raw material of polycrystal ferrite is roasted at a temp. 300-600 deg.C lower than the conventional roasting temp. The hematite having a high content of gamma-Fe2O3, namely a high magnetic temp., is thus obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、V T Riff気ヘッド用等に用いられる
単結晶フェライトを固相反応によって製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing single crystal ferrite used for V T Riff air heads etc. by solid phase reaction.

(従来の技術) 従来、例えば特公昭61−3313号公報Gこ開示され
ているように、多結晶フェライトと単結晶フェライトと
を接触後加熱することにより、単結晶フェライトを多結
晶フェライト方向に結晶成長させて単結晶を育成するフ
ェライト単結晶の製造法においては、多結晶フェライト
の原料となるヘマタイト(Fe、0いをマグネタイト(
Fe:+04)より得るにあり、マグネタイトを720
’c前後の温度で焙焼してヘマタイトを得ていた。その
後、得られたヘマタイトを成形、焼成して、単結晶化す
べき多結晶フェライトを作成していた。
(Prior Art) Conventionally, as disclosed in Japanese Patent Publication No. 61-3313, for example, by heating polycrystalline ferrite and single-crystal ferrite after contacting them, single-crystal ferrite is crystallized in the direction of polycrystalline ferrite. In the manufacturing method of ferrite single crystal, which involves growing a single crystal, hematite (Fe), which is the raw material for polycrystalline ferrite, is used to grow magnetite (
Fe:+04), and magnetite is 720
Hematite was obtained by roasting at a temperature around 'C. Thereafter, the obtained hematite was shaped and fired to create polycrystalline ferrite to be made into a single crystal.

(発明が解決しようとする問題点) しかしながら上述した焙焼温度で焙焼した場合、マグネ
タイト(FeJt)は、磁性を有するT−へマクイト(
γ−Fe2O3)と、磁性を有しないα−へマクイト(
α−FezO)の混合物に転化するが、両者の比率は、
α−へマクイトのほうが比較的貰い(重量比90%)も
のとなる。
(Problems to be Solved by the Invention) However, when roasted at the above-mentioned roasting temperature, magnetite (FeJt) has magnetic T-hemacite (
γ-Fe2O3) and non-magnetic α-hemakite (
α-FezO) is converted into a mixture of α-FezO), but the ratio of the two is
α-Hemakuito is relatively more expensive (weight ratio 90%).

α−へマクイトとγ−へマクイトの含有比率は、X線回
折装置によって測定可能であるが、磁性を有する粉末と
磁性を有しない粉末の混合粉末であることから、混合粉
末のできより磁性度を測定することによってもそれらの
含有比率を評価することが可能である。磁性度によって
評価することは、極めて簡便に行なうことができるとい
う特長がある。
The content ratio of α-hemakite and γ-hemakite can be measured using an X-ray diffractometer, but since it is a mixed powder of magnetic powder and non-magnetic powder, the magnetic property is determined by the composition of the mixed powder. It is also possible to evaluate their content ratio by measuring. Evaluation based on magnetism has the advantage of being extremely easy to perform.

本願人は多年の研究ならびに実生産の経験から、上記の
磁性度と単結晶への成長のしやすさに密接に関係がある
、すなわち、磁性度の高い粉末はど単結晶成長しやすい
ということに気づいていた。
Based on many years of research and experience in actual production, the applicant has found that there is a close relationship between the above-mentioned degree of magnetism and the ease with which single crystals can grow.In other words, powders with high magnetism are easier to grow as single crystals. I was aware of this.

単結晶成長しやすいということは、量産に於いて製品歩
留りが高く、生産コストに好影響を及ぼすこととなる。
The fact that single crystal growth is easy means that the product yield is high in mass production, which has a positive effect on production costs.

マグネタイト(Fe、O,、)を焙焼して得られる粉末
におけるα−ヘマタイト(α−Fe20.) (!:γ
−へマクイト(T  Fe2O*)の比率は、焙焼温度
が高い程α−へマクイト (α−Fe2O3)の比率が
高くなる、すなわち磁性度が低くなる(順向になる。
α-Hematite (α-Fe20.) (!:γ) in powder obtained by roasting magnetite (Fe, O,,)
-The higher the roasting temperature, the higher the ratio of α-hemaquite (T Fe2O*), the higher the ratio of α-hemaquite (α-Fe2O3), that is, the lower the magnetism (becomes positive).

また、上記マグネタイトを硫酸鉄を出発原料として化学
反応により製造した場合、得られたマグネタイト中に若
干の5O3(硫酸根)が残存すくことになるが、このS
O3残存量は最終製品として得られるフェライト単結晶
中の空孔欠陥(巣と称する)の発生に影響を及ぼすこと
も知られている。SO3残存量の多いものは巣が多い単
結晶ができあがることになる。
In addition, when the above magnetite is produced by a chemical reaction using iron sulfate as a starting material, some 5O3 (sulfate radical) remains in the obtained magnetite, but this S
It is also known that the residual amount of O3 affects the occurrence of vacancy defects (referred to as cavities) in the ferrite single crystal obtained as a final product. If there is a large amount of residual SO3, a single crystal with many voids will be formed.

従来技術において設定されていた焙焼温度720℃前後
ではS03除去に関しては十分な効果があるものの、得
られる粉末の磁性度が低い領域であるため、結果として
量産単結晶歩留りが低いとい欠点があった。
Although the roasting temperature set in the conventional technology of around 720°C is sufficiently effective in removing S03, the magnetism of the resulting powder is in the low range, resulting in a low yield of mass-produced single crystals. Ta.

本発明の目的は上述した不具合を解消して、マグネタイ
トを焙焼して得たヘマタイト中にr −3ezO,、の
含有量が常に一定範囲の高い含有量であり、その結果単
結晶フェライトを歩留りよく得ることができ、かつ巣な
どの欠陥の発生のない単結晶フェライトの製造法を提供
しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned problems, and to ensure that the content of r -3ezO, in hematite obtained by roasting magnetite is always high within a certain range, and as a result, the yield of single crystal ferrite is improved. The object of the present invention is to provide a method for producing single crystal ferrite that can be obtained well and does not generate defects such as cavities.

(問題点を解決するための手段) 本発明の単結晶フェライトの製造法は、多結晶フェライ
トの端面に単結晶フェライトの種を接合して、加熱して
多結晶フェライトを単結晶に成長させる多結晶フェライ
トの製造法において、多結晶フェライトの原料となるヘ
マタイト(Fezes)をマグネタイト(Pe+On)
より得るにあたり、少なくともマクネタイトを300〜
600℃の民度で焙焼する工程を含む処理工程によりヘ
マタイトを得ることを特徴とするものである。
(Means for Solving the Problems) The method for producing single crystal ferrite of the present invention involves bonding a single crystal ferrite seed to the end face of polycrystalline ferrite and heating it to grow the polycrystalline ferrite into a single crystal. In the manufacturing method of crystalline ferrite, hematite (Fezes), which is the raw material for polycrystalline ferrite, is replaced with magnetite (Pe+On).
To get more, at least 300 ~ macnetite
It is characterized in that hematite is obtained through a treatment process including a process of roasting at a temperature of 600°C.

(作 用) 上述した構成において、マグネタイト(Fe304)を
300〜600℃という従来の焙焼温度よりも低い温度
で焙焼することにより、γ−FezO,の含有量が高い
すなわち磁性℃の高いヘマタイトを得ることができ、こ
のヘマタイトを原料として使用することにより高歩留り
で所望の単結晶フェライトを得ることができる。
(Function) In the above-mentioned configuration, by roasting magnetite (Fe304) at a temperature lower than the conventional roasting temperature of 300 to 600°C, hematite with a high content of γ-FezO, that is, with a high magnetic temperature By using this hematite as a raw material, desired single crystal ferrite can be obtained with a high yield.

また、硫酸鉄から得たマグネタイトを原料として使用す
るときは、マグネタイトに対してデカンテーション処理
をしてSOlの含有量を減じたマグネタイトに対し本発
明の焙焼を行えば、この場合でも高歩留りで所望の単結
晶を得ることができる。
In addition, when magnetite obtained from iron sulfate is used as a raw material, if the magnetite is subjected to decantation treatment to reduce the SOl content and then roasted according to the present invention, a high yield can be obtained even in this case. The desired single crystal can be obtained by

なお、本発明において焙焼温度を300〜600°Cと
限定した理由は、300℃未満だと巣の発生率が高くな
り歩留りが悪くなるためであり、また600℃をこえる
と大きな単結晶を育成できない(単結晶成長距離が短い
)ためである。
The reason why the roasting temperature is limited to 300 to 600°C in the present invention is that if it is lower than 300°C, the generation rate of cavities will be high and the yield will be poor, and if it exceeds 600°C, large single crystals will be formed. This is because it cannot be grown (the single crystal growth distance is short).

(実施例) 以下、本発明の単結晶フェライトの製造法の一例として
、高純度のマグネタイトを得るために硫酸鉄からマグネ
タイトを得る例について説明する。
(Example) As an example of the method for producing single crystal ferrite of the present invention, an example in which magnetite is obtained from iron sulfate in order to obtain highly pure magnetite will be described below.

まず、市販の電解鉄に硫酸と蒸留水をJJOえて溶解す
る。溶液を濾過した後、室温まで放冷して再結晶させ硫
酸第一鉄(Pesos・71120)の結晶を得る。
First, commercially available electrolytic iron is dissolved in sulfuric acid and distilled water. After filtering the solution, it is allowed to cool to room temperature and recrystallized to obtain crystals of ferrous sulfate (Pesos 71120).

次に得られた硫酸第一鉄に蒸留水を加え再溶解したのち
、溶液にアンモニア水等をさらに加え酸素ガスを流しな
がら反応させ、マグネタイト粉末を得る。得られたマグ
ネタイトを含む?8液を°’dWAしてマグネタイト粉
末を得た後、マグネタイト粉末中の残留SO,Jを除去
するためにデカンテーション処理を実施する。その後、
得られたマグネタイト粉末を乾燥後、空気中300〜6
00°Cの温度で例えば2時間焙焼して本発明のマグネ
タイト粉末を得る。
Next, distilled water is added to the obtained ferrous sulfate to redissolve it, and then aqueous ammonia or the like is further added to the solution and reacted while flowing oxygen gas to obtain magnetite powder. Contains the obtained magnetite? After subjecting the 8 liquid to °'dWA to obtain magnetite powder, a decantation process is performed to remove residual SO and J from the magnetite powder. after that,
After drying the obtained magnetite powder, 300~6
The magnetite powder of the present invention is obtained by roasting at a temperature of 00°C for, for example, 2 hours.

次に、得られたマグネタイト粉末に例えばZnO。Next, for example, ZnO is added to the obtained magnetite powder.

MnOを適当量混合した後、成形、焼成して単結晶化す
べき多結晶フェライトを得る。同時に種となる単結晶フ
ェライトを準備して、鏡面研摩した多結晶フェライトお
よび単結晶フェライトの接合面に有機酸または無機酸を
介在させて密着する。研摩面を密着した接合体は、約1
330〜1350℃から昇温速度10“C/時間で14
30°Cまで加熱され、単結晶を育成する。その結果、
単結晶フェライトを多結晶フェライト方向に結晶成長さ
せ、多結晶フェライトをほとんど全て単結晶フェライト
に転換した大きい寸法の単結晶フェライトを得ることが
できる。
After mixing an appropriate amount of MnO, it is molded and fired to obtain polycrystalline ferrite to be made into a single crystal. At the same time, a single crystal ferrite serving as a seed is prepared and closely adhered to the joint surface of the mirror-polished polycrystalline ferrite and single crystal ferrite with an organic or inorganic acid interposed therebetween. The bonded body with the polished surfaces in close contact is approximately 1
14 at a heating rate of 10"C/hour from 330-1350℃
It is heated to 30°C to grow a single crystal. the result,
By growing single crystal ferrite in the direction of polycrystalline ferrite, it is possible to obtain large-sized single crystal ferrite in which almost all of the polycrystalline ferrite is converted into single crystal ferrite.

以下、実施例について説明する。Examples will be described below.

大旌開 硫酸鉄から作成したマグネタイト(Fe:+04)に対
して、第1表に示す回数のデカンテーションを行った後
、各マグネタイト中のSO3残存量を測定した。その後
、第1表に示す本発明の焙焼温度およびそれ以外の温度
で焙焼して、ヘマタイト(FezO3)を得た。得られ
たヘマタイトに対し、磁性を帯びたγ−Pe、O,の含
有量を測定した後、酸化マンガンおよび酸化亜鉛を適当
量加えて、その組成がFezO:+ 52.6モル%、
ZnO6,7モル%、Mn031.7モル%に混合した
調合物を得た。その後、この調合物を仮焼、粉砕、成形
し、平衡酸素分圧下で1320°C14時間焼成して単
結晶化すべきMn −Zn多結晶フェライトを得た。
Magnetite (Fe: +04) prepared from Otsuki open iron sulfate was subjected to decantation the number of times shown in Table 1, and then the residual amount of SO3 in each magnetite was measured. Thereafter, it was roasted at the roasting temperature of the present invention shown in Table 1 and other temperatures to obtain hematite (FezO3). After measuring the content of magnetic γ-Pe, O, in the obtained hematite, appropriate amounts of manganese oxide and zinc oxide were added, and the composition was FezO: + 52.6 mol%.
A formulation was obtained in which 6.7 mol% of ZnO and 1.7 mol% of MnO were mixed. Thereafter, this mixture was calcined, pulverized, molded, and fired at 1320° C. for 14 hours under equilibrium oxygen partial pressure to obtain Mn-Zn polycrystalline ferrite to be made into a single crystal.

次に、得られた多結晶フェライトに上述した方法と同様
の方法で種単結晶フェライトを接合して30mm X 
27mm X 5 mmの寸法の接合体を得た。その後
、この接合体をN2ガス雰囲気中において1150℃で
30分間加熱し、引続き02濃度5%のN2ガス雰囲気
中において1340℃から1430°Cまで昇温速度1
0℃/時間の昇温速度で加熱して固相反応を起こさせ、
単結晶フェライトを多結晶フェライト方向に結晶成長さ
せて多結晶フェライト全体を単結晶化した。
Next, a seed single crystal ferrite was joined to the obtained polycrystalline ferrite in the same manner as described above to form a 30 mm x
A joined body with dimensions of 27 mm x 5 mm was obtained. Thereafter, this bonded body was heated at 1150°C for 30 minutes in a N2 gas atmosphere, and then heated at a heating rate of 1 from 1340°C to 1430°C in a N2 gas atmosphere with a 02 concentration of 5%.
Heating at a temperature increase rate of 0°C/hour to cause a solid phase reaction,
Single crystal ferrite was grown in the direction of polycrystalline ferrite, and the entire polycrystalline ferrite was made into a single crystal.

得られた単結晶フェライトに対し、単結晶の成長長さ、
巣発生率および総合評価を求めた。ここで、単結晶の成
長長さは真方位の結晶がない部分の長さを測定し、巣発
生率は単結晶化した端面における巣の割合を測定した。
For the obtained single crystal ferrite, the growth length of the single crystal,
The nest incidence rate and overall evaluation were determined. Here, the growth length of a single crystal was determined by measuring the length of a portion without crystals in the true orientation, and the void occurrence rate was determined by measuring the percentage of voids on the single crystallized end face.

また、総合評価として、成長長さが長く巣発生率が低い
ものを○、どちらか一方または両方が悪いものを×と判
定した。
In addition, as a comprehensive evaluation, those with long growth length and low nest occurrence rate were evaluated as ○, and those with poor growth in one or both of them were evaluated as poor.

結果を第1表に示す。The results are shown in Table 1.

第1表から明らかなように、本発明の範囲内の焙焼温度
で焙焼して得たヘマタイトから作製した単結晶フェライ
トは、磁性度(r−Fe、0.含有量)も高く、成長長
さも長いとともに、巣発生率も低いのに対し、それ以外
の温度で焙焼して得たヘマタイトから作成した単結晶フ
ェライトは、そのうちのいずれかが悪く、その結果単結
晶フェライトを歩留りよく製造することができないこと
がわかったり (発明の効果) 以上詳細に説明したところから明らかなように、本発明
の単結晶フェライトの製造法によれば、単結晶化すべき
多結晶フェライトの原料となるヘマタイトをマグネタイ
トを300〜600℃の温度で焙焼することにより得て
いるため、+i性度も高(j’l′L結晶の成長長さも
長いと共に巣発生率が低い単結晶フェライトを得ること
ができ、製造時の歩留りを向上することができる。
As is clear from Table 1, single-crystal ferrite made from hematite obtained by roasting at a roasting temperature within the range of the present invention has a high degree of magnetism (r-Fe, 0.0 content) and a high growth rate. Single crystal ferrite made from hematite obtained by roasting at other temperatures has one of these problems, and as a result, single crystal ferrite cannot be manufactured with a good yield. (Effect of the Invention) As is clear from the above detailed explanation, according to the method for producing single crystal ferrite of the present invention, hematite, which is the raw material for polycrystalline ferrite to be single crystallized, is obtained by roasting magnetite at a temperature of 300 to 600°C, so it has a high +i property (the growth length of the j'l'L crystal is long and it is possible to obtain single crystal ferrite with a low cavity generation rate). It is possible to improve the yield during manufacturing.

Claims (1)

【特許請求の範囲】 1、多結晶フェライトの端面に単結晶フェライトの種を
接合した後、加熱して、多結晶フェライトを単結晶フェ
ライトに成長させる単結晶フェライトの製造法において
、多多結晶フェライトの原料となる酸化鉄(Fe_2O
_3)の製造工程中に、マグネタイト(Fe_3O_4
)を300〜600℃の温度で焙焼してヘマタイトに転
化する処理を含むことを特徴とする単結晶フェライトの
製造法。 2、前記マグネタイト(Fe_3O_4)として、硫酸
鉄を出発原料として得られたマグネタイトを使用する特
許請求の範囲第1項記載の単結晶フェライトの製造法。 3、前記処理工程において、前記マグネタイトの焙焼前
にマグネタイトをデカンテーション処理する段階を有す
る特許請求の範囲第1項または第2項記載の単結晶フェ
ライトの製造法。
[Claims] 1. A method for producing single crystal ferrite in which a seed of single crystal ferrite is bonded to the end face of polycrystalline ferrite and then heated to grow the polycrystalline ferrite into single crystal ferrite. Iron oxide (Fe_2O
During the manufacturing process of _3), magnetite (Fe_3O_4
) at a temperature of 300 to 600°C to convert it into hematite. 2. The method for producing single crystal ferrite according to claim 1, wherein magnetite obtained using iron sulfate as a starting material is used as the magnetite (Fe_3O_4). 3. The method for producing single crystal ferrite according to claim 1 or 2, wherein the treatment step includes a step of decantating the magnetite before roasting the magnetite.
JP61058918A 1986-03-17 1986-03-17 Production of single crystal ferrite Pending JPS62216987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058918A JPS62216987A (en) 1986-03-17 1986-03-17 Production of single crystal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058918A JPS62216987A (en) 1986-03-17 1986-03-17 Production of single crystal ferrite

Publications (1)

Publication Number Publication Date
JPS62216987A true JPS62216987A (en) 1987-09-24

Family

ID=13098201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058918A Pending JPS62216987A (en) 1986-03-17 1986-03-17 Production of single crystal ferrite

Country Status (1)

Country Link
JP (1) JPS62216987A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529015A (en) * 1978-08-18 1980-03-01 Hino Motors Ltd Auxiliary starter for diesel engine
JPS5542934A (en) * 1978-09-21 1980-03-26 Drooff Heinz Base plate for hinge placed invisibly from outside
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS5926992A (en) * 1982-07-29 1984-02-13 Matsushita Electric Ind Co Ltd Preparation of single crystal ferrite
JPS60195096A (en) * 1984-03-19 1985-10-03 Ngk Insulators Ltd Production of ferrite single crystal
JPS60235726A (en) * 1984-05-09 1985-11-22 Kawasaki Steel Corp Preparation of ferric oxide for ferrite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529015A (en) * 1978-08-18 1980-03-01 Hino Motors Ltd Auxiliary starter for diesel engine
JPS5542934A (en) * 1978-09-21 1980-03-26 Drooff Heinz Base plate for hinge placed invisibly from outside
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS5926992A (en) * 1982-07-29 1984-02-13 Matsushita Electric Ind Co Ltd Preparation of single crystal ferrite
JPS60195096A (en) * 1984-03-19 1985-10-03 Ngk Insulators Ltd Production of ferrite single crystal
JPS60235726A (en) * 1984-05-09 1985-11-22 Kawasaki Steel Corp Preparation of ferric oxide for ferrite

Similar Documents

Publication Publication Date Title
JPS63239117A (en) Compound having lamellar structure of hexagonal system expressed in ingazn2o5 and its production
Sugantha et al. Synthesis and characterization of NZP phases, AM′ 3+ M ″4+ P3O12
JPS62216987A (en) Production of single crystal ferrite
JPH0217517B2 (en)
JPS5921591A (en) Production of single crystal ferrite
JPS62223027A (en) Production of iron oxide for ferrite
JPS62223026A (en) Production of iron oxide for ferrite
JPS61146780A (en) Manufacture of single crystal
JP2915512B2 (en) Manganese whisker manufacturing method
JPS62223023A (en) Iron oxide for ferrite and production thereof
JPS6241797A (en) Single crystal ferrite and production thereof
JPS61146779A (en) Production of single crystal
KR900003760B1 (en) Producting method of mn-zn ferite for vtr head
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPH0338210B2 (en)
JPS63295429A (en) Compound shown by lugazn5o8 and having hexagonal lamellar structure and its production
JPH05246800A (en) Production of single crystal ferrite
JPS6246925A (en) Circular iron oxide powder and its production
JPH1111952A (en) Production of cobalt compound and cobalt compound
JPS63295439A (en) Compound shown by ybfezn5o8 and having hexagonal lamellar structure and its production
JPH01278406A (en) Production of acicular silicon nitride
JPS63295416A (en) Compound shown by ybalzn9o12 and having hexagonal lamellar structure and its production
Singh et al. On the Magnetic and Photoluminescence Properties of Calcium Diferrite (CaFe
Kikkawa et al. Iron source effect on BaFe12O19 preparation through citrate route
JPH0474317B2 (en)