JPS62216624A - Permselective composite membrane for separating gas - Google Patents

Permselective composite membrane for separating gas

Info

Publication number
JPS62216624A
JPS62216624A JP6027286A JP6027286A JPS62216624A JP S62216624 A JPS62216624 A JP S62216624A JP 6027286 A JP6027286 A JP 6027286A JP 6027286 A JP6027286 A JP 6027286A JP S62216624 A JPS62216624 A JP S62216624A
Authority
JP
Japan
Prior art keywords
membrane
isocyanate
group
amino
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027286A
Other languages
Japanese (ja)
Inventor
Kunitaka Jiyou
邦恭 城
Tokuo Tazaki
田崎 徳雄
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6027286A priority Critical patent/JPS62216624A/en
Publication of JPS62216624A publication Critical patent/JPS62216624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite membrane for separating gas excellent in performance by allowing polyorganosiloxane wherein the end of a side chain is subjected to amino denaturation to react with polyorganosiloxane wherein the end of the side chain is subjected to isocyanate denaturation on a fine porous supporting membrane. CONSTITUTION:Polyorganosiloxane, shown in formula I, wherein the end of a side chain is subjected to amino denaturation and polyorganosiloxane, shown in formula II, wherein the end of the side chain is subjected to isocyanate denaturation are allowed to react with each other on a fine porous supporting membrane having 10-5,000Angstrom hole size of the surface. As a reaction method, the following method is adopted wherein a denature siloxane soln. having 0.01-1wt% concn. is coated on the fine porous supporting membrane and thereafter recoated at 50-200 deg.C and dried for 0.5-110sec. When a mixing ratio of the amino denatured substance of denatured siloxane and an isocyanate denatured substance is regulated to (25:75)-(75:25) by pts.wt., formability of a membrane is made favorable.

Description

【発明の詳細な説明】 3、発明の37411な説明 1産業上の利用分野] 本発明は、良好な気体透過性を持つ気体分離用選択透過
性複合膜に関−リ゛るbのであり、更に詳しくは空気に
り酸素富化空気を1!7るために41効な分離膜に関す
るものである。
Detailed Description of the Invention 3. 37411 Description of the Invention 1 Industrial Application Field The present invention relates to a permselective composite membrane for gas separation having good gas permeability. More specifically, it relates to a separation membrane that is effective for separating oxygen-enriched air by 1.7% from air.

[従来の技術] 現在、燃焼エネ゛ルギーを利用する装置、例えば家庭用
暖房器具、自動車のエンジン、ボイラー等にtJ′3い
ては、酸素濃度が約20%の空気ににって運転されてい
る。今、これらの装置に酸素濃j臭を高めた酸素富化空
気を使用した場合には、燃焼効率を高められるだ()で
なく、燃焼温1哀も大幅に上げることが可能となる。
[Prior Art] Currently, devices that utilize combustion energy, such as home heating appliances, automobile engines, boilers, etc., are operated on air with an oxygen concentration of approximately 20%. There is. Now, if oxygen-enriched air with enhanced odor is used in these devices, it is possible to not only increase the combustion efficiency but also to significantly raise the combustion temperature.

さて、このような酸素富化空気を得る方法として、気体
分離膜の前後に圧力差を設け、その駆動力を利用して大
気中の酸素を濃縮する膜分離[法が知らてれいる。この
膜分離法では、得られる酸素富化空気のコストは、気体
分離膜の選択性おにび透過性によって決まり、しだかっ
て高い選択性と高い透過性を備えた気体分離膜の開発が
要求されている。
Now, as a method for obtaining such oxygen-enriched air, a membrane separation method is known in which a pressure difference is created before and after a gas separation membrane and the driving force is used to condense oxygen in the atmosphere. In this membrane separation method, the cost of the oxygen-enriched air obtained is determined by the selectivity and permeability of the gas separation membrane, which requires the development of gas separation membranes with high selectivity and high permeability. has been done.

従来、かかる気体分離膜として、多孔性支持体膜上に、
アミノ基をシロキ1ナン1000個当り1〜50個含有
するアミノ基○有ポリシ[lキサンを、アミノ基と反応
する官能基を少なくとも1個含む多官能性化合物ににり
架1t!ニジめた架橋複合膜(特開昭59−12020
7>や側鎖にイソシアネート基を持ったポリイソシアネ
ート成分とポリアミン成分との反応により得られた選択
性透過膜(特開昭59−209609>が知られている
Conventionally, as such a gas separation membrane, on a porous support membrane,
Polysiloxane containing 1 to 50 amino groups per 1,000 siloxanes is bonded to a polyfunctional compound containing at least one functional group that reacts with an amino group! Nijime crosslinked composite membrane (JP-A-59-12020
7> or a selectively permeable membrane obtained by the reaction of a polyisocyanate component having an isocyanate group in a side chain with a polyamine component (JP-A-59-209609>) is known.

[発明が解決しようとする問題点] しかし、上記1.+l聞昭59120207と特開昭5
9−209609はとらに、薄膜層主成分であるシリコ
ーン層の膜厚を薄クシていぎ、透過性の高い気体分離用
選択性複合膜をjqようとすれば、ピンホールが生じ選
択性がさがり、十分に高い透過性と選択性を兼ね6;占
えた気体分離用選択性複合膜をjfることができなかっ
た。
[Problems to be solved by the invention] However, the above 1. +lBunsho 59120207 and Japanese Patent Publication No. 59120207
9-209609 is particularly important because if you try to make a selective composite membrane for gas separation with high permeability by thinning the thickness of the silicone layer, which is the main component of the thin film layer, pinholes will occur and the selectivity will decrease. However, it was not possible to create a selective composite membrane for gas separation that had both sufficiently high permeability and selectivity.

本発明は、かかる問題点を解決し、十分に高い透過性と
選択性を]口ね備えた気体分離用選択性複合膜を捉供す
ることを目的とする。
The present invention aims to solve these problems and provide a selective composite membrane for gas separation that has sufficiently high permeability and selectivity.

1問題点を解決するための手段] 本発明は、側鎖の末端がアミン変性されたポリオルガノ
シロキサンと側鎖の末端がイソシアネート変性されたオ
ルガノシロキサンとを微多孔性支持体膜上で反応ざU薄
膜を形成uしめて17られた気体分離用選択透過性投合
膜を特徴とするものである。
[Means for Solving Problem 1] The present invention involves reacting a polyorganosiloxane whose side chain ends are modified with an amine and an organosiloxane whose side chain ends are modified with an isocyanate on a microporous support membrane. It is characterized by a permselective composite membrane for gas separation in which a thin film is formed.

本発明の側鎖の末端がアミノ変性されたポリオルガノシ
ロキサンとは、シロキサン結合の繰返し単位を主鎖に有
するポリオルガノシロキサンの側鎖の一部の末端にアミ
ン基を有する手合体でおり、例えば次の重合体を挙げる
ことができる。
The polyorganosiloxane in which the end of the side chain of the present invention is amino-modified is a polymer having an amine group at the end of a part of the side chain of a polyorganosiloxane having a repeating unit of a siloxane bond in the main chain. The following polymers may be mentioned.

R2<CI−b) O H N](2 (ただし、式中R1,R2はメチル基、エチル基、プロ
ピル基などの低級アルキル基、若しくはその誘導体、又
はフェニル基、若しくはその誘導体、R3はメチル基、
エチル基、プロピル基などの低級アルキル基、若しくは
そのXS体、P、P’は2〜10の整数、n十mは10
0〜2000の整数で 以下、好ましい態様を述べる。
R2<CI-b) O H N](2 (In the formula, R1 and R2 are lower alkyl groups such as methyl, ethyl, and propyl groups, or derivatives thereof, or phenyl groups, or derivatives thereof, and R3 is methyl. basis,
A lower alkyl group such as an ethyl group or a propyl group, or its XS form, P and P' are integers from 2 to 10, and n0m is 10
Preferred embodiments will be described below using integers from 0 to 2000.

構造式(I)中のR1,R2は同一もしくは異なり、メ
チル基、エチル基、プロピル基などの低級アルキル基、
若しくはその誘導体、又はフェニル基、若しくはその誘
導体でおる。この中でも、メチル基が膜形成性に最も優
れているので特に好ましい。R3はメチル基、エチル基
、プロピル基などの低級アルキル基、若しくはその誘導
体である1、構造式(1)中のP、P’は2〜10の整
数であるが、P、P’が1以下または11以上ではアミ
ノ基のイソシアネ−1へ基との反応性が低いため好まし
くない。n十mは100以上2000以下である。「]
十mが100を満たない場合は、膜形成性が悪くなり、
微多孔性支持体股上での薄膜がピンホールが多くなるの
で好ましくない。n十mが2000を越える場合GJ1
、このアミン変性シロキリ”ンの溶媒l\の溶解性が悪
くなり、薄膜とすることが困難であるため好ましくない
。−m−はO1i fvH 001以上0.2以下て必る。0.001に満たない場
合は、イソシアネート変性シロキザンとの反応性が低く
微多孔性支持体股上での肋膜がピンが0.2を越える場
合、イソシアネ−1・変性シロキ1ノーンとの反応性が
高いため、ゲル化物となり薄膜とすることが出来ないた
め好ましくない。
R1 and R2 in structural formula (I) are the same or different, and are lower alkyl groups such as methyl group, ethyl group, and propyl group,
or a derivative thereof, or a phenyl group, or a derivative thereof. Among these, methyl group is particularly preferred since it has the best film-forming properties. R3 is a lower alkyl group such as a methyl group, an ethyl group, a propyl group, or a derivative thereof 1, P and P' in structural formula (1) are integers from 2 to 10, but when P and P' are 1 If it is less than 11 or more than 11, the reactivity of the amino group with the isocyanate-1 group is unfavorable. n0m is 100 or more and 2000 or less. "]
If 10 m is less than 100 m, the film forming property will be poor,
This is not preferable because the thin film on the microporous support will have many pinholes. If n0m exceeds 2000, GJ1
This is not preferable because the solubility of this amine-modified siloxylin in the solvent l\ becomes poor and it is difficult to form a thin film. If the pin is less than 0.2, the reactivity with the isocyanate-modified siloxane is low, and if the plenum on the crotch of the microporous support exceeds 0.2, the gel This is not preferable because it becomes a chemical compound and cannot be formed into a thin film.

本発明における側鎖の末端がイソシアネート変成された
ポリオルガノシロキサンとは、シ1」キナン結合の繰り
返し単位を主鎖に有するポリオルガノシロキサンの側鎖
の一部の末端にイソシアネート基を有する手合体であり
、例えば次の手合体を挙げることができる。
In the present invention, the polyorganosiloxane whose side chain terminals are modified with isocyanate is a polyorganosiloxane having a repeating unit of a quinane bond in its main chain, and which has isocyanate groups at the terminals of some of its side chains. For example, the following combination of hands can be mentioned.

GO (ただし、R4,R5はメチル基、エチル基、プロピル
基などの低級アルキル基、若しく 4にその誘導体、又
はフェニル基、若しくはそのNA 2S体、R6はメチ
ル基、エチル基、プロピル基などの低級アルキル基、若
しくはその誘導体、R7は1−4 0 1」 (CHb+TSCNX (q 、 a’は2〜10の整数、Xは炭素数2〜16
の右は、l) 、n” 十m−は100〜2000の整
数で、 以下、好ましい態様を)ホベる。
GO (However, R4 and R5 are lower alkyl groups such as methyl group, ethyl group, and propyl group, or 4 is a derivative thereof, or phenyl group, or its NA 2S form, and R6 is a methyl group, ethyl group, propyl group, etc.) or a derivative thereof, R7 is 1-401'' (CHb+TSCNX (q, a' is an integer of 2 to 10, X is a carbon number of 2 to 16
The right side of is l), n'' is an integer from 100 to 2000, and preferred embodiments are described below.

@造式(II)中のR4,Rsは同一もしくは異なり、
メヂル雄、エチル基、プロピル棋などの低級アルキル基
、若しくはその誘導体、又はフェニル捕、若しくはその
誘導体でおる。この中でも、メチル基が最も膜形成性に
優れているので好ましい。R6はメチル基、エチル基、
プロピル柚などの低級アルキル基、若しくはその誘導体
である。
@R4 and Rs in formula (II) are the same or different,
It is a lower alkyl group such as methane, ethyl group, propyl group, or a derivative thereof, or phenyl group, or a derivative thereof. Among these, methyl group is preferred because it has the best film-forming properties. R6 is a methyl group, an ethyl group,
It is a lower alkyl group such as propyl yuzu, or a derivative thereof.

R7の中のQ 、 Q’は2〜10の整数で必るが、q
Q and Q' in R7 must be integers from 2 to 10, but q
.

q゛が1以下または11以上ではこのイソシアネート塁
とアミノ変性シロキリ゛ンのアミン塁の反応性が低いた
め好ましくない。
If q is less than 1 or greater than 11, the reactivity of the isocyanate base and the amine base of the amino-modified siloxylin will be low, which is not preferred.

×は、炭素数2〜16の有機具は、炭素数2〜15の脂
肪族アルキレン基、炭素数5〜16の脂肪族基、炭素数
6〜16の芳香族基で必る。かかる41機塁の具体例と
してi−リレン桔、メチレンジフェニル基、オキシジフ
ェニル基、へ二に1ナメブーレン塞、ナフチル基、ギシ
リレン柚、シクロヘギシル基等を挙げることかで゛さる
。n”+rn”は100〜2000の整数で、n−+m
−が100に)品だない場合は、膜形成性が悪くなり、
微多孔性支持体膜上での薄膜がピンホールが多くなるの
で好ましくいな。n−+m−が2000を越える場合に
は、このイソシアネーI・変性シl]キリ′ンの溶媒へ
の溶解性が悪くなり、薄膜とすることが困難で0.2以
下である。」忙7が0.001に満だな^′で− い場合は、構造式(1)のアミノ変性シロギリーンとの
反応性が低く微多孔性支持体股上の薄膜がピンホールの
多いものとなるため好ましくない。
× indicates that the organic component having 2 to 16 carbon atoms is an aliphatic alkylene group having 2 to 15 carbon atoms, an aliphatic group having 5 to 16 carbon atoms, or an aromatic group having 6 to 16 carbon atoms. Specific examples of such 41 bases include i-lylene group, methylene diphenyl group, oxydiphenyl group, 1-namebulene group, naphthyl group, gysilylene group, cyclohexyl group, etc. n"+rn" is an integer from 100 to 2000, and n-+m
- becomes 100), the film forming property becomes poor,
A thin film formed on a microporous support film is not preferable because it will have many pinholes. When n-+m- exceeds 2,000, the solubility of the isocyane I/modified silyl] in the solvent becomes poor, making it difficult to form a thin film, and the value is 0.2 or less. If the ratio is less than 0.001, the reactivity with the amino-modified syrogylene of structural formula (1) will be low and the thin film on the microporous support will have many pinholes. Therefore, it is undesirable.

サンとの反応性が高くゲル状物となり、薄膜とすること
が難しいため好ましくない。
It is not preferable because it is highly reactive with sun and forms a gel-like substance, making it difficult to form a thin film.

本発明にお【プる微多孔性支持体膜とは、それ自身では
気体の透過抵抗にはならず、アミノ変性シロキザンとイ
ソシアネート変性シロキサンとを反応させて得られる簿
膜を支持する機能をはたずもので、表面の孔の大きさが
約10人〜5000人、好ましくは約10人〜1000
人である。また、気体の透過抵抗にはなりにくいにうに
非対称@造を持つことが好ましい。気体透過性としては
、窒素透過速度で10 (m’/Tl12− hr−a
tm )以上のものが好ましい。かかる微多孔性支持体
膜としては、ガラス質多孔材、焼結金属、セラミックス
、セルロースニスデル非対称膜、ポリエーテルスルホン
非対称膜、ポリスルホン非対称膜、ポリイミド非対称膜
などが挙げられる。この中でも、気体透過性が十分であ
ることと、孔径が適当である点てポリスルホン非対称膜
が好ましい。
The microporous support membrane used in the present invention does not provide gas permeation resistance by itself, but has the function of supporting the membrane obtained by reacting amino-modified siloxane and isocyanate-modified siloxane. The size of the pores on the surface is about 10 to 5000, preferably about 10 to 1000.
It's a person. Further, it is preferable to have an asymmetric structure that does not easily cause gas permeation resistance. As for gas permeability, the nitrogen permeation rate is 10 (m'/Tl12-hr-a
tm) or more are preferred. Examples of such microporous support membranes include porous glass materials, sintered metals, ceramics, cellulose Nisdell asymmetric membranes, polyethersulfone asymmetric membranes, polysulfone asymmetric membranes, polyimide asymmetric membranes, and the like. Among these, polysulfone asymmetric membranes are preferred because they have sufficient gas permeability and appropriate pore sizes.

アミノ変性シロキリ゛ンとイソシアネート変性シロキサ
ンとを微多孔性支持体膜上で反応ざVた薄膜の膜厚は、
より薄い方が気体透過性を高くすることができるため好
ましいが、薄くすることによってピンボールが発生し複
合膜の選択性を低下させることになる。本発明において
は、ピンホールフリーの薄膜の膜厚を0.1μ程度まで
薄くすることが可能となった。それ以上薄くするとピン
ホールが発生し、複合膜の選択性を低下させろことにな
るので好ましくない。
The thickness of the thin film obtained by reacting amino-modified siloxane and isocyanate-modified siloxane on a microporous support film is:
A thinner membrane is preferable because it can increase gas permeability, but a thinner membrane causes pinballing and reduces the selectivity of the composite membrane. In the present invention, it has become possible to reduce the thickness of the pinhole-free thin film to about 0.1 μm. If it is made thinner than that, pinholes will occur, which will reduce the selectivity of the composite membrane, which is not preferable.

次に、本発明の気体分離用選択通過性複合膜の製造方法
について説明する。
Next, a method for producing a selectively permeable composite membrane for gas separation according to the present invention will be explained.

(1)式で示されるアミノ変・[1シロギリ゛ン(a、
次の方法によって製造することができるが、本発明のア
ミノ変性シロ4:す′ンはこの方法により製造されたも
のに限定されないことは言うまでもない。
The amino modified compound represented by formula (1) [1 Shirogyrin (a,
Although it can be produced by the following method, it goes without saying that the amino-modified silica 4:stone of the present invention is not limited to that produced by this method.

例えば下記一般式 R1R3 R2(CHz) O il (CTo )  。For example, the following general formula R1R3 R2 (CHZ) O il (CTo).

D Nト12 (イロし、式中Rは、炭素数1〜4のアルキル基、R1
,R2,R3,l)、I)’は前記定義と同じ)で表わ
される化合物を水の存在下で加熱し、加水分解しながら
凡手合さUることによって得ることがでざる。
D Nt12 (in the formula, R is an alkyl group having 1 to 4 carbon atoms, R1
, R2, R3, l), I)' is the same as defined above) by heating in the presence of water and combining them while hydrolyzing.

(1)式で示されるイソシ)ノネー1〜変性シロキザン
は次の方法ににって製造することができる。
The isocyanone-modified siloxane represented by the formula (1) can be produced by the following method.

例えば下記一般式 %式%(1 (但し、式中Rは炭素数1〜4のアルキル基、R8は、
  (CH27N トI(CH2゛とy    N H
2。
For example, the following general formula % formula % (1 (However, in the formula, R is an alkyl group having 1 to 4 carbon atoms, R8 is
(CH27N to I (CH2゛ and y N H
2.

OfCH2ケーq  O!−I 、  (CH2→−−
ys+−1(Q、Q’tよ2〜10の整数)、ZはN+
−12塁、Ol−1基、SH基のいずれかで、R4,R
5,R6tは前記定義と同じ)で表わされる化合物を水
の存在下で加熱して共距合させて得た手合体に大過剰の
三官能イソシ)ノネートを反応させることにより得られ
る。
OfCH2keq O! -I, (CH2→--
ys+-1 (Q, Q't are integers from 2 to 10), Z is N+
-12 base, Ol-1 group, SH group, R4, R
5, R6t is the same as defined above) is heated in the presence of water to co-metalize, and a large excess of trifunctional isocyanonate is reacted with the resulting compound.

このようにして得られたアミノ変性シロキサンとイソシ
アネート変性シロキサンを溶媒に溶解し混合溶液を調製
する。この時使用する溶媒は、微多孔性支持体膜を侵さ
ない非良媒である必要があり、微多孔性支持体膜の素材
によって選定する必要がある。例えば、微多孔性支持体
膜としてポリエーテルスルホン非対称膜やポリスルホン
非対称膜を使用する場合は、溶媒としてシクロヘキサン
、イソペンタン、エチルエーテル、;−リフml n 
l−リフルオロエチン、シクロへキリ゛ン、0−ベキ1
ナンなどが好ましい。それぞれの変性シ[」キサンの深
度は、0.01vt%以上’l、Qwt%以下とするこ
とが好ましい。アミノ変性シロキリーンとイソシアネー
ト変性シロキサンの混合比は、25重足部ニア5重量部
から75手足部:25mm部とすることが膜形成性が良
くなるという点で好ましい。混合溶媒を調製する際は、
アミノ変性シロキリーンとイソシアネート変性シロキサ
ンを別々に溶媒に溶解させた俊、二つの溶液を混合させ
ることが好ましい。アミノ変性シロキサンとイソシアネ
ート変性シロキサンの濃厚溶液を接触させると反応性が
高いため瞬時にゲル化が起るので好ましくない。
The amino-modified siloxane and isocyanate-modified siloxane thus obtained are dissolved in a solvent to prepare a mixed solution. The solvent used at this time must be a non-poor medium that does not attack the microporous support membrane, and must be selected depending on the material of the microporous support membrane. For example, when using a polyethersulfone asymmetric membrane or a polysulfone asymmetric membrane as a microporous support membrane, cyclohexane, isopentane, ethyl ether, ;-rifml n as a solvent.
l-Lifluoroethyne, cyclohexyl, 0-power 1
Nan etc. are preferred. The depth of each modified silane is preferably 0.01 vt% or more and Qwt% or less. The mixing ratio of the amino-modified siloquiline and the isocyanate-modified siloxane is preferably from 5 parts by weight to 25 parts by weight to 25 parts by weight to 75 parts by weight, from the viewpoint of improving film forming properties. When preparing a mixed solvent,
It is preferable to dissolve the amino-modified siloxane and the isocyanate-modified siloxane separately in a solvent, or to mix the two solutions. When a concentrated solution of an amino-modified siloxane and an isocyanate-modified siloxane are brought into contact with each other, gelation occurs instantaneously due to the high reactivity, which is not preferable.

このようにして調装したアミノ変性シロキサンとイソシ
アネー1−変性シ[1キナンの)捏合溶液は、次に微多
孔性支持体股上に塗イ1されるが、この塗’15方法は
、通常のスリットグイ、リバース、グラビAアなどのロ
ールコータ−による塗布や、浸漬後ウィンクコーティン
グ法、スプレーコーディング法などによる塗イITが挙
げられる。この際、微多孔性支持膜の孔内にあらかじめ
混合溶液の非溶媒、例えば水やエヂレングリコールなど
を含浸させておくと、混合溶液を孔内に○浸することを
防止、ピンボールフリーの薄膜を形成さVることができ
るので好ましい。
The thus prepared mixed solution of amino-modified siloxane and isocyanate-1-modified siloxane is then coated on the crotch of the microporous support. Examples include coating using a roll coater such as a slit coater, reverse coater, and gravure coater, and coating using a wink coating method after dipping, a spray coating method, and the like. At this time, if the pores of the microporous support membrane are pre-impregnated with a non-solvent of the mixed solution, such as water or ethylene glycol, the mixed solution can be prevented from soaking into the pores, and pinball-free. This is preferable because a thin film can be formed.

この混合溶媒の塗布俊の乾燥は、微多孔性支持体膜の熱
変形を起さない温度でダるのが好ましく、通常50℃〜
200”Cである。また、塗イ「後、0゜5秒〜110
秒、好ましくは0.5秒〜5秒の聞に乾燥させると得ら
れた薄膜のピンホールが少なくなる。
The coating and drying of this mixed solvent is preferably carried out at a temperature that does not cause thermal deformation of the microporous support membrane, usually from 50°C to
200"C. Also, after coating, 0°5 seconds to 110"C.
Drying for 2 seconds, preferably 0.5 seconds to 5 seconds, reduces pinholes in the resulting thin film.

以上のにうにして、本発明の気体分離用選択透過性複合
膜を得ることができる。
In the manner described above, the permselective composite membrane for gas separation of the present invention can be obtained.

かくして得られた本発明の気体分離用選択透過性複合膜
は、空気から酸素富化空気を得る気体分離用や、その他
二酸化炭素、水素、−酸化炭素、ヘリウムなどの特定の
気体を分離する気体分離膜一般に用いることが可能であ
るが、特に酸素富化気体分離用に用いるのが好ましい。
The thus obtained permselective composite membrane for gas separation of the present invention can be used for gas separation to obtain oxygen-enriched air from air, and for separating other specific gases such as carbon dioxide, hydrogen, carbon oxide, and helium. Although it can be used for general separation membranes, it is particularly preferable to use it for separating oxygen-enriched gases.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

本発明の特性値の測定方法並びに効果の評価方法は次の
通りである。
The method of measuring the characteristic value and the method of evaluating the effect of the present invention are as follows.

(1)気体透過性 本発明の気体分離用選択透過性複合膜を隔てて、−次側
の圧力を2atm、二次側の圧力を1 atmにし、複
合膜を透過してまた気体(酸素または窒素)透過速度を
精密膜流量計5F−101(スタンダード・デクノロジ
ー社製)で測定し、この酸素透過速度を気体透過性の評
価する尺1哀とした。
(1) Gas permeability The permselective composite membrane for gas separation of the present invention is separated, the pressure on the downstream side is set to 2 atm, and the pressure on the downstream side is set to 1 atm, and gas (oxygen or The nitrogen) permeation rate was measured using a precision membrane flowmeter 5F-101 (manufactured by Standard Technology), and the oxygen permeation rate was used as a measure for evaluating gas permeability.

(2)気体分離性 上記で求めた酸素透過速度と窒素透過速度の比でおる分
離係数を気体分離性の評価覆る尺度としl、: 。
(2) Gas separability The separation coefficient, which is the ratio of the oxygen permeation rate to the nitrogen permeation rate determined above, is used as a measure for evaluating gas separability.

実施例l CHg       C市 CH2(CH2) 3 H (CH2) 2  H2 (−=0.026> n +rn n十m(数平均手合度)=1600 で表わされるアミノ変性シー]キリーンを1〜リク[1
0トリフルオロエタンに0,1wt%溶解し、C++ 
    (CH2) 3 」 H (CH2) 2 H C−〇 −[4 CH+ m′ n−+m−(数平均手合度>=12o。
Example 1 CHg C city CH2 (CH2) 3 H (CH2) 2 H2 (-=0.026> n +rn n0m (number average degree) = 1600] 1
0.1 wt% dissolved in trifluoroethane, C++
(CH2) 3'' H (CH2) 2 H C-〇-[4 CH+ m' n-+m- (number average precision>=12o.

で表わされるイソシアネート変性シロキザンをトリクロ
ロトリフルオロエタンに0.lt%溶解し、この二液を
1:1に混合して塗液を調製する。あらかじめ水を孔内
に含浸させておいたポリスルホン微多孔性支持体膜の表
面にこの塗液をwet厚25μで塗イIし、塗V5i受
2秒後に100’Cの熱風で乾燥する。さらにもう一度
、wet厚20μで塗液を塗イIし、同条件で乾燥する
。このJ:うにして得られた気体分離用選択透過性複合
膜の酸素透過速1哀は8 (m’/m2・hr−atm
 )で酸素/窒素分離性は2.1であった。
The isocyanate-modified siloxane represented by is added to trichlorotrifluoroethane at 0.0%. lt% and mix these two liquids at a ratio of 1:1 to prepare a coating liquid. This coating solution was applied to the surface of a polysulfone microporous support membrane whose pores had been previously impregnated with water to a wet thickness of 25 μm, and after 2 seconds of application, it was dried with hot air at 100°C. Furthermore, the coating liquid was applied once again to a wet thickness of 20μ and dried under the same conditions. The oxygen permeation rate of the permselective composite membrane for gas separation obtained by J: is 8 (m'/m2・hr-atm
), and the oxygen/nitrogen separation was 2.1.

実施例2〜4 表1に示した各種アミノ変性シロキナンとイソシアネー
ト変性シロキ1ナンを用いて、実施例1と同様の操作を
し−C気体分離用選択透過性複合膜を作った。その結果
を表1に示す。
Examples 2 to 4 Using various amino-modified silokinanes and isocyanate-modified silokinanes shown in Table 1, a permselective composite membrane for -C gas separation was prepared in the same manner as in Example 1. The results are shown in Table 1.

上記から明らかなように本発明の気体分離用選択透過性
複合膜は、高い気体透過性と選択性をともに兼ね備えて
いることがわかる。
As is clear from the above, the permselective composite membrane for gas separation of the present invention has both high gas permeability and selectivity.

[効果] 本発明は、側鎖の末端がアミン変性されたポリオルガノ
シ、ロキサンと側鎖の末端がイソシアネー1−変性され
たポリオルガノシI]キザンとを微多孔性支持体股上に
反応させ薄膜を形成Vしめて得られた気体分離用選択透
過性複合膜としたので、気体透過性と選択性がともに著
しく優れているという効果を得ることができた。
[Effect] The present invention is a method of forming a thin film by reacting polyorganosyl, loxane whose side chain terminals are amine-modified and polyorganosyl loxane whose side chain terminals are modified with isocyanate (I) on the crotch of a microporous support. Since the selective permselective composite membrane for gas separation obtained was obtained by tightening the membrane, it was possible to obtain the effect that both gas permeability and selectivity are extremely excellent.

Claims (1)

【特許請求の範囲】[Claims] 側鎖の末端がアミノ変性されたポリオルガノシロキサン
と側鎖の末端がイソシアネート変性されたポリオルガノ
シロキサンとを微多孔性支持体膜上で反応させ薄膜を形
成せしめて得られた気体分離用選択透過性複合膜。
Selective permsole for gas separation obtained by reacting a polyorganosiloxane with amino-modified side chain ends and a polyorganosiloxane with isocyanate-modified side chain ends on a microporous support membrane to form a thin film. Composite membrane.
JP6027286A 1986-03-18 1986-03-18 Permselective composite membrane for separating gas Pending JPS62216624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6027286A JPS62216624A (en) 1986-03-18 1986-03-18 Permselective composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027286A JPS62216624A (en) 1986-03-18 1986-03-18 Permselective composite membrane for separating gas

Publications (1)

Publication Number Publication Date
JPS62216624A true JPS62216624A (en) 1987-09-24

Family

ID=13137334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027286A Pending JPS62216624A (en) 1986-03-18 1986-03-18 Permselective composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS62216624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
WO2016136396A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
CN110099734A (en) * 2016-11-17 2019-08-06 环球油品有限责任公司 Multimembrane separation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209609A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS60190202A (en) * 1984-03-09 1985-09-27 Teijin Ltd Hollow composite membrane for gas separation and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209609A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS60190202A (en) * 1984-03-09 1985-09-27 Teijin Ltd Hollow composite membrane for gas separation and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
WO2016136396A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPWO2016136396A1 (en) * 2015-02-27 2017-08-10 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
US10507437B2 (en) 2015-02-27 2019-12-17 Fujifilm Corporation Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
CN110099734A (en) * 2016-11-17 2019-08-06 环球油品有限责任公司 Multimembrane separation method

Similar Documents

Publication Publication Date Title
EP0094050B1 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
EP0254556B1 (en) Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
US4644046A (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specific gas from a gas mixture
JPH057749A (en) Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes
JPS59209609A (en) Permselective membrane
JPS643134B2 (en)
JPS6274406A (en) Separating membrane
JPH0230292B2 (en)
JPS62216624A (en) Permselective composite membrane for separating gas
JPH0824830B2 (en) Separation membrane
JPS62216623A (en) Composite membrane for separating gas
JPS5959220A (en) Preparation of composite permeable membrane for separating gas
JPH0479689B2 (en)
JPH0224577B2 (en)
JP3501951B2 (en) Carbon dioxide separation membrane
JPH0419891B2 (en)
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPS6274405A (en) Separating membrane
JPS60257803A (en) Permselective composite membrane
JPS6230524A (en) Permselective membrane
EP0336999A2 (en) Reactive posttreatment for gas separation membranes
JPH01310715A (en) Gas permselective membrane
CA1312425C (en) Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
JPS59189904A (en) Gas separating permselective membrane and preparation thereof
JPS60190202A (en) Hollow composite membrane for gas separation and production thereof