JPS62216623A - Composite membrane for separating gas - Google Patents

Composite membrane for separating gas

Info

Publication number
JPS62216623A
JPS62216623A JP5926986A JP5926986A JPS62216623A JP S62216623 A JPS62216623 A JP S62216623A JP 5926986 A JP5926986 A JP 5926986A JP 5926986 A JP5926986 A JP 5926986A JP S62216623 A JPS62216623 A JP S62216623A
Authority
JP
Japan
Prior art keywords
crosslinking agent
membrane
silane
siloxane
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5926986A
Other languages
Japanese (ja)
Other versions
JPH0693990B2 (en
Inventor
Kunitaka Jiyou
邦恭 城
Tokuo Tazaki
田崎 徳雄
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5926986A priority Critical patent/JPH0693990B2/en
Publication of JPS62216623A publication Critical patent/JPS62216623A/en
Publication of JPH0693990B2 publication Critical patent/JPH0693990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite membrane for separating gas excellent in both gas permeability and selectivity by allowing organopolysiloxane having silanol group in a side chain to react with a silane or siloxane crosslinking agent on a supporting membrane. CONSTITUTION:The following polymer shown in a formula is used which has silanol group in an end group of one part of a side chain of polyorganosiloxane having a repeated unit bonded with siloxane in a principal chain. This polysiloxane is allowed to react with a silane crosslinking agent or a siloxane crosslinking agent on a fine porous supporting membrane. As the silane crosslinking agent, acetoxysilane, oxime silane and alkoxysilane, etc., are high in reactivity and therefore preferably used. The siloxane crosslinking agent is a hydrolyzed condensate of these silane crosslinking agents. Polysiloxane coated on the fine porous membrane is preferably regulated to 0.01-5wt%, and the crosslinking agent is regulated to 2-100 times equivalent of the number of silanol group.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、良好な気体透過性をもつ気体分離用複合膜に
関するものであり、更に詳しくは空気より酸素富化空気
を得るために有効な分i!llt膜に関するものである
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a composite membrane for gas separation having good gas permeability, and more specifically to a composite membrane that is effective for obtaining oxygen-enriched air from air. Minutei! This relates to the llt film.

[従来の技術] 現在、燃焼エネルギーを利用する装置、例えば家庭用暖
房器具、自動車のエンジン、ボイラー等においては、酸
素:ct度が約20%の空気によって運転されている。
[Prior Art] Currently, devices that utilize combustion energy, such as home heating appliances, automobile engines, boilers, etc., are operated using air with an oxygen content of about 20% ct.

今、これらの装置に、酸素濃度を高めた酸素富化空気を
使用した場合には、燃焼効率を高められるだけでなく燃
焼温度も大幅に上げることが可能となる。
Now, when oxygen-enriched air with increased oxygen concentration is used in these devices, it is possible to not only increase the combustion efficiency but also significantly raise the combustion temperature.

さて、このような酸素富化空気を得る方法として、気体
分離膜の前後に圧力差を設けその駆動力を利用して大気
中の酸素をyA縮する膜分離法が知られている。この膜
分離法では、得られる酸素富化空気のコストは、気体分
離膜の選択性および透過性によって決まり、従って高い
選択性と高い透過性を備えた気体力@膜の開発が要求さ
れている。
Now, as a method for obtaining such oxygen-enriched air, a membrane separation method is known in which a pressure difference is created before and after a gas separation membrane and the driving force is used to condense oxygen in the atmosphere. In this membrane separation method, the cost of the oxygen-enriched air obtained is determined by the selectivity and permeability of the gas separation membrane, and therefore the development of gas force@membranes with high selectivity and high permeability is required. .

かかる気体分離膜として、多孔質支持体上に四官能以上
のシラン架橋剤または四官能以上のシロキサン架橋剤で
架橋したポリオルガノシロキナンが極N膜を形成してな
る選択透過性複合膜(特開昭60−257803>が知
られている。
As such a gas separation membrane, a permselective composite membrane (specially permselective composite membrane) in which a polyorganosilokinane crosslinked with a tetrafunctional or higher functional silane crosslinking agent or a tetrafunctional or higher functional siloxane crosslinking agent forms a polar N membrane on a porous support. 60-257803> is known.

[発明が解決しようとする問題点] しかし、上記特開昭60−257803は、ス9膜層の
主成分であるシリコーン層の膜厚をa9クシていき、気
体透過性を高めていくと薄膜層にピンホールが生じ選択
性が低くなり、十分に高い気体透過性と選択性を兼ね備
えた気体分離用複合膜を得ることができなかった。
[Problems to be Solved by the Invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 60-257803 discloses that by increasing the thickness of the silicone layer, which is the main component of the S9 film layer, and increasing the gas permeability, the thin film becomes thinner. Pinholes were formed in the layer, resulting in low selectivity, making it impossible to obtain a composite membrane for gas separation that had both sufficiently high gas permeability and selectivity.

本発明は、かかる問題点を解決し、十分に高い気体透過
性と選択性を兼ね佑lえた気体分離用複合膜を提供する
ことを目的とする。
An object of the present invention is to solve these problems and provide a composite membrane for gas separation that has both sufficiently high gas permeability and selectivity.

E問題点を解決するための手段] 本弁明は、シラノール基を側鎖に有する櫛型オルガノポ
リシロキンとシラン架(n剤またはシロキ4)“ン架橋
剤を微多孔性支持体膜上で反応させ薄膜を形成ゼしめて
1qられた気体分向1用複合膜を18徴とするものであ
る。
[Means for Solving Problem E] This defense is based on a method in which a comb-shaped organopolysiloxane having a silanol group in its side chain and a silane crosslinking agent (N agent or siloxane 4) are bonded together on a microporous support membrane. The composite membrane for gas direction 1, which is reacted to form a thin film and 1q, has 18 characteristics.

本発明におけるシラノール基を側鎖の末端に有するオル
ガノポリシロキサンとは、シロキサン結合の繰り返し単
位を主鎖に有するポリオルガノシロキサンの側鎖の一部
の末端にシラノール基を有する重合体であり、例えば構
造式が下記式で表わされる重合体でおる。10し、下記
溝造式の重合体に限定されるものではない。
In the present invention, the organopolysiloxane having a silanol group at the end of a side chain is a polymer having a silanol group at the end of a part of the side chain of a polyorganosiloxane having a repeating unit of a siloxane bond in the main chain. It is a polymer whose structural formula is represented by the following formula. 10, but is not limited to the following Mizozo type polymer.

RI         R3 R2R4 (但し、式中R1,R2はメチル基、エチル基、プロピ
ル基又はフェニル’A、R3<はメチル基、エチル基、
プロピル駐、R4は炭素数2〜15までのアルキル基又
は 0!1 (Ql、 Q2. Q3は2〜10の整数)、P+P”
=3でPは1〜3の整数、 式中のR1,R2はメチル基、エチル基、プロピル基、
又はフェニル基であるが、その中でもメチル基が薄膜形
成性が最も優れているメチル基が好ましい。
RI R3 R2R4 (However, in the formula, R1 and R2 are methyl group, ethyl group, propyl group, or phenyl'A, R3< is methyl group, ethyl group,
Propyl, R4 is an alkyl group having 2 to 15 carbon atoms or 0!1 (Ql, Q2. Q3 is an integer of 2 to 10), P+P"
= 3, P is an integer of 1 to 3, R1 and R2 in the formula are a methyl group, an ethyl group, a propyl group,
or a phenyl group, among which a methyl group is preferred because it has the best ability to form a thin film.

式中のn、mは整数でn+mが50〜3000である。In the formula, n and m are integers, and n+m is 50 to 3000.

n+mが50に満たない場合は、微多孔性支持体股上の
反応によって形成される薄膜がピンボールが多くなるの
で好ましくない。n+mが3000を越える場合には、
該重合体の溶媒への溶解性が悪くなり、微多孔性支持体
膜上で薄膜とすることが難しいので好ましくない。
If n+m is less than 50, the thin film formed by the reaction on the microporous support will have many pinballs, which is not preferable. If n+m exceeds 3000,
This is not preferred because the solubility of the polymer in the solvent deteriorates and it is difficult to form a thin film on a microporous support membrane.

−ニーは0.001以上0.20以下である。- Knee is 0.001 or more and 0.20 or less.

nt… 0.001に満たない場合は、シラン架橋剤またはシロ
キサン架橋剤との反応性が低いため、微多孔性支持体股
上でピンホールフリーの薄膜を形成することが難しいの
で好ましくない。0.20を越える場合は、シラン架橋
剤またはシロキサン架橋剤との反応性が高く容易にゲル
化を引き起し、微多孔性支持体膜上で39膜を形成する
ことができないので好ましくない。
nt... If it is less than 0.001, the reactivity with the silane crosslinking agent or siloxane crosslinking agent is low, making it difficult to form a pinhole-free thin film on the microporous support, which is not preferred. If it exceeds 0.20, the reactivity with the silane crosslinking agent or siloxane crosslinking agent is high and gelation easily occurs, making it impossible to form a 39 membrane on the microporous support membrane, which is not preferable.

上記式で示されるシラノール基を有するオルガノポリシ
ロキサンは、側鎖の末端がメトキシ基である前駆体を水
と混和性のない有機溶媒に溶解し、その溶液を酸または
塩基を含有する水溶液と強く攪拌することによって引き
起される加水分解反応を用いて、メトキシ基をシラノー
ル基にすることによって得られる。この際、有機溶媒中
に溶解した前駆体の濃度が20wt%を越えると、加水
分解反応でシラノール基にかわった時に櫛型シラノール
基ポリオルガノシロキザンが分子内縮合または分子間縮
合により、ゲル化を引き起すので好ましくない。
An organopolysiloxane having a silanol group represented by the above formula is produced by dissolving a precursor whose side chain ends in a methoxy group in an organic solvent that is immiscible with water, and then mixing the solution with an aqueous solution containing an acid or base. It is obtained by converting a methoxy group into a silanol group using a hydrolysis reaction induced by stirring. At this time, if the concentration of the precursor dissolved in the organic solvent exceeds 20 wt%, the comb-shaped silanol group polyorganosiloxane will gel due to intramolecular condensation or intermolecular condensation when converted to silanol groups in the hydrolysis reaction. This is not desirable because it causes

シラン架橋剤は、シラノール基と反応性の高いアセトキ
シ系シラン、オキシム系シラン、アルコキシ系シラン、
アルケニルオキシ系シラン、アミド系シラン、アミノ系
シランなどがある。
Silane crosslinking agents include acetoxy silanes, oxime silanes, alkoxy silanes, which are highly reactive with silanol groups,
Examples include alkenyloxy silanes, amide silanes, and amino silanes.

シロキサン架橋剤は、上記シラン架橋剤の加水分解縮合
物である。
The siloxane crosslinking agent is a hydrolyzed condensate of the above-mentioned silane crosslinking agent.

シラン架橋剤とシロキサン架橋剤の官能基の数は、四官
能以上の方が反応性が高く微多孔性支持体膜上のWJW
形成性が良くなるので好ましい。そのような四官能以上
のシラン架橋剤またはシロキサン架橋剤の具体例として
、テトラアゼトキシシラン、テトラジメヂルΔキシムシ
ラン、エチルオルソシリケ−1〜、プロピルオルソシリ
ケート、テ1〜ラキスイソプ口ペニキシシラン、エチル
ポリシリケート、ペンタジメチルオキシムシロキサン、
ヘギサジメヂルオキシムシロキサン、ヘキサアセ1−キ
シシロキサンなどがある。
Regarding the number of functional groups in the silane crosslinking agent and the siloxane crosslinking agent, the more reactive the functional group is, the more reactive the WJW on the microporous support membrane.
This is preferable because it improves formability. Specific examples of such tetrafunctional or higher functional silane crosslinking agents or siloxane crosslinking agents include tetraazetoxysilane, tetradimedyyl Δxime silane, ethyl orthosilicate-1~, propyl orthosilicate, TE1~rakisisopenyl silane, and ethyl polysilicate. , pentadimethyloxime siloxane,
Examples include hexaacedimedyloxime siloxane and hexaace1-xysiloxane.

本発明における微多孔性支持体膜とは、それ自身では気
体の透過抵抗にはならず、反応によってjqられだ薄膜
を支持する機能をはだすもので、表面の孔の大ぎさが約
10人〜5000人、好ましくは約10人〜1000人
である。また、気体の透過抵抗にはなりにくいように非
対称@造をもつことが好ましい。気体透過性としては、
窒素透過速度で10 (m’/7112− hr−at
m )以上のもツカ好ましい。かかる微多孔性支持体膜
としては、ガラス質多孔材、焼結金属、セラミックス、
セルロースエステル非対称膜、ポリエーテルスルボン非
対称膜、ポリスルホン非対称膜、ポリイミド非対称膜な
どが挙げられる。この中でも、気体透過性が十分である
ことと、孔径が適当である点でポリスル11〜ン非対称
膜が好ましい。
The microporous support membrane used in the present invention does not provide gas permeation resistance by itself, but functions to support a thin film formed by a reaction, and the size of the pores on the surface is approximately 10 mm. -5000 people, preferably about 10-1000 people. In addition, it is preferable to have an asymmetric structure so that gas permeation resistance is less likely to occur. As for gas permeability,
Nitrogen permeation rate is 10 (m'/7112-hr-at
m) or above are also preferred. Such microporous support membranes include glassy porous materials, sintered metals, ceramics,
Examples include cellulose ester asymmetric membranes, polyethersulfone asymmetric membranes, polysulfone asymmetric membranes, and polyimide asymmetric membranes. Among these, polysulfate asymmetric membranes are preferred because they have sufficient gas permeability and appropriate pore sizes.

シラノール基を側鎖の末端に有するオルガノポリシロキ
サンとシラン架橋剤またはシロキサン架橋剤を微多孔性
支持体膜上で反応さけて得られる薄膜の膜厚は、より薄
い方が気体透過性を高くすることができるため好ましい
が、必まり幼くするとピンホールを生じることになり複
合膜の選択性を下げる結果になる。本発明においては、
ピンホールフリーの薄膜の膜厚を0.1μ程度までHD
くすることが可能となった。それ以上薄くするとビンボ
ールが発生し、複合膜の選択性を低下させることになる
ので好ましくない。
The thinner the thin film obtained by reacting an organopolysiloxane having a silanol group at the end of its side chain with a silane crosslinking agent or a siloxane crosslinking agent on a microporous support membrane, the higher the gas permeability. However, if it is too young, pinholes will occur, which will reduce the selectivity of the composite membrane. In the present invention,
HD pinhole-free thin film thickness down to around 0.1μ
It is now possible to reduce If it is made thinner than that, bottle balls will occur and the selectivity of the composite membrane will decrease, which is not preferable.

次に、本発明の気体分離用複合膜の製造方法について説
明する。
Next, a method for manufacturing the composite membrane for gas separation of the present invention will be explained.

シラノール基を側鎖の末端に有するオルガノポリシロキ
サンとシラン架(C^11またはシロキサン架橋剤を溶
媒に溶解し溶液を調製する。該オルガノポリシロキサン
の濃度は、0.01wt%以上5゜Owt%以下が好ま
しい。濃度がo、o’+wt%に満たない場合、ピンホ
ールレスの薄膜を形成する事が困難になり、5.Qwt
%を越える場合は、1゜0μ未満の薄膜を1昇ることが
難しく好ましくない。
A solution is prepared by dissolving an organopolysiloxane having a silanol group at the end of a side chain and a silane crosslinking agent (C^11 or a siloxane crosslinking agent) in a solvent.The concentration of the organopolysiloxane is 0.01wt% or more and 5°Owt%. The following is preferable.If the concentration is less than o, o'+wt%, it will be difficult to form a pinhole-free thin film, and 5.Qwt
%, it is difficult to increase the thickness of a thin film of less than 1°0 μm, which is not preferable.

シランおよびシロキサン架橋剤の添加但は、ポリオルガ
ノシロキサンの末端シラノール基数の2倍当最以上10
0倍当m以下が好ましく、それ以外の添加■では、ゲル
化が進lυだり、架橋速度が遅くなるため好ましくない
。触tsは、架橋速度を速くするため添加するが、ジブ
デル錫ジアセテ−1−、ジブデル錫ジオク1〜エート、
スタナスオクトエートなどがある。溶媒は、微多孔性支
持体膜を侵さない非溶媒である必要があり、微多孔性支
持体膜の素材によって選定する必要がある。例えば、微
多孔性支持体膜としてポリエーテルスルホン非対称膜や
ポリスルホン非対称膜を使用する場合は、溶媒としてシ
クロヘキザン、イソペンタン、エチルエーテル、1−ジ
クロロ1ヘリフルオロエタン、シフ[1ヘキセン、n−
ヘキセンなどが好ましい。
Addition of silane and siloxane crosslinking agent should be at least 10 times the number of terminal silanol groups of the polyorganosiloxane.
It is preferable that the amount is 0 times m or less, and addition (2) other than that is not preferable because gelation progresses or the crosslinking rate becomes slow. The ts is added to speed up the crosslinking speed, but dibdeltin diacetate-1-, dibdeltin dioc-1-ate,
Examples include stannous octoate. The solvent must be a non-solvent that does not attack the microporous support membrane, and must be selected depending on the material of the microporous support membrane. For example, when using a polyethersulfone asymmetric membrane or a polysulfone asymmetric membrane as the microporous support membrane, the solvents may be cyclohexane, isopentane, ethyl ether, 1-dichloro-1helifluoroethane, Schiff[1-hexene, n-
Hexene and the like are preferred.

この−二うにして調製した溶媒は、次に、微多孔性支持
体股上に塗イ5されるが、この塗布方法は、通常のスリ
ブ1−グイ、リバース、グラビヤなどのロールコータ−
による塗布や、浸漬法、ウィックコーティング法、スプ
レーコーティング法などによる塗布が挙げられる。この
際、微多孔性支持体膜の孔内にあらかじめ該溶液の非溶
媒、たとえば水やエヂレングリコールなどを含浸させて
おくと、溶液が孔内に含浸することを防止でき、ピンホ
ールフリーの薄膜を形成させれるので好ましい。
The solvent prepared in this way is then coated on the top of the microporous support, and this coating method can be applied using a roll coater such as a conventional sleeve coater, reverse coater, or gravure coater.
Application methods include coating by dipping, wick coating, spray coating, and the like. At this time, by pre-impregnating the pores of the microporous support membrane with a non-solvent of the solution, such as water or ethylene glycol, it is possible to prevent the solution from impregnating into the pores and to ensure pinhole-free production. This is preferable because a thin film can be formed.

この溶媒の塗布後の乾燥は、微多孔性支持体膜の熱変形
を起さない温度でするのが好ましい。通常は50℃〜2
00℃である。また、塗イUJ1麦0゜5秒〜10秒、
好ましくは0.5秒〜5秒の間に乾燥させると1qられ
た薄膜のピンホールが少なくなる。
It is preferable that the solvent is dried after application at a temperature that does not cause thermal deformation of the microporous support membrane. Usually 50℃~2
It is 00℃. Also, apply UJ1 barley for 0.5 seconds to 10 seconds.
Preferably, drying for 0.5 seconds to 5 seconds reduces pinholes in the 1q thin film.

以上のようにして本発明の気体分離用複合膜を1qるこ
とか出来る。
In the manner described above, 1 q of composite membranes for gas separation of the present invention can be produced.

かくして得られた本発明の気体分離用複合膜は、空気か
ら酸素富化空気を得る気体分離用や、その他二酸化炭素
、水素、−酸化炭素、ヘリウムなどの特定気体を分離す
る気体分子fi膜一般に用いることが可能でおるが、特
に酸素富化気体分離用に用いるのが好ましい。
The thus obtained composite membrane for gas separation of the present invention is generally used for gas separation to obtain oxygen-enriched air from air, and for separating specific gases such as carbon dioxide, hydrogen, carbon oxide, and helium. However, it is particularly preferable to use it for the separation of oxygen-enriched gases.

[実施例] 本発明の特性値の測定方法並びに効果の評価方法は次の
通りである。
[Example] The method of measuring the characteristic value and the method of evaluating the effect of the present invention are as follows.

(1)  気体透過性 本発明の気体分離用選択透過性複合膜を隔てて、−次側
の圧力を2atm、二次側の圧力を1 atmにし、複
合膜を透過してきた気体(酸素または窒素)透過速度を
精密牧流量計5F−101(スタンダード・テクノロジ
ー礼装)で測定し、この酸素透過速度を気体透過性の評
価する尺度とした。
(1) Gas permeability The selectively permeable composite membrane for gas separation of the present invention is separated, and the pressure on the downstream side is set to 2 atm and the pressure on the downstream side is set to 1 atm. ) The permeation rate was measured with a precision Maki flowmeter 5F-101 (Standard Technology Formal Attire), and this oxygen permeation rate was used as a scale for evaluating gas permeability.

(2)  気体分離性 上記で求めた酸素透過速度と窒素透過速度の比である分
離係数を気体分離性の評価する尺度としlこ。
(2) Gas separability The separation coefficient, which is the ratio of the oxygen permeation rate and nitrogen permeation rate determined above, is used as a measure for evaluating gas separability.

本発明を実施例に基づいて説明する。The present invention will be explained based on examples.

実施例1 aHツ       CH+ シ。Example 1 aHtsu CH+ Sh.

(CH2) 2 OH2 Cl−1−OH OH2 (CH2) 3 S i (OCH3) 3 で表わされるメトキシ変性シロキサンを1〜リクロロフ
ルオロエタンに溶解し、1wt%に調製スる。
A methoxy-modified siloxane represented by (CH2) 2 OH2 Cl-1-OH OH2 (CH2) 3 Si (OCH3) 3 is dissolved in 1 to 1-lichlorofluoroethane and adjusted to 1 wt%.

これを10wt%塩酸水溶液で加水分解し、メトキシを
シラノールに変えたシラノール変性シロキサン溶液を1
5′Iる。この溶液をトリクロロトリフルオロエタンで
ざらに希釈し0.1wt%溶液とする。
This was hydrolyzed with a 10 wt% aqueous hydrochloric acid solution to obtain a silanol-modified siloxane solution in which methoxy was changed to silanol.
5'Iru. This solution is roughly diluted with trichlorotrifluoroethane to give a 0.1 wt% solution.

この溶液にテ1〜ラオキシムシランをQ、1wt%、ス
タナス2−エチルヘキソエ−1・を0.01w1%を加
えてよく潰伴する。あらかじめ水を孔内に含浸させてJ
3いたポリスルホン微多孔性支持体膜の表面にこの溶液
をwet厚25μで塗イ[シ、塗イ[後2秒後に100
°Cの熱風で乾燥する。ざらにもう一度、wet厚20
μで溶液を塗布し、同条件で乾燥する。このようにして
得られた気体分離用複合膜の酸素透過速度は9 (m’
/1712− br −atm )で酸素/窒索分離性
は2.1であった。
To this solution were added 1 wt % of Te1-roxime silane Q and 0.01 w 1 % of Stanus 2-ethylhexoe-1, and the mixture was thoroughly crushed. Pre-impregnate the hole with water.
This solution was applied to the surface of the polysulfone microporous support membrane with a wet thickness of 25 μm.
Dry with hot air at °C. Once again, wet thickness 20
Apply the solution with μ and dry under the same conditions. The oxygen permeation rate of the composite membrane for gas separation thus obtained was 9 (m'
/1712-br-atm), and the oxygen/nitrogen separation property was 2.1.

実施例2〜4 表1に示した前駆体で必るメトキシ変性シロキサンを実
施例1と同様の操作をして加水分解し、その前駆体に相
当するシラノール変性シロキザンを得た。この溶液に表
1に示したシラン架橋剤またはシロキサン架橋剤を用い
て、実施例1と同様の操作をして気体分離用複合膜を作
った。
Examples 2 to 4 Methoxy-modified siloxanes, which are necessary precursors shown in Table 1, were hydrolyzed in the same manner as in Example 1 to obtain silanol-modified siloxanes corresponding to the precursors. Using the silane crosslinking agent or siloxane crosslinking agent shown in Table 1 in this solution, a composite membrane for gas separation was prepared in the same manner as in Example 1.

その結果を表1に示す。The results are shown in Table 1.

表1(1) 中2 酸素/窒素分離係数 表1(2) 上記から明らかなように、本発明の気体分離用複合膜は
、高い気体透過性と選択性をともに兼ね備えていること
がわかる。
Table 1 (1) Middle 2 Oxygen/Nitrogen Separation Factor Table 1 (2) As is clear from the above, the composite membrane for gas separation of the present invention has both high gas permeability and selectivity.

[発明の効果] 本発明は、シラノール基を側鎖の末端に有するオルガノ
ポリシロキサンとシラン架橋剤またはシロキサン架橋剤
を微多孔性支持体股上で反応させ薄膜を形成せしめて得
られた気体分離用複合膜としたので、気体透過性と選択
性がともに優れているという効果を)qることかできた
[Effects of the Invention] The present invention provides a gas separation material obtained by reacting an organopolysiloxane having a silanol group at the end of a side chain with a silane crosslinking agent or a siloxane crosslinking agent on the crotch of a microporous support to form a thin film. Since it was a composite membrane, it was possible to achieve the effect of having excellent gas permeability and selectivity.

Claims (1)

【特許請求の範囲】[Claims] (1)シラノール基を側鎖の末端に有するオルガノポリ
シロキサンとシラン架橋剤またはシロキサン架橋剤を微
多孔性支持体膜上で反応させ薄膜を形成せしめて得られ
た気体分離用複合膜。
(1) A composite membrane for gas separation obtained by reacting an organopolysiloxane having a silanol group at the end of a side chain with a silane crosslinking agent or a siloxane crosslinking agent on a microporous support membrane to form a thin film.
JP5926986A 1986-03-19 1986-03-19 Composite membrane for gas separation Expired - Lifetime JPH0693990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5926986A JPH0693990B2 (en) 1986-03-19 1986-03-19 Composite membrane for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5926986A JPH0693990B2 (en) 1986-03-19 1986-03-19 Composite membrane for gas separation

Publications (2)

Publication Number Publication Date
JPS62216623A true JPS62216623A (en) 1987-09-24
JPH0693990B2 JPH0693990B2 (en) 1994-11-24

Family

ID=13108481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5926986A Expired - Lifetime JPH0693990B2 (en) 1986-03-19 1986-03-19 Composite membrane for gas separation

Country Status (1)

Country Link
JP (1) JPH0693990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
JPH04305232A (en) * 1991-04-01 1992-10-28 Kubota Corp Filter membrane
JP2019209274A (en) * 2018-06-06 2019-12-12 東芝ライフスタイル株式会社 Method for producing oxygen enrichment membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144105B1 (en) * 2009-06-16 2012-05-24 (주)에어레인 Hollow fiber membrane for volatile organic compounds separation and recovery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
JPH04305232A (en) * 1991-04-01 1992-10-28 Kubota Corp Filter membrane
JP2019209274A (en) * 2018-06-06 2019-12-12 東芝ライフスタイル株式会社 Method for producing oxygen enrichment membrane

Also Published As

Publication number Publication date
JPH0693990B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP5160246B2 (en) Composite membrane for carbon dioxide separation
Smaihi et al. Gas separation properties of hybrid imide–siloxane copolymers with various silica contents
EP0094050B1 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
CN102596378B (en) Gas separation membrane
US4863496A (en) Reactive posttreatment for gas separation membranes
JPH07304887A (en) Composite membrane and its preparation
TW201803935A (en) Polyimide mixture and gas separation membrane
JPS643134B2 (en)
JPS62216623A (en) Composite membrane for separating gas
JPS6274406A (en) Separating membrane
JP2009091545A (en) Application liquid for forming silica-based coating film, preparation method for application liquid, and silica-based insulation film obtained from application liquid
JP4599557B2 (en) Gas separation membrane and method for producing the same
Smaihi et al. Structural study of poly (phenylsilsesquioxane) sol-gel materials
JP2756366B2 (en) Method for producing hydrophobic airgel
TWI793102B (en) Water-repellent particle, method for producing same, water-repellent layer, and percolation preventing structure
JPS62216624A (en) Permselective composite membrane for separating gas
JP3501951B2 (en) Carbon dioxide separation membrane
TW202140629A (en) Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
JPS61101226A (en) Separation membrane
TWI782623B (en) Silicone film
TWI263619B (en) Silica aerogels with high-temperature hydrophobation synthesized by using co-precursor solutions
JPH0479689B2 (en)
JPH11255570A (en) Porous ceramic composite member and its production
JP6029332B2 (en) Gas separation membrane
JPS63278977A (en) Composition for forming thick-film insulator