JPH01310715A - Gas permselective membrane - Google Patents

Gas permselective membrane

Info

Publication number
JPH01310715A
JPH01310715A JP63140035A JP14003588A JPH01310715A JP H01310715 A JPH01310715 A JP H01310715A JP 63140035 A JP63140035 A JP 63140035A JP 14003588 A JP14003588 A JP 14003588A JP H01310715 A JPH01310715 A JP H01310715A
Authority
JP
Japan
Prior art keywords
gas
membrane
selectivity
polyetherimide
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140035A
Other languages
Japanese (ja)
Inventor
Yoshio Murashige
村重 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63140035A priority Critical patent/JPH01310715A/en
Publication of JPH01310715A publication Critical patent/JPH01310715A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Abstract

PURPOSE:To obtain a membrane with high heat resistance, solvent resistance and strength as well as high selectivity and permeation by using a reaction product of a specific aromatic polyester imide with polydimethylsiloxane modified with amino-group on one end terminal as a gas permselective membrane material. CONSTITUTION:A reaction product of a specific aromatic polyester imide having a repeated monomer unit expressed as a formula (I) with polydimethylsiloxane modified with amino-group on one end terminal having a repeated monomer unit expressed as formula (II) is used as a gas selective permeation membrane material, where (n)=1-7, (m)>=5, R stands for alkyl with number of carbon 2-6, and R' stands for alkylene with number of carbon 2-6. A membrane prepared from the composite polymer has excellent gas selectivity and permeability as well as high heat resistance, solvent resistance and strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は選択透過性膜に関し、更に詳しくはポリエーテ
ルイミドと片末端アミノ基変性ポリジメチルシロキサン
との反応物から成るガス選択透過性膜に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a permselective membrane, and more particularly to a gas selective permselective membrane comprising a reaction product of polyetherimide and polydimethylsiloxane modified with an amino group at one end. .

〔従来の技術〕[Conventional technology]

近年ガス混合物の分離・精製をガス選択透過性膜で行う
ことが積極的に検討されてbる。たとえば空気から酸素
を選択的に透過させて酸素富化空気を得て医療あるいは
燃焼システムに利用する試みがなされている。又、石炭
、天然ガス、オイルサンド等を水蒸気改質や熱分解処理
等することによって得られる水素、−酸化炭素、メタン
等を含む合成ガスから水素を選択的に透過、分離、精製
し、これらのガスを出発原料としてメタノール等の基礎
化学品を製造する試み等もなされている。
In recent years, active consideration has been given to separating and purifying gas mixtures using gas selectively permeable membranes. For example, attempts have been made to selectively permeate oxygen from air to obtain oxygen-enriched air for use in medical treatment or combustion systems. In addition, we selectively permeate, separate, and refine hydrogen from hydrogen obtained by steam reforming, thermal decomposition, etc. of coal, natural gas, oil sands, etc., and from synthetic gas containing carbon oxide, methane, etc. Attempts have also been made to produce basic chemicals such as methanol using this gas as a starting material.

これらの用途に用いられるガス選択透過性膜にはガス選
択性とガス透過性がいずれも大きいこと、耐熱性、耐薬
品性、高強度を有していること等の特性が要求されてい
る。
Gas selectively permeable membranes used in these applications are required to have characteristics such as high gas selectivity and gas permeability, heat resistance, chemical resistance, and high strength.

ガス選択性とは特定ガスと他のガスとの透過速度の比で
表わされる値であり、ガス選択性が大きいことはガス分
離能がすぐれていることを意味する。又、ガス透過性が
太きbとは、膜を透過するガスの絶対量が多いことであ
り大量のガスを処理しうることを意味する。
Gas selectivity is a value expressed by the ratio of permeation rates between a specific gas and other gases, and a high gas selectivity means an excellent gas separation ability. Further, the gas permeability "b" means that the absolute amount of gas that permeates through the membrane is large, meaning that a large amount of gas can be processed.

たとえば空気中の酸素透過選択性が優れた膜としてポリ
エーテルイミドからなるもの(USF4.156,59
7)が知られており、又、ガス透過速度の大きい膜とし
てポリジメチルシロキサン等のシリコン系ポリマーから
なるものが知られている。
For example, membranes made of polyetherimide (USF4.156,59
7) is known, and a membrane made of a silicone polymer such as polydimethylsiloxane is known as a membrane having a high gas permeation rate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの高分子重合体または共重合体の単一素
材で前記の要求特性の全てを満たすことはできなり0即
ちガス選択性の大きい高分子素材は透過性が低い点、又
ガス透過性のすぐれた高分子素材はガス選択性が不充分
な点が問題である。
However, it is not possible to satisfy all of the above required properties with a single material of these polymers or copolymers; in other words, polymer materials with high gas selectivity have low permeability, and The problem with polymeric materials having excellent gas selectivity is that they have insufficient gas selectivity.

たとえば、U S F 4.156.597に記載され
ているポリエーテルイミドからなる気体分離膜のガス選
択性は大きく、酸素の窒素に対する選択性は7〜8倍程
度であるが、その透過係数(単位厚さにおける透過速度
)は極めて小さbためこの膜素材単独をガス選択透過性
膜として使用可能な範囲は著しく限定される。
For example, the gas separation membrane made of polyetherimide described in US F 4.156.597 has a high gas selectivity, and the selectivity of oxygen to nitrogen is about 7 to 8 times, but its permeability coefficient ( Since the permeation rate (permeation rate per unit thickness) is extremely small, the range in which this membrane material alone can be used as a gas selectively permeable membrane is extremely limited.

又、ポリジメチルシロキサンはそのシロキサン結合から
高分子素材中最も高いガス透過性を与えるものであるが
、ガス選択性が小さくて機械的特性が弱く、更に他の高
分子との相溶性が低いとbう欠点を有して因る。
In addition, polydimethylsiloxane has the highest gas permeability among polymer materials due to its siloxane bonds, but it has low gas selectivity, weak mechanical properties, and low compatibility with other polymers. It has some drawbacks.

本発明者は、これらの問題点を解決すべくガス選択性の
大きめ高分子素材とガス透過性の大きい高分子素材の2
成分系の素材について検討し、その結果ガス選択性とガ
ス透過性が−ずれも大きく、かつ耐熱性、耐薬品性、強
度特性に優れた2成分系ガス透過性膜を見い出し本発明
を完成させた。
In order to solve these problems, the present inventor developed two polymer materials: one with high gas selectivity and one with high gas permeability.
After studying component-based materials, we discovered a two-component gas permeable membrane with a large difference in gas selectivity and gas permeability, as well as excellent heat resistance, chemical resistance, and strength properties, and completed the present invention. Ta.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の要旨は、下記の一般式 %式% 〔但し、nは1〜7の整数を示す〕 で示される繰り返し単位を有するポリエーテルイミド及
び下記の一般式 で示される繰り返し単位を有する片末端アミノ基変性ポ
リジメチルシロキサンとの反応生成物からなるガス選択
透過性膜にある。
The gist of the present invention is a polyetherimide having a repeating unit represented by the following general formula % [where n is an integer of 1 to 7] and one end having a repeating unit represented by the following general formula. It is a gas selectively permeable membrane made of a reaction product with amino group-modified polydimethylsiloxane.

前記一般式で示されるポリエーテルイミドはフェノオキ
シフエニルジカルボン酸無水物とフェニレンジアミンと
の縮重合によって得られる重合体であり、0nHfX基
は直鎖構造あるいは分岐構造をとることができる。
The polyetherimide represented by the above general formula is a polymer obtained by condensation polymerization of phenoxyphenyldicarboxylic anhydride and phenylenediamine, and the OnHfX group can have a linear structure or a branched structure.

該重合体の代表例として、2.2−ビス〔4−(五4−
ジカルボキシフェノオキシ)フェニル〕7’ o y<
ン無水物トメタフエニレンジアミンとの縮重合反応によ
って得られる。
As a representative example of the polymer, 2,2-bis[4-(54-
dicarboxyphenoxy)phenyl]7' o y<
It is obtained by a polycondensation reaction with anhydrous tometaphenylene diamine.

○ を挙げることができる。○ can be mentioned.

これらのポリエーテルイミドにおいては芳香族イミド構
造が剛性を与え、又、エーテル結合が流動性と加工性を
与え、全体として優れた耐熱性、耐薬品性、機械的特性
を有して因る。
In these polyetherimides, the aromatic imide structure provides rigidity, the ether bond provides fluidity and processability, and overall they have excellent heat resistance, chemical resistance, and mechanical properties.

本発明におりで用いられるポリエーテルイミドは前記構
造を有するものであればよ因が、GPC法における数平
均分子量が5000〜100000の範囲内のものであ
ることが好ましい。
The polyetherimide used in the cage of the present invention may have the above structure, but preferably has a number average molecular weight in the range of 5,000 to 100,000 as measured by GPC.

本発明で用−られるシリコン変性ポリエーテルイミドは
ポリエーテルイミドを不活性溶剤に溶解し、次いで片末
端アミノ基変性ポリジメチルシロキサン(以下「変性シ
リコン」という)を添加、混合し、加熱により両ポリマ
ーを反応させることだよって得ることができる。反応生
成物の構造は特に限定されないが、成膜性の点からポリ
エーテルイミドを主鎖とし変性シリコンを櫛の刃状に結
合した構造のものであることが好1しす。反応時におけ
る混合溶液の温度はおよそ60℃〜300℃程度であれ
ばよく、使用する不活性浴剤の種類によって適宜選択さ
れる。
The silicone-modified polyetherimide used in the present invention is produced by dissolving polyetherimide in an inert solvent, then adding polydimethylsiloxane modified with an amino group at one end (hereinafter referred to as "modified silicone"), mixing, and heating to form a polymer. You can get it by reacting. The structure of the reaction product is not particularly limited, but from the viewpoint of film-forming properties, it is preferable to have a structure in which polyetherimide is the main chain and modified silicon is bonded in a comb-like shape. The temperature of the mixed solution during the reaction may be approximately 60°C to 300°C, and is appropriately selected depending on the type of inert bath agent used.

反応生成物中の両成分の存在割合は特に限定されないが
、一方の成分が15〜85重量%の範囲であることが好
ましい。これは一方の成分の比率が15重量%より少な
いとその成分の有用な特性が発現し難いからである。た
とえばポリエーテルイミドの存在割合が15重量%未満
であれば大き−ガス選択性とすぐれた機械的特性が充分
に発現せず、又、変性シリコンの存在割合が15チ未満
であれば高bガス透過性が充分に発現しなりのである。
Although the proportion of both components in the reaction product is not particularly limited, it is preferable that one component is in the range of 15 to 85% by weight. This is because if the ratio of one component is less than 15% by weight, it is difficult for that component to exhibit its useful properties. For example, if the proportion of polyetherimide is less than 15% by weight, high gas selectivity and excellent mechanical properties will not be fully expressed, and if the proportion of modified silicon is less than 15% by weight, high b gas The permeability is sufficiently developed.

両成分の割合は6゜〜70重量%の範囲であることがよ
り好ましす。
More preferably, the proportion of both components is in the range of 6° to 70% by weight.

次に製膜法につ込て説明する。Next, the film forming method will be explained in detail.

によって本発明のすぐれたガス選択透過性膜を得ること
ができる。
The excellent gas selective permeability membrane of the present invention can be obtained by this method.

通常製膜はポリマー溶液を塗布、流延等することによっ
て行なわれる。又、浸漬、流延等によって適当な多孔質
支持体上に製膜してもよい。
Film formation is usually carried out by applying, casting, etc. a polymer solution. Alternatively, a film may be formed on a suitable porous support by dipping, casting, or the like.

余 チューブあるいは中空来状等の多孔質支持体を用いる場
合はこれらの支持体をポリマー溶液中に浸漬し、引き上
げ、吹込で溶剤を蒸発させて膜を支持体上に形成させる
。フィルム状多孔質支持体を用いる場合には、その上に
溶液を薄く塗布し、次いで溶剤を蒸発除去する方法であ
ってもよく、ある込は別の平滑な固体表面、もしくは液
体表面上で製膜したものを多孔質支持体に貼り合わせる
方法であってもよい。液体表面上で製膜する方法は溶液
が極めて薄く展延し薄膜状物を得ることができるので好
ましい方法のひとつである。
When using a porous support such as a tube or hollow fiber, the support is immersed in a polymer solution, pulled up, and blown to evaporate the solvent to form a membrane on the support. When using a film-like porous support, a method may be used in which a solution is thinly applied onto it and then the solvent is evaporated off. A method may also be used in which a membrane is bonded to a porous support. The method of forming a film on the liquid surface is one of the preferred methods because the solution can be spread extremely thinly and a thin film can be obtained.

本発明においては他の共重合成分として用いられる変性
シリコンは反応生成物に高いガス透過性を与えるもので
ある。分子構造が前記のものであればよく、分子量等は
特に限定され表いが、c)PC法による数平均分子量が
5[10〜55000の範囲内のものが好ましく用いら
れる。その例として、たとえば信越化学■製のシリコー
ンモノアミンX−22−1717!j−ズを挙げること
ができる。
In the present invention, modified silicon used as another copolymerization component imparts high gas permeability to the reaction product. It is sufficient if the molecular structure is as described above, and the molecular weight etc. are not particularly limited, but those having a number average molecular weight of 5[10 to 55,000 as measured by c) PC method are preferably used. As an example, silicone monoamine X-22-1717 manufactured by Shin-Etsu Chemical ■! One example is J-Z.

尚、他のシリコン系ポリマー、たとえばポリジメチルシ
ロキサン等の通常のシリコン系ポリマーを周込ることに
よって得られるポリエーテルイミドとの反応生成物の場
合は、成膜性と耐熱性とのバランスがと妙にぐい点や分
離膜のガス選択性が劣る点が問題となる。
In addition, in the case of a reaction product with polyetherimide obtained by surrounding other silicon-based polymers, such as ordinary silicon-based polymers such as polydimethylsiloxane, a good balance between film formability and heat resistance is obtained. The problem is that it is strangely stiff and the gas selectivity of the separation membrane is poor.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1 ・ ポリエーテルイミド85?(ゼネラルエレクトリック社
製、ウルテム1ooo)を5ootntの攪拌装置付三
つロフラスコに秤りとり、コレにクロロホルム400ゴ
を加え、攪拌しポリマーを溶解した。次いで100−の
ビーカー中にクロロホルム50m/とシリコーンモノア
ミン159 (4WM化学m製、X−22−171AE
+)を添加し、50℃にて12時間攪拌した。反応後ポ
リマー溶液をメタノ−A/21を入れだビーカーに滴下
し、反応生成物(複合ポ2ツマ−)を回収した。
Example 1 - Polyetherimide 85? (General Electric Co., Ltd., Ultem 1ooo) was weighed into a 5-foot three-necked flask equipped with a stirrer, and 400 grams of chloroform was added thereto and stirred to dissolve the polymer. Then, in a 100-ml beaker, 50ml of chloroform and silicone monoamine 159 (manufactured by 4WM Chemical Company, X-22-171AE) were added.
+) and stirred at 50°C for 12 hours. After the reaction, the polymer solution was dropped into a beaker containing Methanol A/21, and the reaction product (composite polymer) was collected.

同様にして、ポリエーテルイミドとシリコーンモノアミ
ンとの添加割合を種々変えて複合ポリマーを得た。
Similarly, composite polymers were obtained by varying the addition ratios of polyetherimide and silicone monoamine.

比較のため未変性のポリジメチルシロキサンの系につい
ても同様にして複合ポリマーを製造し、これらの複合ポ
リマーの耐熱性、機械的特性を測定し、第1表に示した
For comparison, composite polymers of unmodified polydimethylsiloxane systems were produced in the same manner, and the heat resistance and mechanical properties of these composite polymers were measured and are shown in Table 1.

第  1  表 (注1)分子量5000の(未変性)ポリジメチルシロ
キサン α刀 である。
Table 1 (Note 1) This is (unmodified) polydimethylsiloxane α with a molecular weight of 5000.

次に、このようにして得ら力、た複合ポリマーをジクロ
ロメタンに溶解してその8重量%溶液を調製し、清浄々
ガラス板上に厚さ約100μに塗布し、室温(20〜3
0℃)にて溶剤を蒸発させた。得られた膜に空気を透過
させて膜の酸素透過係数および酸素/窒素の選択性を求
め、その結果を第1図にまとめた。複合ポリマー中のポ
リエーテルイミドの比率が高くなるにつれ選択性が大き
く々るが、特に15チを超えてから急激に立ち上ること
がわかる。
Next, the composite polymer thus obtained was dissolved in dichloromethane to prepare an 8% solution by weight, and the solution was coated on a clean glass plate to a thickness of about 100 μm, and the solution was applied at room temperature (20 to 30% by weight).
The solvent was evaporated at 0°C. Air was permeated through the obtained membrane to determine the oxygen permeability coefficient and oxygen/nitrogen selectivity of the membrane, and the results are summarized in FIG. It can be seen that as the ratio of polyetherimide in the composite polymer increases, the selectivity increases greatly, but it rises particularly sharply when the ratio exceeds 15.

〔発明の効果〕〔Effect of the invention〕

本発明のガス選択透過性膜は、ガス選択性の大きいポリ
エーテルイミドとガス透過性にすぐれた変性ポリジメチ
ルシロキサン複合体から成るため、すぐれたガス選択透
過性と耐熱性、耐溶剤性、高強度を有する。
The gas selectively permeable membrane of the present invention is composed of polyetherimide with high gas selectivity and a modified polydimethylsiloxane composite with excellent gas permeability, so it has excellent gas selective permeability, heat resistance, solvent resistance, and high gas permeability. Has strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られたポリエーテルイミド含有率
の異なる各種ガス選択透過性膜の酸素透過係数及び酸素
/窒素の選択性を示すもの呻1図 Of(N5  30   50  7θ    #t0
0q。 ボリエーテルイミYΦ上律(マ量%)
Figure 1 shows the oxygen permeability coefficient and oxygen/nitrogen selectivity of various gas selectively permeable membranes with different polyetherimide contents obtained in Example 1.
0q. Boliether imi YΦ upper law (ma amount%)

Claims (1)

【特許請求の範囲】 下記の一般式 ▲数式、化学式、表等があります▼ 〔但し、nは1〜7の整数を示す〕 で示される繰り返し単位を有するポリエーテルイミド及
び下記の一般式 ▲数式、化学式、表等があります▼ 〔但し、Rは炭素数2〜6のアルキル基 R′は炭素数2〜6のメチレン基 nは5以上の整数を示す〕 で示される繰り返し単位を有する片末端アミノ基変性ポ
リジメチルシロキサンとの反応生成物からなるガス選択
透過性膜。
[Claims] Polyetherimide having a repeating unit represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [However, n represents an integer of 1 to 7] and the following general formula ▲ Numerical formula , chemical formulas, tables, etc. ▼ [However, R is an alkyl group having 2 to 6 carbon atoms R' is a methylene group having 2 to 6 carbon atoms n is an integer of 5 or more] A gas selectively permeable membrane made of a reaction product with amino group-modified polydimethylsiloxane.
JP63140035A 1988-06-07 1988-06-07 Gas permselective membrane Pending JPH01310715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140035A JPH01310715A (en) 1988-06-07 1988-06-07 Gas permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140035A JPH01310715A (en) 1988-06-07 1988-06-07 Gas permselective membrane

Publications (1)

Publication Number Publication Date
JPH01310715A true JPH01310715A (en) 1989-12-14

Family

ID=15259444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140035A Pending JPH01310715A (en) 1988-06-07 1988-06-07 Gas permselective membrane

Country Status (1)

Country Link
JP (1) JPH01310715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075797A1 (en) 2015-03-30 2016-10-05 Fujifilm Corporation Pigment dispersion for ink jetting, method of producing the same, ink set, and image forming method
CN114146581A (en) * 2021-10-22 2022-03-08 南京工业大学 Phenyl-modified PDMS separation membrane, preparation method and application thereof in aromatic compound separation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075797A1 (en) 2015-03-30 2016-10-05 Fujifilm Corporation Pigment dispersion for ink jetting, method of producing the same, ink set, and image forming method
CN114146581A (en) * 2021-10-22 2022-03-08 南京工业大学 Phenyl-modified PDMS separation membrane, preparation method and application thereof in aromatic compound separation
CN114146581B (en) * 2021-10-22 2022-06-24 南京工业大学 Phenyl-modified PDMS separation membrane, preparation method and application thereof in aromatic compound separation

Similar Documents

Publication Publication Date Title
Smaihi et al. Gas separation properties of hybrid imide–siloxane copolymers with various silica contents
EP0349008B1 (en) Use of polyimides as separation membranes.
EP0094050A2 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
JPS59209609A (en) Permselective membrane
KR100277106B1 (en) Gas-Separated Membranes of Position-Specific Polyamide-Imid Types
JPH0347890B2 (en)
JPS5987004A (en) Gas separation membrane
WO2012133743A1 (en) Polyimide asymmetrical hollow fiber membrane
JPS59120206A (en) Selective separation membrane
JPH03281631A (en) Fluorinated diaminobenzene derivative and polyimide
JPS6274406A (en) Separating membrane
JPH01310715A (en) Gas permselective membrane
JPS6311045B2 (en)
JPS6071023A (en) Gas permselective membrane
JPH03296425A (en) Silicon-modified polyether imide and selectivity gas-permeable membrane
JPS5895539A (en) Gas separating membrane
JPS5949804A (en) Permselective membrane for separation of gas
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
KR20000067454A (en) Separation membranes using crosslinked polymers with siloxane main chains
JPH029430A (en) Gas separation membrane and composite gas separation membrane
JP2005350573A (en) Gas-permeable polymer composition and gas-separating composite membrane
JPS62216624A (en) Permselective composite membrane for separating gas
JPS6230524A (en) Permselective membrane
JPS59112803A (en) Gas permselective membrane