JPS62216194A - Electroluminescence panel - Google Patents
Electroluminescence panelInfo
- Publication number
- JPS62216194A JPS62216194A JP61059748A JP5974886A JPS62216194A JP S62216194 A JPS62216194 A JP S62216194A JP 61059748 A JP61059748 A JP 61059748A JP 5974886 A JP5974886 A JP 5974886A JP S62216194 A JPS62216194 A JP S62216194A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- transparent electrode
- insulating layer
- light
- silicon oxynitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005401 electroluminescence Methods 0.000 title description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 6
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 claims description 3
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 239000005083 Zinc sulfide Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
透明電極の抵抗増加を防ぐために五酸化タンタル層と該
透明電極との間に酸窒化珪素層を設け、また酸窒化珪素
層と五酸化タンタル層との密着性を向上するために更に
酸窒化タンタル珪素層を介在させたエレクトロルミネッ
センスパネル。[Detailed Description of the Invention] [Summary] A silicon oxynitride layer is provided between the tantalum pentoxide layer and the transparent electrode in order to prevent an increase in the resistance of the transparent electrode, and the silicon oxynitride layer and the tantalum pentoxide layer are in close contact with each other. An electroluminescent panel with an additional layer of tantalum silicon oxynitride interposed to improve performance.
(産業上の利用分野〕
本発明は信頼性を向上したエレクトロルミネッセンスパ
ネルに関する。(Industrial Application Field) The present invention relates to an electroluminescent panel with improved reliability.
エレクトロルミネッセンス(以下略称EL)パネルは発
光層が非常に薄く、またXYのマトリックス構造をとる
電極膜が交差する位置の発光層が電界発光するので、プ
ラズマ放電に見られるような発光の拡がりがなく、従っ
て解像度が優れており、OA機器や情報端末の表示装置
として使用されている。Electroluminescent (hereinafter abbreviated as EL) panels have very thin light-emitting layers, and the light-emitting layers at the intersections of the electrode films, which have an XY matrix structure, emit electroluminescence, so there is no spread of light emission as seen in plasma discharge. Therefore, it has excellent resolution and is used as a display device for office automation equipment and information terminals.
第3図は従来のELパネルの構成を示すもので、ガラス
基板1の上に酸化錫(Snot)と酸化インジウム(I
nO□)との固溶体(以下略称ITO)からなる透明電
極2があり、この上に第1絶縁層3と第2絶縁層5に挟
まれてEL発光層(以下略して発光層)4があり、この
上にアルミニウム(Ajりからなる背面電極6が設けら
れている。FIG. 3 shows the configuration of a conventional EL panel, in which tin oxide (Snot) and indium oxide (I) are placed on a glass substrate 1.
There is a transparent electrode 2 made of a solid solution (hereinafter abbreviated as ITO) with nO□), and on top of this is an EL light emitting layer (hereinafter abbreviated as a light emitting layer) 4 sandwiched between a first insulating layer 3 and a second insulating layer 5. A back electrode 6 made of aluminum (Aj) is provided thereon.
ここで透明電極2と背面電極6とはそれぞれX方向とY
方向にストライプ形状にパターン形成されており、X電
極群とY電極群とがマトリックス状に直交して配列し、
X、 Y電極群の任意の一対を選択し、電圧を印加する
と電極の交差位置の発光層4が発光するようになってい
る。Here, the transparent electrode 2 and the back electrode 6 are arranged in the X direction and the Y direction, respectively.
The pattern is formed in a stripe shape in the direction, and the X electrode group and the Y electrode group are arranged orthogonally in a matrix.
When an arbitrary pair of the X and Y electrode groups is selected and a voltage is applied, the light emitting layer 4 at the intersection of the electrodes emits light.
次に発光層4は例えば硫化亜鉛(ZnS)にマンガン(
Mn)を微量添加したものが用いられ、この組み合わせ
の場合は黄橙色の発光をする。Next, the light-emitting layer 4 is made of, for example, zinc sulfide (ZnS) and manganese (
A compound containing a small amount of Mn) is used, and this combination emits yellow-orange light.
ここで、第1絶縁層3と第2絶縁層5は発光層4への不
純物イオンの拡散を阻止し、高輝度な発光を持続するた
めに設けられているものであり、発光状態では発光層4
に106V/cm程度の電界が掛ることから第1及び第
2絶縁層は絶縁耐圧が高く、かつ誘電率が大きいことが
必要である。Here, the first insulating layer 3 and the second insulating layer 5 are provided to prevent impurity ions from diffusing into the light-emitting layer 4 and maintain high-intensity light emission, and in the light-emitting state, the light-emitting layer 4
Since an electric field of about 106 V/cm is applied to the first and second insulating layers, it is necessary that the first and second insulating layers have a high dielectric strength voltage and a large dielectric constant.
すなわち絶縁層の誘電率が大きく、また絶縁抵抗が高い
程、絶縁層での電圧降下は減少し、発光層4に効果的に
電圧が印加されることから駆動電圧の低減が可能となる
。That is, the larger the dielectric constant and the higher the insulation resistance of the insulating layer, the lower the voltage drop in the insulating layer, and the more effectively voltage is applied to the light emitting layer 4, making it possible to reduce the driving voltage.
そこで、この目的に適する材料として五酸化タンタル(
TazOs)が着目され使用されている。Therefore, tantalum pentoxide (
TazOs) has been noticed and used.
この材料は誘電率(ε)が約25であり、目的には適し
ているが、透明電極2を形成するITOと反応が起こり
易く、そのため透明電極2の抵抗が場合によっては10
0倍以上にまで増加し、劣化すると云う問題がある。This material has a dielectric constant (ε) of about 25 and is suitable for the purpose, but it tends to react with the ITO forming the transparent electrode 2, so that the resistance of the transparent electrode 2 may increase to 10 in some cases.
There is a problem in that it increases to more than 0 times and deteriorates.
そこで、この劣化を防止する方法として第4図に示すよ
うに透明電極2と第1絶縁層3との間に二酸化珪素(S
iO□)からなる挿入層7を介在させる方法が採られて
いる。Therefore, as a method to prevent this deterioration, as shown in FIG.
A method is adopted in which an insertion layer 7 made of iO□) is interposed.
然し、SjO□は絶縁抵抗が高いものへ誘電率は3〜4
と小さく、そのため膜厚を500 人程度に薄く形成し
ても、発光動作中においては20ν程度の電圧降下を生
じており、ELパネルの低電圧化のためには改良が必要
であった。However, SjO□ has a high insulation resistance and a dielectric constant of 3 to 4.
Therefore, even if the film thickness is made as thin as about 500, a voltage drop of about 20 ν occurs during the light emitting operation, and improvements are needed to lower the voltage of the EL panel.
以上記したように低電圧で駆動できるELパネルを実用
化するには第1及び第2絶縁層の構成材料としてTaz
Osのような高誘電率で且つ絶縁耐圧の高い材料を使用
する必要があるが、このTa、0゜はITOと反応し易
く、透明電極2を劣化させる。As mentioned above, in order to put into practical use an EL panel that can be driven at low voltage, Taz is used as the constituent material of the first and second insulating layers.
It is necessary to use a material such as Os that has a high dielectric constant and a high dielectric strength, but Ta, 0°, easily reacts with ITO and deteriorates the transparent electrode 2.
そのため透明電極2と第1絶縁層3との間に誘電率が高
く、かつ透明電極の劣化を起しにくい挿入層を介在させ
る必要があるが、これに適した材料の選定と形成法の実
用化が課題である。Therefore, it is necessary to interpose an insertion layer between the transparent electrode 2 and the first insulating layer 3 that has a high dielectric constant and is less likely to cause deterioration of the transparent electrode, but the selection of materials suitable for this and the practical use of the formation method are necessary. The challenge is to
上記の目的は透明電極2とTa205からなる第1絶縁
層3との間に酸窒化珪素(SiON)からなる挿入層を
設ければよく、更に第1絶縁層との密着性を向上させる
には酸窒化珪素(SiON)からなる挿入層と第1絶縁
層との間に更に酸窒化タンタル珪素(SiTaON)層
を介在させることにより達成することができる。The above purpose can be achieved by providing an insertion layer made of silicon oxynitride (SiON) between the transparent electrode 2 and the first insulating layer 3 made of Ta205, and further improving the adhesion with the first insulating layer. This can be achieved by further interposing a tantalum silicon oxynitride (SiTaON) layer between the insertion layer made of silicon oxynitride (SiON) and the first insulating layer.
本発明は第1絶縁層3の構成材料としてTazOsを用
いる場合に透明電極2の抵抗値が増加する理由および高
温処理を行う際に起こり易いELパネルの剥離の理由を
研究した結果なされたものである。The present invention was made as a result of research into the reason why the resistance value of the transparent electrode 2 increases when TazOs is used as the constituent material of the first insulating layer 3, and the reason why the EL panel peels off easily when performing high temperature treatment. be.
すなわち、透明電極2の抵抗が増加する理由は透明電極
2を構成するITO層はSnO,とIn、03との固溶
体をガラス基板工に真空蒸着あるいはスパッタして形成
されているが、この際に化学量論的組成の酸化物が形成
されている訳ではなく、多数の酸素欠陥が存在すること
によって低抵抗な導電膜が生じているのである。That is, the reason why the resistance of the transparent electrode 2 increases is that the ITO layer constituting the transparent electrode 2 is formed by vacuum evaporating or sputtering a solid solution of SnO, In, and 03 on a glass substrate. An oxide with a stoichiometric composition is not formed, but a conductive film with low resistance is produced due to the presence of a large number of oxygen defects.
一方、第1および第2絶縁層を形成している′1′82
05層はTazOsをターゲットとし、アルゴン(Ar
)と酸素(02)雰囲気中で高周波スパッタすることに
より形成されているものであって、明確な結晶格子を形
成しているものではない。On the other hand, '1'82 forming the first and second insulating layers
The 05 layer targets TazOs and is argon (Ar).
) and oxygen (02) by high frequency sputtering in an atmosphere, and does not form a clear crystal lattice.
そのために、この両者が接している場合はTazOs層
中に含まれている酸素がI’rOに拡散して高抵抗化す
るのである。Therefore, when the two are in contact with each other, oxygen contained in the TazOs layer diffuses into I'rO, resulting in a high resistance.
それ故に両者の間に酸素拡散を阻止する材料で且つ誘電
率が大きく、絶縁耐圧の高い材料を選択し使用すればよ
い。Therefore, it is only necessary to select and use a material that prevents oxygen diffusion between the two, has a large dielectric constant, and has a high dielectric strength voltage.
発明者等はか−る材料として酸窒化珪素(SiON)を
選んだ。The inventors selected silicon oxynitride (SiON) as such material.
この理由は5iONはSiO□と窒化珪素(SiJJ
との固溶体であり、5102の誘電率は低いが5iJ4
の誘電率は7〜8と高い。The reason for this is that 5iON is composed of SiO□ and silicon nitride (SiJJ).
Although the dielectric constant of 5102 is low, 5iJ4
The dielectric constant of is as high as 7 to 8.
そして5iONの誘電率は両者の構成比により決まるも
のであって、何れの場合でも絶縁物であり、誘電率は酸
素含有量の少ない程大きな値となる。The dielectric constant of 5iON is determined by the composition ratio of the two, and in either case it is an insulator, and the dielectric constant becomes larger as the oxygen content is lower.
第1図は本発明に係るELパネルの構成を示すもので、
透明電極2と第1絶縁層との間に5iONからなる挿入
層8を設けるものである。FIG. 1 shows the configuration of an EL panel according to the present invention.
An insertion layer 8 made of 5iON is provided between the transparent electrode 2 and the first insulating layer.
次にELパネルの発光層4は電子ビーム蒸着法で形成さ
れており、ZnS +Mn系の場合、Mn原子を均等に
ZnS中に分散させるため500℃1時間程度の熱処理
が必要であるが、量産工程では工程処理時間の短縮が望
ましく、そのためにはできるだけ熱処理温度を高めたい
。Next, the light-emitting layer 4 of the EL panel is formed by electron beam evaporation, and in the case of ZnS + Mn, heat treatment at 500°C for about 1 hour is required to evenly disperse Mn atoms in ZnS, but mass production is not possible. In the process, it is desirable to shorten the processing time, and for that purpose, it is desirable to raise the heat treatment temperature as much as possible.
然し、この場合は第1絶縁層3と挿入層7との間で剥離
が生じ易い。However, in this case, peeling is likely to occur between the first insulating layer 3 and the insertion layer 7.
そこで、この対策としてこの間に5iTaON層を設け
れば、この層は絶縁物であると共にこれは挿入層と第1
絶縁層との構成成分であるSi、Taの両元素を含むの
で密着性が向上し、剥離の問題が解決する。Therefore, as a countermeasure for this, if a 5iTaON layer is provided between this layer, this layer is an insulator and is also the same as the insertion layer and the first layer.
Since it contains both Si and Ta, which are constituent components of the insulating layer, adhesion is improved and the problem of peeling is solved.
第2図はか−る介在層9を5iONよりなる挿入層8と
第1絶縁層3との間に形成した状態を示す断面図である
。FIG. 2 is a sectional view showing a state in which such an intervening layer 9 is formed between the insertion layer 8 made of 5iON and the first insulating layer 3. As shown in FIG.
なお、このように透明電極2と背面電極6との間に挿入
層8や介在層9を挿入するとこの位置で電圧降下が生ず
るように思われるが、従来の第1絶縁層3の厚さを加減
することにより電圧降下の増大を抑制することができる
。It should be noted that when the insertion layer 8 or the intervening layer 9 is inserted between the transparent electrode 2 and the back electrode 6 in this way, a voltage drop seems to occur at this position, but the thickness of the conventional first insulating layer 3 By adjusting the amount, it is possible to suppress an increase in voltage drop.
実施例1 (第1図関連)ニ
ガラス基板1の上にITOを真空蒸着法により2000
人の厚さに形成し、ウェットエツチングによりストライ
プ状の透明電極2を形成した。Example 1 (Related to Figure 1) ITO was deposited on a glass substrate 1 to a thickness of 2000 by vacuum evaporation.
The transparent electrode 2 was formed into a striped shape by wet etching.
次に5iJ4をターゲットとし、Ar + 02 (5
%)の雰囲気中で高周波スパッタして5iONを500
人の厚さに形成して挿入層8を形成した。Next, target 5iJ4, Ar + 02 (5
%) by high frequency sputtering in an atmosphere of 500%
The insertion layer 8 was formed to have a human thickness.
続いてTa205をターゲットとしAr + Oz (
20%)雰囲気中で高周波スパッタしてTag’sを2
500人の厚さに形成して第1絶縁層3を形成した。Next, Ta205 was targeted and Ar + Oz (
20%) Tag's 2 by high frequency sputtering in atmosphere
The first insulating layer 3 was formed to a thickness of 500 mm.
次にMnを0.5重量%含んだZnSのベレットを電子
ビーム加熱法で5000人の厚さに形成して発光層4を
形成した。Next, a ZnS pellet containing 0.5% by weight of Mn was formed to a thickness of 5,000 mm using an electron beam heating method to form a light-emitting layer 4.
次に第2絶縁層5は第1絶縁層の同じ形成法で1500
人の厚さに形成し、最後にAβを電子ビーム蒸着法で3
000人の厚さに形成し、これをホトエッチしてストラ
イプ状の背面電極6を形成し、これによってEL素子が
完成した。Next, the second insulating layer 5 is formed using the same method as the first insulating layer.
Finally, Aβ is deposited by electron beam evaporation method.
A striped back electrode 6 was formed by photoetching this to a thickness of 1,000 mm, thereby completing an EL element.
なお、発光層4を形成した後、Mn原子の拡散と結晶性
の向上を目的として温度500℃、真空度lX 1O−
5torrの条件で1時間の熱処理を行ったが透明電極
2の面積抵抗は100口であり、従来のような抵抗増加
は認められなかった。After forming the light-emitting layer 4, the temperature was 500°C and the vacuum was 1X 1O- for the purpose of diffusing Mn atoms and improving crystallinity.
Although heat treatment was performed for 1 hour under the condition of 5 torr, the area resistance of the transparent electrode 2 was 100 mouths, and no increase in resistance was observed as in the conventional case.
実施例2(第2図関連):
実施例1と同様にしてガラス基板1の上に透明電極2を
形成した後、5iON層を500人の厚さに形成して挿
入層8を形成し、この上に5isN4とTa205との
°二つのターゲットを用い、二源スパフタをAr+0z
(5%)雰囲気中で行って5iTaONからなり厚さが
300人の介在層9を形成した。Example 2 (related to FIG. 2): After forming a transparent electrode 2 on a glass substrate 1 in the same manner as in Example 1, a 5iON layer was formed to a thickness of 500 nm to form an insertion layer 8, On top of this, two targets of 5isN4 and Ta205 are used, and a two-source spafter is applied to Ar+0z.
(5%) atmosphere to form an intervening layer 9 made of 5iTaON and having a thickness of 300 layers.
以後、第1絶縁N31発光層4.第2絶縁層5゜背面電
極6は何れも実施例1と同様にして形成した。Thereafter, the first insulating N31 light emitting layer 4. The second insulating layer 5° and the back electrode 6 were both formed in the same manner as in Example 1.
なお、この例の場合、発光層4の形成後の熱処理を温度
650℃1真空度1 xxo−’ torrの条件で3
0分と短縮でして行ったが従来見られたような剥離は起
こらず、また透明電極2の抵抗値の増大も認められなか
った。In this example, the heat treatment after the formation of the light-emitting layer 4 was carried out at a temperature of 650° C., a degree of vacuum of 1 xxo-' torr, and
Although the time was shortened to 0 minutes, peeling as seen in the past did not occur, and no increase in the resistance value of the transparent electrode 2 was observed.
以上記したように本発明の実施により、透明電極の劣化
を防ぐことができ、また工数削減のために高温処理を行
っても挿入層と第1絶縁層との剥離を無くすことができ
、これにより信頼性の向上と製造工数の短縮が可能とな
る。As described above, by implementing the present invention, deterioration of the transparent electrode can be prevented, and even if high temperature treatment is performed to reduce the number of steps, peeling between the insertion layer and the first insulating layer can be eliminated. This makes it possible to improve reliability and reduce manufacturing man-hours.
第1図と第2図は本発明に係るELパネルの構成を示す
断面図、
第3図と第4図は従来のELパネルの構成を示す山面図
、
図において、
■はガラス基板、 2は透明電極、3は第1絶
縁層、 4は発光層、5は第2絶縁層、
6は背面電極、7.8は挿入層、 9は介在
層、である。1 and 2 are cross-sectional views showing the structure of an EL panel according to the present invention, and FIGS. 3 and 4 are top views showing the structure of a conventional EL panel. In the figures, ■ is a glass substrate; 2 3 is a transparent electrode, 3 is a first insulating layer, 4 is a light emitting layer, 5 is a second insulating layer,
6 is a back electrode, 7.8 is an insertion layer, and 9 is an intervening layer.
Claims (2)
の間に五酸化タンタル層を介在させてなるエレクトロル
ミネッセンスパネルにおいて、前記透明電極と五酸化タ
ンタル層との間に酸窒化珪素層を設けたことを特徴とす
るエレクトロルミネツセンスパネル。(1) An electroluminescent panel in which a tantalum pentoxide layer is interposed between an electroluminescent light emitting layer and a transparent electrode, characterized in that a silicon oxynitride layer is provided between the transparent electrode and the tantalum pentoxide layer. Electroluminescent panel.
酸窒化タンタル珪素層を介在させてなることを特徴とす
る特許請求の範囲第1項記載のエレクトロルミネッセン
スパネル。(2) The electroluminescent panel according to claim 1, characterized in that a tantalum silicon oxynitride layer is interposed between the tantalum pentoxide layer and the silicon oxynitride layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61059748A JPS62216194A (en) | 1986-03-18 | 1986-03-18 | Electroluminescence panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61059748A JPS62216194A (en) | 1986-03-18 | 1986-03-18 | Electroluminescence panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62216194A true JPS62216194A (en) | 1987-09-22 |
Family
ID=13122166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61059748A Pending JPS62216194A (en) | 1986-03-18 | 1986-03-18 | Electroluminescence panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62216194A (en) |
-
1986
- 1986-03-18 JP JP61059748A patent/JPS62216194A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2793102B2 (en) | EL element | |
JPS61230296A (en) | El element and manufacture thereof | |
JPS62216194A (en) | Electroluminescence panel | |
JP3258780B2 (en) | Electroluminescence device and method of manufacturing the same | |
JPS6359519B2 (en) | ||
JPS63279597A (en) | Thin film electroluminescent element and manufacture thereof | |
JPH0541286A (en) | Electroluminecence element | |
EP0450077A1 (en) | Thin-film electroluminescent element and method of manufacturing the same | |
JPH01320796A (en) | Electroluminescence element | |
JPH0740515B2 (en) | Thin film light emitting device | |
JPS6314833B2 (en) | ||
JPH0516158B2 (en) | ||
JPH01146290A (en) | Thin film el element | |
JPS63224192A (en) | Thin film el panel | |
JPS6298597A (en) | Thin film el device | |
JPS6147096A (en) | Method of producing thin film el element | |
JPS63181296A (en) | Method of forming dielectric film | |
JPS61267297A (en) | Double-side light emitting body | |
JPS6338982A (en) | Electroluminescence element | |
JPS59217990A (en) | Method of producing electroluminescent panel | |
JPH08106983A (en) | Thin film electroluminescent element | |
JPH0744073B2 (en) | Thin film EL device | |
JPH01204394A (en) | Thin film el element | |
JPH01120794A (en) | Thin film el element | |
JPS62113387A (en) | Thin film el device and manufacture of the same |