JPS62215853A - Apparatus for measuring ozone in water - Google Patents

Apparatus for measuring ozone in water

Info

Publication number
JPS62215853A
JPS62215853A JP6109386A JP6109386A JPS62215853A JP S62215853 A JPS62215853 A JP S62215853A JP 6109386 A JP6109386 A JP 6109386A JP 6109386 A JP6109386 A JP 6109386A JP S62215853 A JPS62215853 A JP S62215853A
Authority
JP
Japan
Prior art keywords
ozone
gas
water
air
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6109386A
Other languages
Japanese (ja)
Other versions
JPH054023B2 (en
Inventor
Toyoaki Aoki
青木 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUROMATO SCI KK
Original Assignee
KUROMATO SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUROMATO SCI KK filed Critical KUROMATO SCI KK
Priority to JP6109386A priority Critical patent/JPS62215853A/en
Publication of JPS62215853A publication Critical patent/JPS62215853A/en
Publication of JPH054023B2 publication Critical patent/JPH054023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To make it possible to measure the amount of ozone in water with high accuracy and high sensitivity, by contacting specimen water with gas not reacting with ozone through a microporous polymer membrane. CONSTITUTION:Air is supplied into a microporous Teflon tube 4 through an ozone decomposition device 8 and the upstream side of the decomposition device 8 is packed with activated carbon 8a and the downstream side thereof with a silica gel. Specimen water is made to flow to an outside tube 6 by a suction pump 10 and ozone is blown in the specimen water by a pump 12 through an ozone decomposing device 14. In a transmission part 2, the specimen water passing the outside through the membrane of the microporous Teflon tube 4 and having air blown therein is contacted with air passing the inside and ozone in the specimen water moves to the inside. Air flows through a filter while being sucked through the outside of a Nafion pipe 20 by a pump 24 while the gas sent through the transmission part 2 passes the inside of the Nafion pipe 20 and, at this time, the moisture of the gas passing the inside of the Nafion pipe 20 is removed through the wall surface of the Nafion pipe 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水に溶存するオゾンを測定するための装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for measuring ozone dissolved in water.

水中オゾンの測定装置は1例えば河川、湖沼、地下水系
などから採取された水を水道水として供給する際、浄水
場でのオゾン酸化処理後の溶存オゾンのモニタとして、
又は下水処理におけるオゾン処理過程の溶存オゾンのモ
ニタなどとして利用することができる。
Water ozone measurement equipment is used to monitor dissolved ozone after ozone oxidation treatment at water treatment plants when water collected from rivers, lakes, underground water systems, etc. is supplied as tap water.
Alternatively, it can be used to monitor dissolved ozone in the ozone treatment process in sewage treatment.

(従来の技術) 大気中オゾンの測定方法としては紫外線を用いる吸光光
度法と、化学発光式の測定方法とがあり、それぞれを利
用した装置が市販されている。
(Prior Art) Methods for measuring ozone in the atmosphere include an absorption photometry method using ultraviolet light and a chemiluminescence method, and devices using each method are commercially available.

水中オゾンの測定方法としては紫外線を用いる吸光光度
法が用いられている(アナリティカル・ケミストリ(A
nalyt、1cal Chemist、ry)誌、第
55巻、第46〜49頁(1983年)参照)。
Absorption photometry using ultraviolet light is used to measure ozone in water (Analytical Chemistry (A
Nalyt, 1cal Chemist, RY), Vol. 55, pp. 46-49 (1983)).

オゾンの吸収スペクトルは25Jnm付近にピークを持
っている。そのため、吸光光度法のオゾン測定装置では
1通常、フィルタを使用して低圧水銀灯の254nm付
近の波長光を使用する。
The absorption spectrum of ozone has a peak around 25 Jnm. For this reason, an ozone measuring device using the spectrophotometry method usually uses a filter to use light with a wavelength around 254 nm from a low-pressure mercury lamp.

化学発光式の測定方法は気相反応を利用するものである
ので、水中オゾンの測定に直ちに適用することはできな
い。
Since the chemiluminescent measurement method utilizes a gas phase reaction, it cannot be immediately applied to the measurement of ozone in water.

(発明が解決しようとする問題点) 吸光光度法によるオゾンの測定は、感度が低い。(Problem that the invention attempts to solve) Measuring ozone by spectrophotometry has low sensitivity.

また、水中には種々のイオンが共存している。そしてそ
れらの共存物質の中にはクロムイオン(Vl)やマンガ
ンイオン(■)、又はフタル酸のように254nmの紫
外線に対してオゾンと同等あるいはそれ以上の吸光係数
をもつものがある。したがって、水中オゾンを吸光光度
法により測定しようとすれば、共存物質が干渉となって
オゾン濃度を正確に測定することができない。
Furthermore, various ions coexist in water. Among these coexisting substances, there are some, such as chromium ions (Vl), manganese ions (■), and phthalic acid, which have an absorption coefficient equal to or higher than that of ozone for 254 nm ultraviolet rays. Therefore, if an attempt is made to measure ozone in water by spectrophotometry, the coexisting substances will interfere, making it impossible to accurately measure ozone concentration.

本発明は水中の共存物質の干渉が少なく、オゾンを選択
的に、かつ、高感度に測定することのできる測定装置を
提供することを目的とするものである。
An object of the present invention is to provide a measuring device that can selectively and highly sensitively measure ozone with less interference from coexisting substances in water.

(問題点を解決するための手段) 本発明の装置は、試料水をオゾンと反応しない微孔性の
有機又は無機の高分子膜を介してオゾンと反応しないガ
スと接触させる透過部と、この透過部を経た前記ガスを
エチレンガスもしくはエチレン誘導体ガス又は一酸化窒
素ガスと反応させて発光させる反応セルと、この反応セ
ルからの光を検出する検出手段とを備えている。
(Means for Solving the Problems) The device of the present invention includes a permeation section that brings sample water into contact with a gas that does not react with ozone through a microporous organic or inorganic polymer membrane that does not react with ozone; It includes a reaction cell that causes the gas that has passed through the transmission section to react with ethylene gas, an ethylene derivative gas, or a nitrogen monoxide gas to emit light, and a detection means that detects light from the reaction cell.

オゾンと反応しないガスとしては、空気、窒素、希ガス
などを使用することができる。空気中には微量のオゾン
が含まれることがあるので、空気を使用する場合は活性
炭やソーダライムを用いたオゾン分解器を通過させて使
用する。
As the gas that does not react with ozone, air, nitrogen, rare gas, etc. can be used. Air may contain trace amounts of ozone, so when using air, it must be passed through an ozone decomposer using activated carbon or soda lime.

(作用) 透過部で試料水を微孔性高分子膜を介してオゾンと反応
しないガスと接触させると、試料水中のオゾンがその微
孔性高分子膜を透過してガス中に移動する。
(Function) When the sample water is brought into contact with a gas that does not react with ozone through the microporous polymer membrane in the permeation section, the ozone in the sample water passes through the microporous polymer membrane and moves into the gas.

透過部を経たガス中には試料水中のオゾンが含まれるこ
とになるので、このガスを反応セルに導くとともに、そ
の反応セルにエチレン(C2H4)ガスもしくはエチレ
ン誘導体ガス又は一酸化窒素(No)ガスを導くと、透
過部を経由してきたガス中のオゾンと、エチレンガスも
しくはエチレン誘導体ガス又は一酸化窒素ガスとが反応
して発光する。オゾンとエチレンガスもしくはエチレン
誘導体ガス又は一酸化窒素ガスとの反応による化学発光
現象はよく知られており、大気中の窒素酸化物濃度を測
定する窒素酸化物分析計、及び大気中のオゾン濃度を測
定するオゾン分析計として利用されている。
The gas that has passed through the permeation section will contain ozone in the sample water, so this gas is introduced into the reaction cell, and ethylene (C2H4) gas, ethylene derivative gas, or nitrogen monoxide (No) gas is introduced into the reaction cell. When introduced, ozone in the gas that has passed through the permeation section reacts with ethylene gas, ethylene derivative gas, or nitrogen monoxide gas to emit light. The chemiluminescence phenomenon caused by the reaction between ozone and ethylene gas, ethylene derivative gas, or nitrogen monoxide gas is well known. It is used as an ozone analyzer to measure ozone.

オゾンとエチレン又はエチレン誘導体との化学発光では
300〜600nmの波長範囲での連続スペクトル光が
発せられ、オゾンと一酸化窒素との化学発光では600
nm〜3μmの広範囲に広がり、1.2μmにピークを
もつ連続スペクトル光が発せられる。
Chemiluminescence between ozone and ethylene or ethylene derivatives emits continuous spectrum light in the wavelength range of 300 to 600 nm, while chemiluminescence between ozone and nitric oxide emits light with a continuous spectrum in the wavelength range of 600 to 600 nm.
Continuous spectrum light is emitted that spreads over a wide range of nm to 3 μm and has a peak at 1.2 μm.

(実施例) 第1図は本発明の一実施例を表わす。(Example) FIG. 1 represents one embodiment of the invention.

2は透過部であり、この透過部2は内側の微孔性テフロ
ン(ポリ四フッ化エチレンのdu Pont、社の商品
名)管4と外側のテフロン又はガラスの管6の二重管か
らなっている。内側の微孔性テフロン管4としては1例
えばジャパン・ゴアテックス社のTBシリーズ(気孔率
70%、最大孔径3゜5μm)やTAシリーズ(気孔率
45%、最大孔径3.5μm)などを使用することがで
きる。例えば、TBOO2は内径2mm外径3mmであ
る。
Reference numeral 2 denotes a transmission section, and this transmission section 2 consists of a double tube consisting of an inner microporous Teflon (product name of polytetrafluoroethylene, du Pont) tube 4 and an outer Teflon or glass tube 6. ing. As the inner microporous Teflon tube 4, for example, Japan Gore-Tex's TB series (porosity 70%, maximum pore diameter 3.5 μm) or TA series (porosity 45%, maximum pore diameter 3.5 μm) is used. can do. For example, TBOO2 has an inner diameter of 2 mm and an outer diameter of 3 mm.

微孔性テフロン管4の長さは感度に影響するので適当な
長さにして使用する。例えばその長さは50cmである
。微孔性テフロン管4の内側にはオゾン分解器8を介し
て第1のガスとしての空気が供給される。オゾン分解器
8は上流側に活性炭8aが充填され、下流側にシリカゲ
ル8bが充填されている。オゾン分解器8は空気中のオ
ゾンを分解するためのものである。
Since the length of the microporous Teflon tube 4 affects the sensitivity, it is used at an appropriate length. For example, its length is 50 cm. Air as a first gas is supplied to the inside of the microporous Teflon tube 4 via an ozone decomposer 8. The ozone decomposer 8 is filled with activated carbon 8a on the upstream side and filled with silica gel 8b on the downstream side. The ozone decomposer 8 is for decomposing ozone in the air.

外側の管6には吸引ポンプ10により試料水が流される
。試料水にはポンプ12により第2のガスとしての空気
がオゾン分解器14を経て吹き込まれる。このオゾン分
解器14はオゾン分解器8と同じものである。
Sample water is flowed into the outer tube 6 by a suction pump 10. Air as a second gas is blown into the sample water by a pump 12 via an ozone decomposer 14. This ozone decomposer 14 is the same as the ozone decomposer 8.

透過部2において、微孔性テフロン管4の微孔性テフロ
ン膜を介して、外側を通り空気が吹き込まれた試料水と
内側を通る空気とが接触し、試料水中のオゾンが内側の
空気中に移動していく。
In the permeation section 2, the sample water into which air is blown through the outside comes into contact with the air passing through the inside through the microporous Teflon membrane of the microporous Teflon tube 4, and the ozone in the sample water is transferred to the inside air. I will move to.

透過部2の微孔性テフロン管4の内側を通過したガスは
水分除去器16を経て反応セル18へ導かれる。水分除
去器16は内径2mm外径3mmのナフィヨン管(du
 Pont社の商品名)20と。
The gas that has passed through the inside of the microporous Teflon tube 4 of the permeation section 2 is guided to the reaction cell 18 via the moisture remover 16. The water remover 16 is a Nafyon tube (du) with an inner diameter of 2 mm and an outer diameter of 3 mm.
Pont's product name) 20.

外側の内径5mmのガラス、テフロン又は他のプラスチ
ック管22とからなる二重管である。ナフィヨン管20
は微孔性テフロン管をスルホン化したものであり、気相
中の水分を選択的に透過するために脱水作用を有する。
It is a double tube consisting of an outer glass, Teflon or other plastic tube 22 with an inner diameter of 5 mm. Nafyon tube 20
is a sulfonated microporous Teflon tube, and has a dehydrating effect because it selectively permeates moisture in the gas phase.

ナフィヨン管20の外側をポンプ24に引かれて空気が
フィルタ26を介して流れ、ナフィヨン管20の内側を
透過部2を経たガスが通過する。
Air drawn by the pump 24 flows through the filter 26 on the outside of the Nafyon tube 20, and gas that has passed through the permeation section 2 passes through the inside of the Nafyon tube 20.

このとき、ナフィヨン管20の内側を通るガスの水分が
ナフィヨン管20の壁面を経て除去される。
At this time, moisture in the gas passing inside the Nafyon tube 20 is removed through the wall surface of the Nafyon tube 20.

反応セル18には透過部2からのガスが水分除去器16
を経て導入されるとともに、そのガス中のオゾンと化学
反応させ発光させるためにエチレンガスが供給される。
The reaction cell 18 is supplied with gas from the permeation section 2 through the moisture remover 16.
At the same time, ethylene gas is supplied to cause a chemical reaction with the ozone in the gas to cause it to emit light.

反応セル18にはポンプ28が設けられて排気が行なわ
れる。
The reaction cell 18 is provided with a pump 28 for evacuation.

反応セル18での発光は光電子増倍管30により検出さ
れ、その光電子増倍管30の信号は記録計に導かれる。
The light emitted from the reaction cell 18 is detected by a photomultiplier tube 30, and the signal from the photomultiplier tube 30 is guided to a recorder.

透過部2とオゾン分解器80間、透過部2と水分除去器
16の間、及び水分除去器16と反応セル18の間の接
続はテフロン管により行なう。接続される部分間の管径
が異なる場合は、異径ジヨイントを用いて接続すること
ができる。
Connections between the permeation section 2 and the ozone decomposer 80, between the permeation section 2 and the moisture remover 16, and between the moisture removal device 16 and the reaction cell 18 are made using Teflon tubes. If the pipe diameters between the parts to be connected are different, they can be connected using different diameter joints.

透過部2から導入されたガス中のオゾンと化学発光させ
るために反応セルに導入されるガスとしては、エチレン
ガスに代えてイソブチレンやジメチルブテンなどのエチ
レン誘導体ガス、又は一酸化窒素ガスを使用してもよい
As the gas introduced into the reaction cell to cause chemiluminescence with ozone in the gas introduced from the transmission section 2, an ethylene derivative gas such as isobutylene or dimethyl butene, or nitrogen monoxide gas is used instead of ethylene gas. It's okay.

反応セル18に透過部2から導入されるガスの流量は大
気圧で0.1〜2Q/分が適当である。
The appropriate flow rate of the gas introduced into the reaction cell 18 from the permeation section 2 is 0.1 to 2 Q/min at atmospheric pressure.

第2図に本実施例において透過部2の微孔性テフロン管
4の長さを変えた場合の相対感度を示す。
FIG. 2 shows the relative sensitivity when the length of the microporous Teflon tube 4 in the transmission section 2 is changed in this example.

微孔性テフロン管4はTBOO2であり、その内側を通
る空気の流量は大気圧で0.6Q1分であり、その外側
を通る試料水中の空気の流量(大気圧)は「空気」/「
試料水J =0.5である。
The microporous Teflon tube 4 is TBOO2, and the flow rate of air passing through its inside is 0.6Q1 min at atmospheric pressure, and the flow rate (atmospheric pressure) of air in the sample water passing through its outside is "air"/"
Sample water J = 0.5.

この結果によれば、微孔性テフロン管4が長くなる程そ
の微孔性テフロン管4の外側の試料水から内側のガスへ
のオゾンの移動量が多くなり、感度が上昇していくこと
がわかる。
According to this result, as the microporous Teflon tube 4 becomes longer, the amount of ozone transferred from the sample water outside the microporous Teflon tube 4 to the gas inside increases, and the sensitivity increases. Recognize.

第3図に微孔性テフロン管4の外側を流れる試料水とそ
の試料水に吹き込まれるガス(この場合空気、大気圧)
との流量比に対する感度の変化を示す。ただし、微孔性
テフロン管4はTBOO2であり、その長さを50cm
、微孔性テフロン管4の内側を通るガスの流量を大気圧
で0.6Q/分とする。
Figure 3 shows the sample water flowing outside the microporous Teflon tube 4 and the gas (in this case air, atmospheric pressure) blown into the sample water.
This shows the change in sensitivity with respect to the flow rate ratio. However, the microporous Teflon tube 4 is TBOO2, and its length is 50 cm.
, the flow rate of gas passing inside the microporous Teflon tube 4 is 0.6 Q/min at atmospheric pressure.

この結果によれば、試料水中に吹き込むガスを増してい
くと、感度が上昇していくことが分かる。
According to these results, it can be seen that as the amount of gas blown into the sample water increases, the sensitivity increases.

第4図にオゾン濃度と相対感度との関係を示す。Figure 4 shows the relationship between ozone concentration and relative sensitivity.

感度はオゾン濃度に対して広範囲で直線性を示す。ただ
し、微孔性テフロン管4はTBOO2であり、その長さ
を50cm、その内側を通る空気の流量を大気圧で0.
6u/分、その外側を通る試料水中の空気(大気圧)の
流量を「空気j/「試料水J =0.5とする。第4図
のオゾンの低濃度領域(破線部)では、オゾン発生源自
体の直線性に問題がある。本実施例でのオゾンの検出限
界は、信号対ノイズ(S/N)比を3としたとき、約0
.3ppbであった。
The sensitivity shows linearity over a wide range of ozone concentrations. However, the microporous Teflon tube 4 is TBOO2, its length is 50 cm, and the flow rate of air passing through its inside is 0.00 cm at atmospheric pressure.
6 u/min, and the flow rate of air (atmospheric pressure) in the sample water passing outside the sample water is set to ``air j/sample water J = 0.5. There is a problem with the linearity of the source itself.The ozone detection limit in this example is approximately 0 when the signal-to-noise (S/N) ratio is 3.
.. It was 3 ppb.

第5図は他の実施例における透過部32を表わす。この
透過部32も第1図の透過部2と同じく。
FIG. 5 shows a transparent section 32 in another embodiment. This transparent section 32 is also the same as the transparent section 2 in FIG.

内側の微孔性テフロン管4と外側のテフロン管6とから
なるが、微孔性テフロン管4の内側を第2のガスとして
の空気が吹き込まれた試料水が通り。
It consists of an inner microporous Teflon tube 4 and an outer Teflon tube 6, and sample water into which air as a second gas is blown passes through the microporous Teflon tube 4.

微孔性テフロン管4の外側を水分除去器を経て反応セル
に導かれる第1のガスとしての空気が通過する。8,1
4はオゾン分解器、12は試料水中に空気を吹き込むポ
ンプ、10は試料水を流すポンプである。
Air passes through the microporous Teflon tube 4 as a first gas, which is introduced into the reaction cell via a moisture remover. 8,1
4 is an ozone decomposer, 12 is a pump for blowing air into sample water, and 10 is a pump for flowing sample water.

第6図はさらに他の実施例における透過部34を表わす
。複数の微孔性ホロファイバ36が束ねられ、それらの
ホロファイバ36の内側を、オゾン分解器を介して第2
のガスとしての空気が吹き込まれた試料水が流れ、それ
らのホロファイバ36の外側をオゾン分解器を介して供
給され、水分除去器を経て反応セルに導かれる第1のガ
スとしての空気が流れるように構成されている。この場
合もホロファイバ36の内側に第1のガスを流し、外側
に第2のガスが吹き込まれた試料水を流すようにしても
よい。微孔性ホロファイバ36の材質としてはテフロン
や酢酸セルロースが好ましい。
FIG. 6 shows a transparent section 34 in yet another embodiment. A plurality of microporous holofibers 36 are bundled, and the inside of the holofibers 36 is passed through an ozone decomposer to a second
Sample water into which air as a gas is blown flows, and air as a first gas flows outside these hollow fibers 36, which is supplied via an ozone decomposer and led to a reaction cell via a moisture remover. It is configured as follows. In this case as well, the first gas may be flowed inside the holofiber 36, and the sample water into which the second gas has been blown may be flowed outside. The material for the microporous hollow fiber 36 is preferably Teflon or cellulose acetate.

本実施例において、ホロファイバ36の微孔性の膜を通
して試料水から第1のガスへオゾンの移動が行なわれる
In this embodiment, ozone is transferred from the sample water to the first gas through the microporous membrane of the holofiber 36.

第7図はさらに他の実施例における透過部38を表わす
。チューブ40には試料水が流され、その試料水中には
ポンプ44により空気が吹き込まれる。ポンプ44によ
り吹き込まれる空気はオゾン分解器を経て供給される。
FIG. 7 shows a transparent section 38 in yet another embodiment. Sample water is passed through the tube 40, and air is blown into the sample water by a pump 44. The air blown by the pump 44 is supplied via an ozone decomposer.

チューブ40で、ポンプ44により空気が吹き込まれる
位置より下流側にはプローブ39が挿入されている。プ
ローブ39の先端にはテフロンなどを素材とする微孔性
高分子膜42が設けられ、プローブ39内にはチューブ
39a、39bが設けられている。オゾン分解器を経て
供給されてきた空気がチューブ39aから入って微孔性
高分子膜42に沿って流れ、チューブ39bから出て、
水分除去器を経て反応セルへ導かれる。
A probe 39 is inserted into the tube 40 downstream from the position where air is blown by the pump 44 . A microporous polymer membrane 42 made of Teflon or the like is provided at the tip of the probe 39, and tubes 39a and 39b are provided within the probe 39. Air supplied through the ozone decomposer enters through the tube 39a, flows along the microporous polymer membrane 42, and exits through the tube 39b.
It is led to a reaction cell via a water remover.

(発明の効果) 本発明では、試料水を微孔性高分子膜を介してオゾンと
反応しないガスと接触させることにより、オゾンを試料
水からガス中へ移動させた後、化学発光法によりオゾン
を検出し測定するようにした。
(Effects of the Invention) In the present invention, ozone is transferred from the sample water into the gas by bringing the sample water into contact with a gas that does not react with ozone through a microporous polymer membrane, and then the ozone is removed by chemiluminescence. detected and measured.

この結果、本発明では水中のオゾンを高精度に、かつ、
高感度に測定することができるようになる。
As a result, the present invention can detect ozone in water with high precision and
It becomes possible to measure with high sensitivity.

本発明装置を用いた場合と従来の紫外線吸光光度法(2
60nmで測定)による場合との共存物質の干渉効果の
比較結果を下表に示す。下表の数値は共存物質1000
ppbをオゾン濃度(ppb)に置き換えて示したもの
である。
The case using the device of the present invention and the conventional ultraviolet absorption spectrophotometry method (2
The table below shows the results of a comparison of the interference effects of coexisting substances with the case measured at 60 nm). The numbers in the table below are coexisting substances 1000
The figures are shown with ppb replaced by ozone concentration (ppb).

また、本発明装置で、塩素濃度を70000ppbとし
た場合でも、それに対応するオゾン濃度は1.6ppb
であった。
Furthermore, even when the chlorine concentration is set to 70,000 ppb using the device of the present invention, the corresponding ozone concentration is 1.6 ppb.
Met.

このように、本発明の装置では共存物質による干渉が非
常に小さいため、水中のオゾンを高精度に測定すること
ができる。
In this way, in the device of the present invention, since interference by coexisting substances is extremely small, ozone in water can be measured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を一部を断面で示す概略図、
第2図は同実施例における微孔性テフロン管の長さと相
対感度の関係を示す図、第3図は試料水に対する吹込み
空気量と相対感度の関係を示す図、第4図はオゾン濃度
と相対感度の関係を示す図、第5図ないし第7図はそれ
ぞれ他の実施例における透過部を示す概略断面図である
。 2.32,34.38・・・・・・透過部、4・・・・
・・微孔性テフロン管、 6・・・・・・テフロン管、 16・・・・・・水分除去装置、 18・・・・・・反応セル、 30・・・・・光電子増倍管、 36・・・・・微孔性ホロファイバ、 42・・・・・・微孔性高分子膜。
FIG. 1 is a schematic diagram partially showing an embodiment of the present invention in cross section;
Figure 2 is a diagram showing the relationship between the length of the microporous Teflon tube and relative sensitivity in the same example, Figure 3 is a diagram showing the relationship between the amount of air blown into sample water and relative sensitivity, and Figure 4 is a diagram showing the ozone concentration. FIGS. 5 to 7 are schematic cross-sectional views showing the transmission section in other embodiments, respectively. 2.32, 34.38...transparent part, 4...
... Microporous Teflon tube, 6 ... Teflon tube, 16 ... Moisture removal device, 18 ... Reaction cell, 30 ... Photomultiplier tube, 36...Microporous holofiber, 42...Microporous polymer membrane.

Claims (7)

【特許請求の範囲】[Claims] (1)試料水をオゾンと反応しない微孔性の有機又は無
機の高分子膜を介してオゾンと反応しない第1のガスと
接触させる透過部と、 この透過部を経た前記第1のガスをエチレンガスもしく
はエチレン誘導体ガス又は一酸化窒素ガスと反応させて
発光させる反応セルと、 この反応セルからの光を検出する検出手段とを備えた水
中オゾンの測定装置。
(1) A permeation section that brings the sample water into contact with a first gas that does not react with ozone through a microporous organic or inorganic polymer membrane that does not react with ozone; An apparatus for measuring ozone in water, comprising a reaction cell that emits light by reacting with ethylene gas, an ethylene derivative gas, or a nitrogen monoxide gas, and a detection means that detects light from the reaction cell.
(2)前記透過部に入る試料水にはオゾンと反応しない
第2のガスを吹き込む特許請求の範囲第1項に記載の水
中オゾンの測定装置。
(2) The underwater ozone measuring device according to claim 1, wherein a second gas that does not react with ozone is blown into the sample water entering the permeation section.
(3)前記微孔性高分子膜が管状体として形成され、試
料水がその管状体の外側を流れ、前記第1のガスがその
管状体の内側を流れる特許請求の範囲第1項又は第2項
に記載の水中オゾンの測定装置。
(3) The microporous polymer membrane is formed as a tubular body, the sample water flows on the outside of the tubular body, and the first gas flows on the inside of the tubular body. The underwater ozone measuring device according to item 2.
(4)前記微孔性高分子膜が管状体として形成され、試
料水がその管状体の内側を流れ、前記第1のガスがその
管状体の外側を流れる特許請求の範囲第1項又は第2項
に記載の水中オゾンの測定装置。
(4) The microporous polymer membrane is formed as a tubular body, the sample water flows inside the tubular body, and the first gas flows outside the tubular body. The underwater ozone measuring device according to item 2.
(5)前記微孔性高分子膜の管状体が複数本重ねられて
使用される特許請求の範囲第3項又は第4項に記載の水
中オゾンの測定装置。
(5) The underwater ozone measuring device according to claim 3 or 4, wherein a plurality of tubular bodies of the microporous polymer membrane are used in a stacked manner.
(6)前記透過部において前記微孔性高分子膜がプロー
ブの先端に取りつけられ、このプローブ内を前記微孔性
高分子膜に沿って第1のガスが流れ、このプローブの先
端が試料水中に浸漬されて使用される特許請求の範囲第
1項又は第2項に記載の水中オゾンの測定装置。
(6) In the permeation section, the microporous polymer membrane is attached to the tip of the probe, the first gas flows inside the probe along the microporous polymer membrane, and the tip of the probe is placed in the sample water. The underwater ozone measuring device according to claim 1 or 2, which is used by being immersed in water.
(7)前記透過部と前記反応セルの間には水分除去器が
設けられている特許請求の範囲第1項又は第2項に記載
の水中オゾンの測定装置。
(7) The underwater ozone measuring device according to claim 1 or 2, wherein a water remover is provided between the permeation section and the reaction cell.
JP6109386A 1986-03-18 1986-03-18 Apparatus for measuring ozone in water Granted JPS62215853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6109386A JPS62215853A (en) 1986-03-18 1986-03-18 Apparatus for measuring ozone in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6109386A JPS62215853A (en) 1986-03-18 1986-03-18 Apparatus for measuring ozone in water

Publications (2)

Publication Number Publication Date
JPS62215853A true JPS62215853A (en) 1987-09-22
JPH054023B2 JPH054023B2 (en) 1993-01-19

Family

ID=13161120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6109386A Granted JPS62215853A (en) 1986-03-18 1986-03-18 Apparatus for measuring ozone in water

Country Status (1)

Country Link
JP (1) JPS62215853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240537A (en) * 1989-03-14 1990-09-25 Fuji Electric Co Ltd Analysis apparatus for ozone in solution
JPH02240538A (en) * 1989-03-14 1990-09-25 Fuji Electric Co Ltd Analysis apparatus for ozone in solution
EP1243917A1 (en) * 2001-03-23 2002-09-25 Instrumentarium Corporation Nitric oxide analyzer
CN104941387A (en) * 2015-07-14 2015-09-30 北京世纪金光半导体有限公司 Gas filtering device for single crystal furnace vacuum system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240537A (en) * 1989-03-14 1990-09-25 Fuji Electric Co Ltd Analysis apparatus for ozone in solution
JPH02240538A (en) * 1989-03-14 1990-09-25 Fuji Electric Co Ltd Analysis apparatus for ozone in solution
EP1243917A1 (en) * 2001-03-23 2002-09-25 Instrumentarium Corporation Nitric oxide analyzer
CN104941387A (en) * 2015-07-14 2015-09-30 北京世纪金光半导体有限公司 Gas filtering device for single crystal furnace vacuum system

Also Published As

Publication number Publication date
JPH054023B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
JP3943008B2 (en) Ozone gas detection element, detection device, and detection method
JP4913019B2 (en) Rapid integrity testing of porous materials
EP0909946B1 (en) Chemical sensing method and apparatus employing liquid-core optical fibers
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
US5661036A (en) Process for the detection of sulfur
EP0326995A2 (en) Method and apparatus for quantitative determination of trihalomethanes
Kawabata et al. Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly (ethylene glycol) membrane
CA1250214A (en) Method and apparatus for detection of certain nitrogen-containing gases using chemiluminescence
US6011882A (en) Chemical sensing techniques employing liquid-core optical fibers
JPS62217146A (en) Opto-load for detecting gas
WO2003091724A1 (en) Method of measuring formaldehyde concentration of gas and measuring instrument
KR101030405B1 (en) Analytical sensitivity enhancement by catalytic transformation
CA2126737C (en) Acidic gas detector paper
Parmar et al. Laboratory tests of KI and alkaline annular denuders
JPS62215853A (en) Apparatus for measuring ozone in water
JP2008232796A (en) Formaldehyde detection element
Bergshoeff et al. Spectrophotometric determination of ozone in air with indigo disulphonate
Cadoff et al. Passive sampler for ambient levels of nitrogen dioxide
JPH0251043A (en) Gas permeation test for diaphragm
CN209432701U (en) A kind of detection device of dissolved organic matter molecular weight distribution
JPH01196564A (en) Test tubule having indicator for detection substance by colorimetry
CN109470674A (en) A kind of detection device and detection method of dissolved organic matter molecular weight distribution
US3864087A (en) Titrating system
SE452510B (en) SET TO MEASURE A CONTENT OF A SUBSTANCE, EXCEPT A GAS, IN AIR, SOLID ADSORBENT FOR EXTENDING THE SET AND USING THE ADSORBENT
JP2764986B2 (en) Nitrite determination device