JPS62215795A - Mining method - Google Patents

Mining method

Info

Publication number
JPS62215795A
JPS62215795A JP5980286A JP5980286A JPS62215795A JP S62215795 A JPS62215795 A JP S62215795A JP 5980286 A JP5980286 A JP 5980286A JP 5980286 A JP5980286 A JP 5980286A JP S62215795 A JPS62215795 A JP S62215795A
Authority
JP
Japan
Prior art keywords
excavator
excavation
vein
waste
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5980286A
Other languages
Japanese (ja)
Inventor
宇賀 克夫
佐古井 耕三
杉山 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5980286A priority Critical patent/JPS62215795A/en
Priority to CA000531529A priority patent/CA1307298C/en
Priority to AU70003/87A priority patent/AU574601B2/en
Publication of JPS62215795A publication Critical patent/JPS62215795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は鉱石、特にウラン鉱等の高品位鉱石を採掘す
るのに好適な採鉱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mining method suitable for mining ores, particularly high-grade ores such as uranium ore.

(従来技術) 鉱脈に対する露天掘採鉱では、パケットホイールエキス
カベータ、ドラグライン或いは発破との併用によるブル
ドーザ、ショベルカー、ドラグライン等による掘削があ
る。ここで掘削された鉱石(以下、ズリという)は主と
してベルトコンベヤ、又は掘削機から直接にダンプトラ
ンク等の運搬機械へ移して目的の場所迄を運搬する手段
が採用される。
(Prior Art) In open pit mining of ore veins, excavation is carried out using a packet wheel excavator, a bulldozer, a shovel car, a drag line, etc. in combination with a drag line or blasting. The excavated ore (hereinafter referred to as waste) is mainly transported to a destination by transferring it from a belt conveyor or an excavator directly to a transport machine such as a dump trunk.

一方、地中に於ける採鉱では、ロードヘッダー、ウォー
タジェット、ドリルと発破等による掘削があり、この地
中掘削によるズリは、ベルトコンベヤ及びスラリ化によ
る流体輸送等によって目的の場所迄を運搬する手段が採
用されている。
On the other hand, underground mining involves excavation using road headers, water jets, drills, and blasting, and the waste from this underground excavation is transported to the destination using belt conveyors and fluid transportation by slurrying. measures are being adopted.

(発明が解決しようとする問題点) 上記する採鉱方法に於いては、いづれも掘削時又は掘削
後にズリを運搬手段まで移す間、或いはズリが運搬手段
に移された後に於いて、鉱石が直接に作業環境雰囲気と
接する為、鉱石そのものの飛散や浮遊があって、環境の
汚染劣化が生じ、特に、鉱石がウラン鉱等の放射性物質
を含有する場合に於いては、この鉱石による環境汚染劣
化は重大な問題となる。
(Problems to be Solved by the Invention) In all of the above-mentioned mining methods, the ore is directly removed during excavation, while the waste is transferred to the transport means after excavation, or after the waste is transferred to the transport means. Because the ore comes into contact with the working environment, the ore itself scatters and floats, causing environmental pollution and deterioration. Especially when the ore contains radioactive materials such as uranium ore, the ore can cause environmental contamination and deterioration. becomes a serious problem.

この発明は上記の点に鑑みなされたものであって、採掘
には掘削機を用い、ズリの運搬が密閉状態で行われて作
業環境の汚染がなく、又、鉱脈に対する掘削残りを可及
的少なくする採鉱方法を提供することを目的とする。
This invention was made in view of the above points, and uses an excavator for mining, and transportation of waste is carried out in a sealed state, so there is no contamination of the working environment, and the remaining excavation of the ore vein is removed as much as possible. The purpose is to provide a mining method that reduces

(問題点を解決するための手段) 上記の目的を達成するためのこの発明の要旨とするとこ
ろは、掘削機により鉱脈を掘削し、ズリを掘削機後方の
設備へ密閉状態で流体輸送しつつ所定区間の掘削を行い
、掘削後の空き坑は掘削機でも掘削可能な材料で埋戻し
、該埋戻し坑に隣接、若しくは適当なピッチ離れた位置
を順次に鉱脈の掘削と空き坑の埋戻しを繰り返し、鉱脈
全域を掘削することを特徴とする採鉱方法にある。
(Means for Solving the Problems) The gist of the present invention to achieve the above object is to excavate an ore vein with an excavator, and transport waste with fluid to equipment behind the excavator in a sealed manner. After excavating a predetermined section, the empty pit after excavation is backfilled with material that can be excavated by an excavator, and veins are sequentially excavated and the empty pits are backfilled adjacent to the backfilling pit or at an appropriate pitch away. The mining method is characterized by repeatedly excavating the entire vein.

(作 用) 従って、この発明によれば、掘削機後方へのズリの運搬
は流体により密閉状態で行われて鉱石が作業環境雰囲気
と接することがなく作業環境の汚染をなくし、又、掘削
機による掘削後の空き坑は一旦掘削機により掘削可能な
材料によって埋戻され、引き続きこの埋戻し坑に隣接し
て鉱脈に対する掘削と掘削後の空き坑の埋戻しの繰り返
しにより鉱脈全域を掘削し、採鉱残しを可及的少なくす
る。
(Function) Therefore, according to the present invention, the transport of waste to the rear of the excavator is carried out in a sealed state by fluid, and the ore does not come into contact with the working environment atmosphere, eliminating contamination of the working environment. The vacant pit after excavation is once backfilled with material that can be excavated by an excavator, and then the entire vein is excavated by repeating excavation of the vein adjacent to this backfilling pit and backfilling of the vacant pit after excavation, Minimize mining residue as much as possible.

(実施例) 以下、この発明の実施例を図面を参照しながら説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1実施例 第1図乃至第7図は鉱脈を水平掘削する実施例を示し、
第1図は鉱脈に対する掘削手順を示す平面図、第2図は
第1図のY −Y線断面図(縦断面図)、第3図は第1
図のX −X線断面図(横断面図)、第4図及び第5図
は掘削坑の配列図、第6図はトンネル掘進機による施工
全体図、第7図はズリ輸送のフロー図である。
FIRST EMBODIMENT FIGS. 1 to 7 show an example of horizontally excavating an ore vein,
Figure 1 is a plan view showing the excavation procedure for the ore vein, Figure 2 is a cross-sectional view (longitudinal cross-sectional view) taken along the line Y-Y of Figure 1, and Figure 3 is a cross-sectional view of Figure 1.
The X-X line cross-sectional view (cross-sectional view) in the figure, Figures 4 and 5 are layout diagrams of the excavation shaft, Figure 6 is an overall view of construction using a tunnel boring machine, and Figure 7 is a flow diagram of waste transportation. be.

この実施例では、掘削機としてズリの流体輸送設備を有
する例えばトンネル掘進機を用いる。
In this embodiment, for example, a tunnel boring machine having waste fluid transport equipment is used as the excavating machine.

即ち、ズリは流体によって掘進機後方の設備(貯蔵設備
或いは排出設備等)へ密閉状態で後送する。
That is, the waste is conveyed to equipment (storage equipment, discharge equipment, etc.) behind the excavator in a sealed state using fluid.

又、図中に示す鉱脈Aは、幅員B、長さし。Also, vein A shown in the diagram has width B and length.

深さHの範囲の大きさのものにして、その鉱石は放射性
物質を含有するものとする。
It is assumed that the ore has a size within a depth H and contains radioactive material.

先ず、準備作業として第1図に示す如く、鉱脈Aから距
離L0を離れ、作業時人体に影響がない場所に、作業設
備の搬入や掘削機器の据付等に必要な作業用空間として
の作業用横坑Iを予め形成する。
First, as a preparatory work, as shown in Figure 1, a work space is created at a distance L0 from the vein A, where the human body will not be affected during work, as a work space necessary for carrying in work equipment and installing excavation equipment. A horizontal shaft I is formed in advance.

作業用横坑Iから鉱脈へに対して掘進機1により水平に
第1坑r、の位置から掘削を開始し、ズリは掘進機1か
ら直接的に鉱石輸送管2を介して後方の設備へ流体によ
って輸送する。そして、必要に応じて掘進機1の掘削進
行に合わせて第6図で示す如く、セグメント5 (坑壁
崩壊防止材)を組立装置4によって組立てる。
Excavation is started horizontally from the working horizontal shaft I to the ore vein from the position of the first shaft R using the excavator 1, and the waste is directly transferred from the excavator 1 to the rear equipment via the ore transport pipe 2. Transport by fluid. Then, as necessary, as the excavation machine 1 progresses, the segments 5 (pit wall collapse prevention material) are assembled by the assembly device 4 as shown in FIG.

第1坑11が所定区間L+を掘削したところで、掘進機
1のカッターヘッド部及び機械本体部をセグメント5の
内径口よりも小径となるように縮小し、掘進機lを作業
用横坑■へ後退させる。
When the first shaft 11 has excavated a predetermined section L+, the cutter head and machine body of the excavator 1 are reduced to a diameter smaller than the inner diameter opening of the segment 5, and the excavator 1 is moved into the working horizontal shaft ■. make them retreat.

尚、上記する所定区間L1としては、掘進機前面のカッ
ターを連続作動によって掘削しても、その摩耗・寿命等
によって別途新しいカッターと交換する必要のない区間
、つまり、掘進機1による掘削途中で作業者がカッター
のメンテナンスの為、掘進機前面に出て鉱脈Aと直接接
触するようなことがなく、連続作動可能とする範囲に設
定するのが望ましい。
The above-mentioned predetermined section L1 is a section in which there is no need to replace the cutter with a new one due to its wear and lifespan even if the cutter on the front of the excavator is continuously operated, that is, during excavation by the excavator 1. It is desirable that the cutter be set in a range that allows continuous operation without the operator coming out to the front of the excavator and coming into direct contact with the vein A.

又、セグメント5は坑壁と坑内を隔離する部材ともなり
、鉱脈Aからの有害物質の拡散や坑内汚染の防止材とも
なるが、後述するように、空き坑の埋戻し後に掘進機1
が隣接して掘削したり、一部再掘削する場合の掘削可能
な強度と、坑壁崩壊防止となる強度を最低県有するもの
で、例えば無配筋のコンクリ−1−製のものである。
In addition, the segment 5 also serves as a member to isolate the pit wall and the inside of the mine, and also serves as a material to prevent the diffusion of harmful substances from the vein A and contamination inside the mine.
The tunnel must have the minimum strength to enable excavation when excavating or reexcavating a portion of the tunnel, and the strength to prevent collapse of the tunnel wall. For example, it is made of unreinforced concrete.

第1坑I、の掘削を終えて掘進機1が作業用横坑Iに後
退した後、作業者は必要な防護服を着用し、又、必要な
機器類を用いて掘進機1のカッターの交換等、メンテナ
ンスを行う。
After the excavation of the first tunnel I is completed and the excavator 1 retreats to the working side shaft I, the worker wears the necessary protective clothing and uses the necessary equipment to operate the cutter of the excavator 1. Perform maintenance such as replacement.

掘進機1が後退して空き坑になった第1坑■。The first pit ■, which became empty after the excavator 1 retreated.

に対しては、例えば、セメントモルタル等から成りセグ
メント5同様に掘進機1でも掘削可能な埋戻し材を充填
して埋戻す。この埋戻しにはコンクリートポンプ等を用
いて行う。
For example, the segment 5 is filled with a backfilling material made of cement mortar or the like and which can be excavated by the excavator 1 as well as the segment 5. This backfilling will be done using a concrete pump, etc.

掘進機lは再掘削の準備を終えた後、作業用横坑■内を
移動し、再び、鉱脈へに対する掘削作業を開始するが、
ここで前記する埋戻された第1坑■1の埋戻し材の固化
が遅く、これが掘進機lの掘進作業に於ける反力地盤と
して充分期待出来ない場合には、第1坑Itより適当な
ピッチ離れた例えば第3坑■3或いは第4坑■4の位置
を第2坑1.の位置より先に第1坑■1の掘削と同様の
手順で掘削する。ここで又所定区間L+を掘削を終了し
、掘進機1が後退して空き坑となった坑内は第1坑同様
に埋戻し材によって埋戻す。
After the excavation machine l finished preparing for re-excavation, it moved inside the work shaft ■ and started excavating the vein again, but
If the solidification of the backfilling material in the first hole (1) described above is slow and it cannot be expected to serve as a sufficient reaction ground in the excavation work of the excavator (1), it is more suitable than the first hole (It). For example, the position of the third hole ``3'' or the fourth hole ``4'' which is a certain pitch away from the second hole 1. Prior to the location, excavate using the same procedure as for drilling the first hole (1). Here again, the excavation of the predetermined section L+ is completed, and the tunnel, which has become empty due to the retreat of the excavator 1, is backfilled with backfilling material in the same manner as the first tunnel.

以上の手順を繰り返し、第2図、第3図に実線で示示す
ように作業用横坑Iのレベルに於ける第1坑I、から第
n坑I7の範囲での掘削が終了すると、次に、作業用横
坑Iを掘進機1の据付や掘削作業等に必要な範囲で上方
に拡張すると共に、下方を埋め戻し、作業用横坑Iの上
部に新たな作業用横坑■を形成して後、掘削機1をこれ
に移し、上記する掘削を終えた作業用横坑■のレベルの
上部鉱脈へに対してこの作業用横坑■のレベルに於いて
前述第1坑■1から第n坑IRの範囲での掘削同様の手
順により掘削を行い、この作業用横坑■のレベルに於け
る掘削が終了すると、更に、この作業用横坑■の上方に
新たに作業用横坑■・・を順次に形成して各横坑レベル
に於ける掘削を行う。
By repeating the above steps, as shown by the solid lines in Figures 2 and 3, when the excavation in the range from the 1st hole I to the nth hole I7 at the level of the working horizontal shaft I is completed, the next Then, the working horizontal shaft I will be expanded upward to the extent necessary for the installation of the excavator 1 and excavation work, etc., and the lower part will be backfilled, and a new working horizontal shaft ■ will be formed at the top of the working horizontal shaft I. After that, the excavator 1 is moved to this, and the excavator 1 is moved from the first shaft ■1 at the level of the working horizontal shaft ■ to the upper vein at the level of the working horizontal shaft ■ which has completed the excavation described above. Excavation is carried out using the same procedure as in the area of the n-th hole IR, and when the excavation at the level of this working horizontal shaft ■ is completed, a new working horizontal shaft is created above this working horizontal shaft ■. ②... will be formed one after another and excavation will be carried out at each horizontal shaft level.

斯くして、鉱脈へに対して第1区間L1に於ける掘削と
埋戻しを行った後、第1区間L1の端部(前端部)に於
いて、第1図に点線で示すように、作業用横坑Iに対応
して新たな作業用横坑1′を形成し、ここに掘進機1を
移し、この第2区間L2に於いて前記第1区間L1と同
様の手順で鉱脈へに対する掘削を行い、更に、第2区間
L2の掘削が終了すると、引き続いて必要な区間に亘っ
て順次に掘削し、鉱脈A全域の鉱石を採掘する。
After excavating and backfilling the ore vein in the first section L1, at the end (front end) of the first section L1, as shown by the dotted line in Fig. 1, A new working horizontal shaft 1' is formed corresponding to the working horizontal shaft I, the excavator 1 is moved there, and in this second section L2, the mine is penetrated by the same procedure as the first section L1. Excavation is performed, and when the excavation of the second section L2 is completed, the necessary sections are sequentially excavated to mine ore from the entire area of the vein A.

尚、上記する掘削作業に伴う一連の掘進機の操作・運転
は、作業者の安全作業を考慮して別途設けられた機体側
の操作室から行うか、或いは作業用横坑に設けられた操
作室より行う。
In addition, the series of operations and operations of the excavating machine accompanying the above-mentioned excavation work should be performed from a separate control room on the machine side, taking into account the safety of the workers, or from the control room installed in the work shaft. Conducted from the room.

又、第4図に示す掘削方法(掘削坑の配列)からすると
、既掘削の埋戻し坑を一部重複して掘削する方法であり
、ここでは、埋戻し坑の埋戻し材の一部がズリの中に含
まれるが、鉱脈の有効鉱石の全部が採鉱できる。
Also, considering the excavation method (arrangement of excavated pits) shown in Figure 4, it is a method of excavating some of the backfilling pits that have already been excavated, and in this case, some of the backfilling material in the backfilling pits is Although it is included in the waste, all of the effective ore in the vein can be mined.

第5図の掘削方法では、未掘削部分を残して掘削する場
合であり、掘削後に空き坑の埋戻しに使用した埋戻し材
が重複して掘削されるようなことはなく、全ズリが有効
鉱物とされて施工能率の向上が図られる。しかし、未掘
削部分が鉱脈全域を順次に掘削して行く上で作業上から
人間に悪影響を及ぼさないようにすることが必要である
In the excavation method shown in Figure 5, the excavation is performed while leaving an unexcavated area, and the backfilling material used to backfill the empty pit after excavation is not duplicated and the entire area is effectively removed. It is treated as a mineral to improve construction efficiency. However, it is necessary to ensure that the unexcavated portion does not have a negative impact on humans as the entire ore vein is sequentially excavated.

さて、掘進機1からの掘進機後方へのズリ輸送は、第7
図に示すように、給水タンク6から給水ポンプ7によっ
て給水管3を介して圧力水が掘進機前面側に供給され、
掘削されたズlJMcと一緒にサクションポンプ8(必
要に応じてズリ輸送管2の途中に複数の中継ポンプ8′
を設ける)によりズリ輸送管2を介して掘進機後方のズ
リ貯蔵タンク91〜9.、に貯蔵される。ここで、貯蔵
タンク9.が満杯となった後、貯蔵タンク9□〜97に
順次切り換えられて貯蔵されるもので、各貯蔵タンク9
.〜9nからのズリは処理設備へ別の輸送手段で送られ
る。
Now, the transport of waste from excavator 1 to the rear of the excavator is carried out by the 7th
As shown in the figure, pressurized water is supplied from the water tank 6 to the front side of the excavator via the water supply pipe 3 by the water supply pump 7.
A suction pump 8 (if necessary, multiple relay pumps 8' are installed in the middle of the waste transport pipe 2) together with the excavated waste lJMc.
), the waste storage tanks 91 to 9. are provided at the rear of the excavator via the waste transport pipe 2. , stored in . Here, storage tank 9. After the storage tanks 9□ to 97 are full, the storage is sequentially switched to storage tanks 9□ to 97.
.. The waste from ~9n is sent to the processing facility by separate transportation.

第2実施例 第8図乃至第11図は鉱脈を垂直に掘削する実施例を示
し、第8図は採掘しようとする鉱脈に対する掘削手順を
示す平面図、第9図は第8図のX −X線断面図(縦断
面図)、第1θ図は垂直掘進機(竪型掘削機)による施
工全体図、第11図はズリ輸送のフロー図である。
Second Embodiment FIGS. 8 to 11 show an example in which a vein is excavated vertically. FIG. 8 is a plan view showing the excavation procedure for the vein to be mined, and FIG. 9 is a The X-ray cross-sectional view (longitudinal cross-sectional view) and Fig. 1θ are an overall view of construction using a vertical excavator (vertical excavator), and Fig. 11 is a flow diagram of waste transportation.

この実施例でも上記の第1実施例の場合と同様に、掘削
機はズリの流体輸送設備を有し、ズリは流体によって掘
進機後方の設備(貯蔵設備或いは排出設備等)へ密閉状
態で後送する。
In this embodiment, as in the case of the first embodiment, the excavator has fluid transportation equipment for waste, and the waste is transported by fluid to equipment behind the excavator (storage equipment, discharge equipment, etc.) in a sealed state. send

又、図中に示す鉱脈Aも、幅員B、長さし。Also, vein A shown in the diagram has width B and length.

°深さ11の範囲の大きさのものにして、鉱石は放射性
物質を含有するものとする。
° It is assumed that the ore is of a size within a depth of 11 and contains radioactive material.

先ず、準備作業として第9図に示す如く、作業環境とし
て鉱脈Aからの有害物質の拡散や汚染が避けられる範囲
の距離L6を離れて作業時人体に影響がない場所に、作
業設備の搬入や掘削機器の据付等に必要な作業用空間1
1を、地上からの開削等によって予め形成する。
First, as a preparatory work, as shown in Fig. 9, the work equipment is transported to a place where the working environment is a distance L6 within the range where the diffusion and contamination of harmful substances from the mine A can be avoided and where the human body will not be affected during the work. Work space 1 required for installation of excavation equipment, etc.
1 is formed in advance by cutting and cutting from the ground.

この作業用空間■、から第8図に示すように、鉱脈Aに
対して掘進機1により垂直に第1坑11の位置から掘削
を開始する。
As shown in FIG. 8 from this working space (2), excavation is started perpendicularly to the vein A from the position of the first pit 11 by the excavator 1.

同時にズリは第1O図に示すように、掘進機lから直接
的に掘進機1に設けたサクションポンプ8により流体と
共にズリ輸送管2を介して揚げ、流体の補給は、上部作
業用空間I、に設置した給水タンク6から給水ポンプ7
によってズリ輸送に必要とする坑内最低水位を維持しつ
つ(例えば第11図に示すレベル検出器10等で検出し
つつ)圧力水を供給する。
At the same time, as shown in Fig. 1O, the waste is lifted up from the excavator 1 directly with the fluid by the suction pump 8 provided in the excavator 1 through the waste transport pipe 2, and the fluid is replenished from the upper working space I, Water supply pump 7 from water supply tank 6 installed in
Pressurized water is supplied while maintaining the minimum water level in the mine necessary for transporting waste (for example, while detecting it with the level detector 10 shown in FIG. 11).

尚、ここでも、必要に応じて掘進機lの掘削進行に合わ
せて第10図に示す如(、セグメント5(坑壁崩壊防止
材)を組立装置4によって組 。
Here, as needed, segments 5 (pit wall collapse prevention material) are assembled by the assembly device 4 as shown in FIG. 10 as the excavation machine 1 progresses.

立てる。stand up

又、第11図中の中継ポンプ8′はズリの輸送距離と圧
力損失に応じてズリ輸送管2の途中に適宜増設される。
Further, a relay pump 8' shown in FIG. 11 is appropriately added in the middle of the waste transport pipe 2 depending on the transport distance of the waste and the pressure loss.

第1坑1.の位置に於ける掘削が鉱脈下端に到達したと
ころで、掘進機1のカッターヘッド部及び機械本体部を
セグメント5の内径りよりも小径となるように縮小し、
掘進機1を作業用空間■、に引き上げる。
1st Pit 1. When the excavation at the position reaches the lower end of the vein, the cutter head and machine body of the excavator 1 are reduced to a diameter smaller than the inner diameter of the segment 5,
Raise the excavator 1 to the work space ■.

以上のように、第1坑1+の掘削を終えて掘進機lが作
業用空間1.に引き上げられた後、作業者は必要な防護
服を着用し、又、必要な機器類を用いて掘進機1のタソ
ターの交換等、メンテナンスを行う。
As described above, after excavating the first pit 1+, the excavator l moves into the working space 1. After being pulled up, the worker wears the necessary protective clothing and performs maintenance such as replacing the tassel of the excavator 1 using the necessary equipment.

掘進機1が引き上げられて空き坑になった第1坑1.に
対しては、例えば、セメントモルタル等から成りセグメ
ント5同様に掘進機1でも掘削可能な埋戻し材を充填し
て埋戻す。この埋戻しにはコンクリートポンプ等を用い
て行う。
The first pit 1, which became an empty pit after the excavator 1 was pulled up. For example, the segment 5 is filled with a backfilling material made of cement mortar or the like and which can be excavated by the excavator 1 as well as the segment 5. This backfilling will be done using a concrete pump, etc.

掘進機1は再掘削の準備を終えた後、作業用空間1.を
移動し、再び、鉱脈Aに対する掘削作業を開始するが、
ここで前記する埋戻された第1坑l、の埋戻し材の固化
が遅く、これが掘進機i、の掘進作業に於ける反力地盤
として充分期待出来ない場合には、第1坑11より適当
なピッチ離れた例えば第3坑I3或いは第4坑■4の位
置を第2坑■2の位置より先に第1坑I。
After finishing preparations for re-excavation, the excavator 1 moves into the working space 1. and began excavation work on vein A again, but
If the solidification of the backfilling material in the backfilled first pit 1 described above is slow and it cannot be expected to serve as a sufficient reaction ground during the excavation work of the excavator i, then the first pit 11 For example, the position of the third hole I3 or the fourth hole 4 is placed at an appropriate pitch away from the first hole I before the position of the second hole 2.

の掘削と同様の手順で掘削し、掘進機1が引き上げられ
て空き坑となった坑内は第1坑同様に埋戻し材によって
埋戻す。
Excavation is carried out in the same manner as in the first excavation, and the tunnel that has become empty after the excavation machine 1 is pulled up is backfilled with backfilling material in the same manner as the first tunnel.

以上の手順を繰り返し、第1実施例同様にして鉱脈全域
の掘削を行う。
The above procedure is repeated to excavate the entire vein in the same manner as in the first embodiment.

尚、一般に鉱脈への深さHは、竪型掘進機l先端のカッ
ターを交換することなく、掘削が可能な深さであり、掘
削途中でのカッター交換(摩耗・寿命等による)は、原
則として必要なく、カッターの交換は作業用空間■で行
うことが出来る。
Generally, the depth H to the vein is the depth that allows excavation without replacing the cutter at the tip of the vertical excavator, and as a general rule, the cutter cannot be replaced during excavation (due to wear, life, etc.). There is no need to replace the cutter, and the cutter can be replaced in the work space ■.

又、セグメントも第1実施例同様に、坑壁と坑内を隔離
する部材ともなるが、掘削した後、坑内を埋め戻し、一
部を再掘削する場合の掘削可能な強度と坑壁崩壊防止と
なる強度を最低県有するものであればよく、例えば無配
筋のコンクリート製のものである。
In addition, like the first embodiment, the segment also serves as a member that separates the pit wall and the inside of the mine, but after excavation, the inside of the mine is backfilled, and when a part of it is re-excavated, the segment has sufficient strength to allow excavation and prevention of collapse of the mine wall. For example, it may be made of unreinforced concrete.

第3実施例 第12図及び第13図は第2実施例と同様に鉱脈を垂直
に掘削する実施例を示し、第12図はレーズポーリング
マシンによる施工全体図、第13図はズリ輸送のフロー
図である。
Third Embodiment Figures 12 and 13 show an example in which a vein is excavated vertically in the same way as the second embodiment. Figure 12 is an overall view of the construction using a laser polling machine, and Figure 13 is the flow of waste transportation. It is a diagram.

この実施例では、鉱脈への上端部及び下端部より作業時
に人体に影響がない距離L0を鉱脈Aから離れて上位作
業用空間I、と、下位作業用空間Ib ′を形成する。
In this embodiment, an upper working space I and a lower working space Ib' are formed away from the vein A by a distance L0 from the upper and lower ends of the vein that will not affect the human body during work.

上位作業用空間■5は第2実施例と同様に開削或いは地
中に横坑によって形成し、下位作業用空間Ib ′は地
中に横坑によって形成する。
As in the second embodiment, the upper working space 5 is formed by cutting or a horizontal shaft underground, and the lower working space Ib' is formed by a horizontal shaft underground.

上位作業用空間I、側には、マシン本体1゜の駆動源1
bを据付け、下位作業用空間Ib ′側にはズリを受け
るホッパ及びズリの流体輸送の為、大径の礫を適当な礫
径とする為の砕石クラッシャを設けた砕石ユニット11
.サクションポンプ8、ズリ輸送管2、ズリ貯蔵タンク
91〜97、給水ポンプ7、給水管3、給水タンク6等
を据付ける。
On the side of the upper working space I, there is a drive source 1 for the machine body 1°.
b is installed, and on the side of the lower working space Ib' is a stone crushing unit 11 equipped with a hopper for receiving waste and a crushed stone crusher for transporting waste fluid and for reducing large diameter gravel to an appropriate gravel diameter.
.. The suction pump 8, waste transport pipe 2, waste storage tanks 91 to 97, water supply pump 7, water supply pipe 3, water supply tank 6, etc. are installed.

鉱脈へに対する掘削手順としては第2実施例同様のもの
であるが、この実施例のレーズポーリングマシンによる
掘削では、パイロット孔を掘削する必要があり、パイロ
ット孔掘削後、レーズポーリングマシンによって掘削さ
れて下方に落下するズリMcは、砕石ユニッ1−11内
のクラッシャによって、流体輸送可能な大きさに砕かれ
、サクションポンプ8よりズリ輸送管2内を輸送される
The procedure for drilling into the vein is the same as in the second embodiment, but in this embodiment, it is necessary to drill a pilot hole. The waste Mc falling downward is crushed by a crusher in the stone crushing unit 1-11 into a size that can be transported by fluid, and is transported through the waste transport pipe 2 by the suction pump 8.

ズリ貯蔵タンク9.〜97に貯蔵されたズリは、各タン
ク毎に別途設けられる輸送手段で鉱石処理設備に搬出さ
れる。
Waste storage tank9. The waste stored in tanks 97 to 97 is transported to the ore processing facility by transport means provided separately for each tank.

一方、給水タンク6内の水は給水ポンプ7によって給水
管3を通り、砕石ユニット11内設置のレベル検出器I
Oのレベル検知によって砕石ユニット11に導かれる。
On the other hand, the water in the water supply tank 6 is passed through the water supply pipe 3 by the water supply pump 7, and is passed through the level detector I installed in the stone crushing unit 11.
The stone is guided to the stone crushing unit 11 by detecting the level of O.

尚、図中の中継ポンプ8′は、ズリの輸送距離と圧力損
失に応じて適宜増設され、又、給水ポンプ7′は圧送管
長と圧損により適宜増設される。
The relay pump 8' shown in the figure is added as appropriate depending on the transportation distance of waste and pressure loss, and the water supply pump 7' is added as needed depending on the length of the pressure-feeding pipe and pressure loss.

斯くして鉱脈へに対して下位作業用空間■、  1側か
ら上位作業用空間I、側への掘削を行った後の空き坑は
、第2実施例同様に埋戻し材によって埋戻され、又、第
2実施例同様の手順によっ鉱脈全域に亘っての採鉱を行
うものである。
In this way, the empty pit after excavation from the lower working space ■, 1 side to the upper working space I, side toward the vein is backfilled with backfilling material as in the second embodiment, Further, mining is carried out over the entire area of the vein using the same procedure as in the second embodiment.

(効 果) 以上の実施例に述べた如く、この発明では、水平又は垂
直の掘削機にズリ輸送を流体によって輸送する設備を備
え、ズリは掘削機からズリの処理設備までが密閉された
輸送手段によって搬出されるから、鉱石の飛散や浮遊が
なく、鉱石からの有害物質の拡散等が防げ、作業環境の
汚染が少なく作業の安全衛生化が図られる。
(Effects) As described in the above embodiments, in this invention, a horizontal or vertical excavator is equipped with equipment for transporting waste by fluid, and waste is transported in a sealed manner from the excavator to the waste processing equipment. Since the ore is transported by means, there is no scattering or floating of the ore, the diffusion of harmful substances from the ore can be prevented, the work environment is less contaminated, and work safety and hygiene can be achieved.

又、鉱脈に対する掘削に於いて、既掘削の空き坑は掘削
機によって掘削可能な材料によって埋戻しを行いつつ、
これに隣接しての掘削を行うから、鉱脈全域に亘って鉱
石を全て採掘することが可能で、鉱石が貴重な鉱成分を
含む場合には特に有益である。
In addition, when excavating a mineral vein, the empty pit that has already been excavated is backfilled with material that can be excavated by an excavator.
Since the excavation is carried out adjacent to this, it is possible to mine all of the ore throughout the vein, which is particularly advantageous if the ore contains valuable ore components.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示し、第1図乃至第7図は第
1実施例を示すもので、第1図は鉱脈に対する掘削手順
を示す平面図、第2図は第1図のY −Y線断面図、(
縦断面図)第3図は第1図のX −X線断面図(横断面
図)、第4図及び第5図は掘削坑の配列図、第6図はト
ンネル掘進機による施工全体図、第7図はズリ輸送のフ
ロー図、第8図乃至第11図は第2実施例を示すもので
、第8図は鉱脈に対する掘削手順を示す平面図、第9図
は第8図のX −X線断面図(縦断面図)、第10図は
垂直掘進機(竪型掘削機)による施工全体図、第11図
はズリ輸送のフロー図、第12図及び第13図は第3実
施例を示すもので、第12図はレーズポーリングマシン
による施工全体図、第13図はズリ輸送のフロー図であ
る。 A・・・鉱脈、B・・・幅員、L・・・長さ、■・・・
深さ、1、  n、  m・・・・・作業用横坑、!、
−1n・・・第1坑〜第n坑、L1〜Ln・・・区間、
D・・・セグメントの内径、Mc・・・ズリ、l・・・
掘進機、2・・・ズリ輸送管、3・・・給水管、4・・
・組立装置、5・・・セグメント(坑壁崩壊防止材)、
6・・・給水タンク、7・・・給水ポンプ、8・・・サ
クションポンプ、9・・・ズリ貯蔵タンク、10・・・
レベル検出器、11・・・砕石ユニット。
The drawings show an embodiment of the present invention, and FIGS. 1 to 7 show the first embodiment. FIG. 1 is a plan view showing the excavation procedure for an ore vein, and FIG. Y-line cross-sectional view, (
(Longitudinal cross-sectional view) Figure 3 is a cross-sectional view taken along the line X-X of Figure 1 (cross-sectional view), Figures 4 and 5 are layout diagrams of the excavation shaft, Figure 6 is an overall diagram of construction using a tunnel boring machine, Fig. 7 is a flowchart of waste transportation, Figs. 8 to 11 show the second embodiment, Fig. 8 is a plan view showing the excavation procedure for the vein, and Fig. 9 is the X - An X-ray cross-sectional view (longitudinal cross-sectional view), Figure 10 is an overall view of construction using a vertical excavator (vertical excavator), Figure 11 is a flow diagram of waste transportation, and Figures 12 and 13 are the third embodiment. Fig. 12 is an overall view of construction using a lathe polling machine, and Fig. 13 is a flow diagram of waste transportation. A... Mineral vein, B... Width, L... Length, ■...
Depth, 1, n, m... horizontal shaft for work! ,
-1n...1st pit to nth pit, L1 to Ln...section,
D... Inner diameter of segment, Mc... Misalignment, l...
Excavator, 2... Waste transport pipe, 3... Water supply pipe, 4...
・Assembling equipment, 5... segments (mine wall collapse prevention material),
6... Water supply tank, 7... Water supply pump, 8... Suction pump, 9... Waste storage tank, 10...
Level detector, 11... stone crushing unit.

Claims (2)

【特許請求の範囲】[Claims] (1)掘削機により鉱脈を掘削し、掘削した鉱石を掘削
機後方の設備へ密閉状態で流体輸送しつつ所定区間の掘
削を行い、掘削後の空き坑は掘削機でも掘削可能な材料
で埋戻し、該埋戻し坑に隣接、若しくは適当なピッチ離
れた位置を順次に鉱脈の掘削と空き坑の埋戻しを繰り返
し、鉱脈全域を掘削することを特徴とする採鉱方法。
(1) An excavator excavates an ore vein, excavates a predetermined section while transporting the excavated ore with fluid in a sealed state to equipment behind the excavator, and fills the empty pit with material that can be excavated by an excavator. A mining method characterized by excavating the entire ore vein by repeatedly excavating the ore vein and backfilling the empty pit in a position adjacent to the backfilling pit or at an appropriate pitch apart.
(2)前記所定区間の長さを、掘削機のカッターヘッド
が連続作動による掘削可能な範囲内に設定した特許請求
の範囲第1項記載の採鉱方法。
(2) The mining method according to claim 1, wherein the length of the predetermined section is set within a range in which a cutter head of an excavator can continuously excavate.
JP5980286A 1986-03-17 1986-03-17 Mining method Pending JPS62215795A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5980286A JPS62215795A (en) 1986-03-17 1986-03-17 Mining method
CA000531529A CA1307298C (en) 1986-03-17 1987-03-09 Contamination reducing mining system for harmful ores
AU70003/87A AU574601B2 (en) 1986-03-17 1987-03-13 Ore extraction by excavating hole on hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5980286A JPS62215795A (en) 1986-03-17 1986-03-17 Mining method

Publications (1)

Publication Number Publication Date
JPS62215795A true JPS62215795A (en) 1987-09-22

Family

ID=13123762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5980286A Pending JPS62215795A (en) 1986-03-17 1986-03-17 Mining method

Country Status (3)

Country Link
JP (1) JPS62215795A (en)
AU (1) AU574601B2 (en)
CA (1) CA1307298C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562065A (en) * 2012-01-12 2012-07-11 北京科技大学 Sublevel open-stop and delayed filling mining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311342A (en) * 1978-10-30 1982-01-19 Deepsea Ventures, Inc. Dredge head with mechanical and pumping action
US4286822A (en) * 1979-12-14 1981-09-01 Conoco, Inc. Underspoil slurry haulage
AU7002381A (en) * 1980-04-30 1981-11-05 Flow Industries Inc. Hydraulic mining system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562065A (en) * 2012-01-12 2012-07-11 北京科技大学 Sublevel open-stop and delayed filling mining method

Also Published As

Publication number Publication date
AU574601B2 (en) 1988-07-07
CA1307298C (en) 1992-09-08
AU7000387A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
CN102472100B (en) Underground mining
CN104405437A (en) Mining method employing solid filling and fully-mechanized coal mining hybrid working face
PL194753B1 (en) Underground mining method
CN111535813B (en) Full-face shaft heading machine
Bullock Comparison of underground mining methods
JPH04227094A (en) Method for making waste harmless and device for putting said method into practice
CA2118988C (en) Non-entry method of underground excavation in weak or water bearing grounds
CN109281674A (en) A kind of hard-rock tunnel driving method using drill loader
Marovelli et al. The mechanization of mining
Okubo et al. Underground mining methods and equipment
JPS62215795A (en) Mining method
CN111828005B (en) Face mining method
RU2103507C1 (en) Method and cutter-loader machine for development of seam deposits of minerals
CN113266348A (en) Tunneling and anchoring all-in-one machine integrated with water jet system and construction method
Yamatomi et al. Surface mining methods and equipment
Grasso et al. Construction methods
Krauze et al. Mechanized shaft sinking system
CN215213500U (en) Control device for excavating and deslagging of vertical shaft at upper part of existing tunnel
Bäckblom et al. Choice of rock excavation methods for the Swedish deep repository for spent nuclear fuel
CN111456742B (en) High-grade common mining opposite-drawing working face roadway of thin coal seam and forming method thereof
Markov et al. Application and improvement of technologies for underground mining of placer deposits in Yakutia
Frangakis A review of lashing methods used in shaft sinking
CN113622931B (en) Rectangular shield for digging square tunnel and tunneling method thereof
Zou et al. Mechanical Underground Excavation in Rock
Matsui et al. Highwall stability due to punch mining at opencut coal mines