JPS62214627A - Liquid phase epitaxial growth process - Google Patents

Liquid phase epitaxial growth process

Info

Publication number
JPS62214627A
JPS62214627A JP5741086A JP5741086A JPS62214627A JP S62214627 A JPS62214627 A JP S62214627A JP 5741086 A JP5741086 A JP 5741086A JP 5741086 A JP5741086 A JP 5741086A JP S62214627 A JPS62214627 A JP S62214627A
Authority
JP
Japan
Prior art keywords
substrate
melt
melting solution
compound semiconductor
dummy wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5741086A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Michiharu Ito
伊藤 道春
Koji Hirota
廣田 耕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5741086A priority Critical patent/JPS62214627A/en
Publication of JPS62214627A publication Critical patent/JPS62214627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent any defective crystal such as pits from occuring on an epitaxial crystalline layer by a method wherein a dummy wafer is melted in a melting solution and then the composition of melting solution is changed to be bonded on a substrate while compound semiconductor crystals with differ ent compositions are formed into multilayered structure. CONSTITUTION:A dummy wafer 15 is brought into contact with melting solution 16 while a heating furnace is heated up to 490 deg.C to melt the constituent of dummy wafer 15 in the melting solution 16. Thus, the composition of melting solution 16 is shifted from a point A to another point B also to the part near the point of intersection of a liquid line 32 at 500 deg.C and a solid phase line 42 at X=0.3 changing to another melting solution 18 with the value of x=0.3 at that time equivalent to Hg1-xCdxTe. Next, an ampule 17 is further turned by 180 degrees in the arrow g direction while cooling down the heating furnace. Then, the substrate 13 is brought into contact with the melting solution 18 with Hg1-xCdxTe at x=0.3 to epitaxially grow a crystalline layer with Hg1-xCdxTe at x=0.3 as a crystalline layer of the second layer. Through these procedures, the crystalline layers can be formed continuously into multilayered structure by simple process.

Description

【発明の詳細な説明】 〔概要〕 基板上に組成の異なる化合物半導体結晶層を多層構造に
積層形成する傾斜型液相エピタキシャル成長方法であっ
て、例えばカドミウムテルル(CdTe)の基板に組成
の異なる水銀・カドミウム・テルル(Hg +−x C
d X T e )の化合物半導体結晶層を多層構造に
積層形成する際、基板の背面側に基板上に形成すべき化
合物半導体結晶を構成する成分元素を含むダミー基板を
設置し、このダミー基板を化合物半導体結晶層の形成用
の融液の中に融液温度を変化させて熔解し、融液の組成
を変化させた状態で基板上にその融液を付着させた後、
冷却することで、多層構造に組成の異なる化合物半導体
結晶を形成する。
[Detailed Description of the Invention] [Summary] A tilted liquid phase epitaxial growth method in which compound semiconductor crystal layers with different compositions are stacked in a multilayer structure on a substrate, for example, mercury with different compositions on a cadmium tellurium (CdTe) substrate.・Cadmium tellurium (Hg +-x C
When stacking compound semiconductor crystal layers of d After melting in a melt for forming a compound semiconductor crystal layer by changing the temperature of the melt and depositing the melt on a substrate with the composition of the melt changed,
By cooling, compound semiconductor crystals with different compositions are formed in a multilayer structure.

〔産業上の利用分野〕[Industrial application field]

本発明は傾斜型液相エピタキシャル成長方法に係り、特
に基板上に組成の異なる化合物半導体結晶層を多層構造
に形成する液相エピタキシャル成長方法に関する。
The present invention relates to a tilted liquid phase epitaxial growth method, and particularly to a liquid phase epitaxial growth method for forming compound semiconductor crystal layers having different compositions in a multilayer structure on a substrate.

赤外線検知素子等の光電変換装置を形成するには、一般
にカドミウムテルル(CdTe)のような化合物半導体
基板上にエネルギーギャップの狭い水銀・カドミウム・
テルル(Hg +−XCd xT e )の化合物半導
体結晶がエピタキシャル成長された材料が用いられてい
る。
To form photoelectric conversion devices such as infrared sensing elements, mercury, cadmium,
A material in which a compound semiconductor crystal of tellurium (Hg + -XCd xT e ) is epitaxially grown is used.

ところで、形成される検知素子の特性を変(1,させる
ために、CdTeの基板上にそれぞれX値の異なるHg
+−xCdxTeの結晶層を多層構造にエピタキシャル
成長して形成することが望まれ、その場合簡単な方法で
、形成されるエピタキシャル結晶層に結晶欠陥が発生し
ないようにした液相エピタキシャル成長方法が要望され
ている。
By the way, in order to change the characteristics of the formed sensing element (1), Hg with different X values is placed on the CdTe substrate.
It is desired to epitaxially grow a +-xCdxTe crystal layer into a multilayer structure, and in that case, there is a need for a liquid phase epitaxial growth method that is simple and prevents crystal defects from occurring in the formed epitaxial crystal layer. There is.

〔従来の技術〕[Conventional technology]

このようなHg +−x Cd x T eの結晶層を
X値を変動させて多層構造に形成する場合、前記したH
g +−x Cd X T eの内の水銀が易蒸発性の
物質であるので、第4図に示したような方法が採られて
いる。第4図は従来の液相エピタキシャル成長装置の説
明図で、図示するようにCdTeの基板lを挟持した一
対の基板設置治具2が、基板lの下部に基板1上に形成
すべきHg、−xCdxTeの結晶層形成用材料4を収
容した状態で石英アンプル3の内部に収容され、この石
英アンプル3の内部が排気された後、その端部aで封止
されている。
When forming such a crystal layer of Hg +-x Cd x Te into a multilayer structure by varying the X value, the above-mentioned Hg
Since mercury in g + -x Cd FIG. 4 is an explanatory diagram of a conventional liquid phase epitaxial growth apparatus. As shown in the figure, a pair of substrate setting jigs 2 holding a CdTe substrate 1 are placed under the substrate 1 to form Hg, -, which is to be formed on the substrate 1. The xCdxTe crystal layer forming material 4 is housed inside a quartz ampoule 3, and after the inside of this quartz ampoule 3 is evacuated, its end a is sealed.

このような液相エピタキシャル装置を加熱炉内に導入し
た後、Hg+うCdxTe結晶層形成材料4を熔融し、
該装置を矢印すに示すように180度回転した後、基板
1に形成材4の融液を付着させ、加熱炉の温度を低下さ
せることで、融液の温度を低下させ、基板上にHg+−
xCdXTeの結晶層を形成していた。
After introducing such a liquid phase epitaxial device into a heating furnace, the Hg + CdxTe crystal layer forming material 4 is melted,
After rotating the device 180 degrees as shown by the arrow, the melt of the forming material 4 is attached to the substrate 1, and the temperature of the heating furnace is lowered to lower the temperature of the melt, and Hg+ is deposited on the substrate. −
A crystal layer of xCdXTe was formed.

(発明が解決しようとする問題点〕 ところで、このようなHg+−xCdxTeの結晶層を
形成した基板1上に、X値を変化させた結晶層を多層構
造に形成する際、石英アンプル3を一旦破壊して基板を
取り出す必要があり、その場合基板1が大気に依って汚
染され、従ってこの汚染が原因でその後に形成されるX
値を変動させたHg +−xCd xT eの結晶層に
ビット等の結晶欠陥が発生する問題が生じる。
(Problems to be Solved by the Invention) By the way, when forming a multilayer structure of crystal layers with varying X values on the substrate 1 on which such a crystal layer of Hg+-xCdxTe is formed, the quartz ampoule 3 is It is necessary to destroy and take out the substrate, in which case the substrate 1 is contaminated by the atmosphere and therefore due to this contamination the X that is subsequently formed
A problem arises in that crystal defects such as bits occur in the crystal layer of Hg + -xCd xT e whose value is varied.

また石英アンプル3を一々破壊しなければ成らず、製造
に要するコストが掛かり過ぎる問題がある。
In addition, the quartz ampoule 3 must be destroyed one by one, and there is a problem in that the manufacturing cost is too high.

本発明は上記した問題点を除去し、簡単な方法で形成さ
れる多層構造のエピタキシャル結晶層にピット等の結晶
欠陥を発生しないようにした液相エピタキシャル成長方
法を提供する。
The present invention eliminates the above-mentioned problems and provides a liquid phase epitaxial growth method in which crystal defects such as pits are not generated in a multilayered epitaxial crystal layer formed by a simple method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液相エピタキシャル成長方法は、基板13の背
面側に融液を形成する材料16より構成されたダミーウ
ェハ15を設置し、該ダミーウェハ15を温度を変化さ
せた融液に溶解させて融液の組成を変動させ、該組成の
変動した融液を基板13に付着させて基Jfflla上
に組成の異なる化合物半導体結晶を多層構造に形成する
ことを特徴とする。
In the liquid phase epitaxial growth method of the present invention, a dummy wafer 15 made of a material 16 that forms a melt is placed on the back side of a substrate 13, and the dummy wafer 15 is dissolved in a melt whose temperature is changed to form a melt. The method is characterized in that the composition is varied and the melt with the varied composition is deposited on the substrate 13 to form compound semiconductor crystals with different compositions in a multilayer structure on the base Jfflla.

〔作用〕[Effect]

本発明の液相エピタキシャル成長方法は、基板13の背
面側に基板上に形成すべき半導体結晶層を構成する化合
物半導体のダミーウェハ15を設け、このダミーウェハ
15をエピタキシャル成長用の材料16の融液に融解さ
せて融液の組成を変動させ、それによって組成の異なる
化合物半導体結晶層を、簡単な方法で多層構造に基板1
3上にエピタキシャル成長させる。
In the liquid phase epitaxial growth method of the present invention, a dummy wafer 15 of a compound semiconductor constituting a semiconductor crystal layer to be formed on the substrate is provided on the back side of the substrate 13, and this dummy wafer 15 is melted in a melt of a material 16 for epitaxial growth. By changing the composition of the melt, compound semiconductor crystal layers with different compositions can be easily formed into a multilayer structure on the substrate 1.
Epitaxial growth is performed on 3.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法に用いる装置の断面図で図示する
ように、一対の石英ガラスよりなる基板設置治具11,
12の間には、CdTeよりなるエピタキシャル成長用
基板13と石英板14を挟んで基板13の背面側にはC
dTeよりなるダミーウェハ15が設置され、該ダミー
ウェハ15の下部には基板上にエピタキシャル成長すべ
きHg +−x Cd xT e (x=0.2)の材
料16が設置され、これ等が石英アンプル17内に挿入
された後、排気されてその一端を封止されている。
FIG. 1 is a cross-sectional view of an apparatus used in the method of the present invention. As shown in FIG.
12, an epitaxial growth substrate 13 made of CdTe and a quartz plate 14 are sandwiched between them, and on the back side of the substrate 13, a C
A dummy wafer 15 made of dTe is installed, and a material 16 of Hg +-x Cd xTe (x=0.2) to be epitaxially grown on the substrate is placed below the dTe wafer 15, and these are placed in a quartz ampoule 17. After being inserted into the chamber, it is evacuated and one end of it is sealed.

ここで加熱炉の温度を500℃まで上昇させて、Hg 
+−x Cd XT eの材料16を溶融させる。この
状態を第2図(a)に示す。
Here, the temperature of the heating furnace was raised to 500°C, and the Hg
+−x Cd XT e material 16 is melted. This state is shown in FIG. 2(a).

図で16は熔融したHg +−x Cd X T eの
材料で13はCdTeの基板、14は石英板、15はダ
ミーウェハである。
In the figure, 16 is a molten Hg + -x Cd X Te material, 13 is a CdTe substrate, 14 is a quartz plate, and 15 is a dummy wafer.

次いでこの状態より加熱炉の温度を降下させ、融液工6
の温度を475℃に迄降下させる。すると第3図に示し
たCdとTeの状態図の温度が475℃の液相線3Iと
、χ値が0.2の固相線41の交点Aの位置の状態に融
液16が存在する。
Next, the temperature of the heating furnace is lowered from this state, and melt processing 6 is carried out.
temperature is lowered to 475°C. Then, the melt 16 exists at the intersection A of the liquidus line 3I at a temperature of 475°C and the solidus line 41 at a χ value of 0.2 in the phase diagram of Cd and Te shown in FIG. .

この時に第2図(a)の状態を矢印eに示すように18
0度回転させて第2図(b)の状態となし、基板13に
融液16を接触させて基板13上にx−0,2の値のH
g +−x Cd X T eの結晶層を第1層目のエ
ピタキシャル層として形成する。
At this time, the state of FIG. 2(a) is changed to 18 as shown by arrow e.
Rotate the substrate 13 by 0 degrees to obtain the state shown in FIG.
A crystal layer of g + -x Cd X Te is formed as a first epitaxial layer.

次いで第1層目のエピタキシャル層を形成した後、第2
図(C1に示すように第2図(′b)の状態より、矢印
fに示すように、180度回転させて、前記した融液1
6にダミーウェハ15を接触させ、加熱炉の温度を49
0℃に上昇させて融液16にダミーウェハ15の成分を
熔解させる。
Next, after forming the first epitaxial layer, the second epitaxial layer is formed.
As shown in Figure (C1), from the state of Figure 2 ('b), as shown by the arrow f, rotate the melt 1 as described above.
6, the dummy wafer 15 is brought into contact with the furnace, and the temperature of the heating furnace is set to 49.
The temperature is raised to 0° C., and the components of the dummy wafer 15 are melted into the melt 16.

するとこの融液16の組成は第3図のA点の組成よりB
点の組成に移行し、500℃の液相線32とX−0,3
の固相線42の交点の近傍に移行し、その時の融液はに
=0.3の値のHg+−xcdXTeの融液18となる
Then, the composition of this melt 16 is determined from the composition at point A in FIG.
Moving to the composition of the point, the liquidus line 32 at 500℃ and X-0,3
, and the melt at that time becomes a melt 18 of Hg+-xcdXTe with a value of 0.3.

次いで加熱炉の温度を低下させながら、アンプル17を
更に矢印gに示すように180度回転させて第2rI!
J(d)の状態とする。そして基板13にx −0,3
のHg +−x Cd XT eの融液18を接触させ
て、基板上にx =0.3のHg +−x Cd x 
T eの結晶層を第2層の結晶層としてエピタキシャル
成長させる。
Next, while lowering the temperature of the heating furnace, the ampoule 17 is further rotated by 180 degrees as shown by the arrow g to perform the second rI!
The state is J(d). And x −0,3 on the substrate 13
A melt 18 of Hg +-x Cd XT e of x = 0.3 is brought into contact with the substrate.
A crystal layer of Te is epitaxially grown as a second crystal layer.

このようにすれば、簡単な方法で、基板をいちいち外部
に取り出して、アンプル内の融液の組成を変化させる必
要が無くなり、基板上にX値の異なるH g +−x 
Cd X T eの結晶層を連続的に多層構造に形成す
ることができる。
In this way, there is no need to take each substrate out to the outside and change the composition of the melt in the ampoule using a simple method.
Cd X Te crystal layers can be continuously formed into a multilayer structure.

以上述べた実施例の他に、例えばCdTeの基板上に第
1層としてx =0.3のHg+−xcdx7eの結晶
層を形成し、その上に第2層としてx =0.2のHg
 +−x Cd X T eの結晶層を連続的に多層構
造に形成する場合には、最初の融液の組成としてx −
0,3のHg +アCdxTeの融液を用い、加熱炉の
温度を475℃とする。
In addition to the embodiments described above, for example, a crystal layer of Hg+-xcdx7e with x = 0.3 is formed on a CdTe substrate as a first layer, and a Hg
+-x When forming crystal layers of Cd X Te continuously into a multilayer structure, the initial melt composition is x-
A melt of 0.3 Hg+A CdxTe is used, and the temperature of the heating furnace is set to 475°C.

このようにすると第3図に示す475℃の液相線31と
X=0.3の固相線42の交点Cの状態で第1層のx 
=0.3のHg+−xCdxT eの結晶層を形成する
ことができる。
In this way, the x of the first layer is
A crystal layer of Hg+-xCdxTe of =0.3 can be formed.

次いでダミーウェハにHg T eの結晶を用い、加熱
炉の温度を485℃に迄上昇させ、HgTeのダミーウ
ェハの成分をx =0.3のHg r−x Cd XT
 eの融液に溶解させることで、融液の組成は第3図の
D点に示す状態となり、X=0.2のHg +−x C
d X T eの融液が得られる。この融液に基板を接
触させることでX=0.2のHg+−xCdxTeの結
晶層が第2層のエピタキシャル層として形成される。
Next, using a Hg Te crystal as a dummy wafer, the temperature of the heating furnace was raised to 485°C, and the composition of the HgTe dummy wafer was changed to Hg r-x Cd XT with x = 0.3.
By dissolving it in the melt of e, the composition of the melt becomes the state shown at point D in Figure 3, and Hg + - x C of X = 0.2
A melt of d X T e is obtained. By bringing the substrate into contact with this melt, a crystal layer of Hg+-xCdxTe with X=0.2 is formed as a second epitaxial layer.

尚、第3図で51はHgとCdO共晶点を結んだ曲線を
示し、33は450℃に於ける液相線、34は525℃
に於ける液相線を示す。また43はX=0.4の固相線
、44はx=0.5の固相線、45はx==o、eの固
相線を示す。
In Fig. 3, 51 indicates the curve connecting the eutectic point of Hg and CdO, 33 indicates the liquidus line at 450°C, and 34 indicates the curve at 525°C.
The liquidus line at . Further, 43 indicates a solidus line for X=0.4, 44 indicates a solidus line for x=0.5, and 45 indicates a solidus line for x==o, e.

また第3図の横軸はHg +−x Cd X T 13
結晶に於けるCdの原子分率を示し、縦軸はIfgの原
子分率を示す。
Also, the horizontal axis in Figure 3 is Hg +-x Cd XT 13
It shows the atomic fraction of Cd in the crystal, and the vertical axis shows the atomic fraction of Ifg.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によれば、組成を変動
した化合物半導体のエピタキシャル層が基板上に容易に
多層構造に形成でき、赤外線検知素子等の製造に本発明
の方法を用いれば効果は大である。
As described above, according to the method of the present invention, an epitaxial layer of a compound semiconductor having a varied composition can be easily formed in a multilayer structure on a substrate, and the method of the present invention can be used to produce infrared sensing elements, etc. is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いる装置の断面図、第2図(
a)より第2図(d)までは、本発明の方法の手順を示
す説明図、 第3図は本発明の方法に用いるHgとCdの状態図、第
4図は従来の液相エピタキシャル成長方法を示す説明図
である。 図に於いて、 11.12は基板設置治具、13は基板、14は石英板
、15はダミーウェハ、16はHg )−X Cd x
 T e (x=0.2)材、17はアンプル、18は
Hg l−x Cd xT a (x=0.3)材、3
1,32.33.34は液相線、41.42.43.4
4.45は固相線、51は共晶点を結んだ曲線を示す。 (X=0.2)  錆明り方法に用−ろ袋L/)新釦図
第 1 図 Hg+−x cd xTe (X=0.2)/):AW
&択散421第 2 図 (Q) 基[Hql−xcd xTe(X=0.2)t#Mti
Jにm、。 第 2 図 (b) ゲミーウユフ\にHg+−にcd X Te (Xc−
02)tJ釣碑した伏葱固m2  図 rc) fi紘Hg l−x cd xTe (Xc−0,3)
tr 、%1is1M−rygl<aEU第2図(d) 一一ヤI−IQ丙屑5すP社
Figure 1 is a sectional view of the apparatus used in the method of the present invention, Figure 2 (
Figures a) to 2(d) are explanatory diagrams showing the steps of the method of the present invention, Figure 3 is a phase diagram of Hg and Cd used in the method of the present invention, and Figure 4 is a conventional liquid phase epitaxial growth method. FIG. In the figure, 11.12 is a substrate installation jig, 13 is a substrate, 14 is a quartz plate, 15 is a dummy wafer, and 16 is Hg)-X Cd x
T e (x=0.2) material, 17 is ampoule, 18 is Hg l-x Cd xT a (x=0.3) material, 3
1, 32.33.34 is liquidus, 41.42.43.4
4.45 is a solidus line, and 51 is a curve connecting eutectic points. (X=0.2) For the rust brightening method - Roto bag L/) New button diagram Figure 1 Hg+-x cd xTe (X=0.2)/):AW
& Selection 421 Figure 2 (Q) Group [Hql-xcd xTe(X=0.2)t#Mti
J to m. Fig. 2 (b) cd X Te (Xc-
02) tJ fishing monument m2 Figure rc) fi Hg l-x cd xTe (Xc-0,3)
tr, %1is1M-rygl<aEUFigure 2 (d)

Claims (1)

【特許請求の範囲】[Claims] 一対の基板設置治具(11、12)に化合物半導体基板
(13)を挟持し、該基板(13)の下部に基板上に形
成すべき化合物半導体結晶の材料(16)の融液を設け
たアンプル(17)を回転させ、基板(13)上に前記
融液を付着させた後、融液を冷却して基板(13)上に
化合物半導体結晶層を成長させる方法であって、前記基
板(13)の背面側に融液を形成する材料(16)より
構成されたダミーウェハ(15)を設置し、該ダミーウ
ェハ(15)を、温度を変化させた融液に接触させて溶
解させることで該融液の組成を変動させ、該組成の変動
した融液を基板(13)に付着させて基板(13)上に
組成の異なる化合物半導体結晶を多層構造に形成するこ
とを特徴とする液相エピタキシャル成長方法。
A compound semiconductor substrate (13) was sandwiched between a pair of substrate installation jigs (11, 12), and a melt of a compound semiconductor crystal material (16) to be formed on the substrate was provided at the bottom of the substrate (13). A method for growing a compound semiconductor crystal layer on the substrate (13) by rotating the ampoule (17) and depositing the melt on the substrate (13), cooling the melt and growing a compound semiconductor crystal layer on the substrate (13). A dummy wafer (15) made of a material (16) that forms a melt is placed on the back side of the wafer 13), and the dummy wafer (15) is brought into contact with the melt at a changed temperature and melted. Liquid phase epitaxial growth characterized by varying the composition of the melt and depositing the melt with the varied composition on the substrate (13) to form compound semiconductor crystals with different compositions in a multilayer structure on the substrate (13). Method.
JP5741086A 1986-03-14 1986-03-14 Liquid phase epitaxial growth process Pending JPS62214627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5741086A JPS62214627A (en) 1986-03-14 1986-03-14 Liquid phase epitaxial growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5741086A JPS62214627A (en) 1986-03-14 1986-03-14 Liquid phase epitaxial growth process

Publications (1)

Publication Number Publication Date
JPS62214627A true JPS62214627A (en) 1987-09-21

Family

ID=13054873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5741086A Pending JPS62214627A (en) 1986-03-14 1986-03-14 Liquid phase epitaxial growth process

Country Status (1)

Country Link
JP (1) JPS62214627A (en)

Similar Documents

Publication Publication Date Title
US7537659B2 (en) Method of obtaining a CdTe or CdZnTe single crystal and the single crystal thus obtained
US3628998A (en) Method for growth of a mixed crystal with controlled composition
JPS62214627A (en) Liquid phase epitaxial growth process
JPH01197399A (en) Preperation of monocrystal cadmium telluride mercury layer
US3826700A (en) Welding method for fabricating large area single crystals and the product thereof
Pandey A new method for the growth of Pb1− xSnxTe single crystals
JPH042689A (en) Method for hetero-epitaxial liquid phase growth
JPH0348431A (en) Liquid epitaxial crystal deposition device
JPH0352241A (en) Liquid-phase epitaxy
JPS634627A (en) Jig for liquid phase epitaxial crystal growth
SU1633032A1 (en) Method of producing semiconductor hetero-structures
JPH01201094A (en) Method for liquid-phase epitaxial growth
JP3030584B2 (en) Method and apparatus for producing compound semiconductor single crystal
JPH03177019A (en) Manufacture of liquid phase epitaxial crystal plate
JPH04324927A (en) Manufacture of compound semiconductor crystal
JPH03204923A (en) Manufacture of compound semiconductor crystal
JP2556159B2 (en) Method for manufacturing semiconductor crystal
Durand et al. Method of preparing a crystalline ingot of Hg 1-x< 1ux> s Cd x s Te
JPH04317488A (en) Growing method for single crystal
JPH0260226B2 (en)
JPH04187589A (en) Jig for liquid-phase epitaxial crystal growth and production of multiple semiconductor crystal using the same jig
JPH02308521A (en) Liquid-phase epitaxial crystal growth method
JPS63137436A (en) Liquid phase epitaxial growing system
JPH02263433A (en) Liquid phase epitaxial growth
JPH0536732A (en) Jig for liquid phase epitaxial crystal growth and manufacture of multi-component semiconductor crystal using this jig