JPH03204923A - Manufacture of compound semiconductor crystal - Google Patents

Manufacture of compound semiconductor crystal

Info

Publication number
JPH03204923A
JPH03204923A JP34448989A JP34448989A JPH03204923A JP H03204923 A JPH03204923 A JP H03204923A JP 34448989 A JP34448989 A JP 34448989A JP 34448989 A JP34448989 A JP 34448989A JP H03204923 A JPH03204923 A JP H03204923A
Authority
JP
Japan
Prior art keywords
crystal
melt
compound semiconductor
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34448989A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ueda
敏之 上田
Kosaku Yamamoto
山本 功作
Masahiro Tanaka
昌弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34448989A priority Critical patent/JPH03204923A/en
Publication of JPH03204923A publication Critical patent/JPH03204923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To form Hg1-xCdxTe crystal in a layer in the fluctuated state of Hg composition ratio on a sapphire substrate whereon a CdTe crystal is formed by a method wherein the second compound semiconductor crystal in different composition from that of a compound semiconductor crystal is formed in a layer on the crystal by bringing fused melt into contact with the compound semiconductor crystal to perform the liquid crystal epitaxial growing process. CONSTITUTION:When a substrate 11 whereon CdTe crystal layer 12 is formed and a melt 13 of Hg0.235Cd0.0183Te0.747 are oppositely arranged to be sealed in a sealed tube 14 at a specific interval while the sealed tube 14 is heated at the temperature of 550 deg.C for 72 hours, the CdTe crystal 12 is converted into Hg1-xCdxTe (x=0.3) crystal 15. Next, the melt 13 of Hg0.235Cd0.0183Te0.747 is converted into Hg1-xCdxTe (x=0.21) by cooling down the melt 13 to liquid crystal curve. Finally, when the melt 13 is brought into contact with the substrate 11, the second layer comprising Hg1-xCdxTe (x=0.21) crystal 16 is formed on the first layer comprising Hg1-xCdxTe (x=0.3) crystal 15 so that Hg1-xCdxTe crystal indifferent X value may be formed in a layer neither breaking down the sealing tube 14 nor exchanging the melt for epitaxial growth.

Description

【発明の詳細な説明】 〔概 要〕 水銀を含む化合物半導体結晶の製造方法に関し、基板上
に水銀を含む化合物半導体結晶を、その結晶を構成する
原子の組成を変化させて多層構造に積層するのを目的と
し、 基板上に形成すべき化合物半導体結晶の構成原子を含む
結晶層を、前記基板上に予め形成した後、該結晶層を形
成した基板と該基板上に形成すべき化合物半導体結晶を
構成する原子で構成されたエピタキシャル成長用メルト
とを封管内に設置し、該封管を加熱して、前記結晶層と
、前記エピタキシャル成長用メルトを溶融した溶融メル
トと、該溶融メルトより蒸発した蒸気の三相平衡による
等温気相成長方法で前記結晶層を化合物半導体結晶に変
換した後、 前記溶融メルトの温度を降下させて、該溶融メルトに前
記化合物半導体結晶を接触させて液相エピタキシャル成
長方法で、該化合物半導体結晶上に該結晶と組成の異な
る第2の化合物半導体結晶を積層形成することで構成す
る。
[Detailed Description of the Invention] [Summary] A method for manufacturing a compound semiconductor crystal containing mercury, in which compound semiconductor crystals containing mercury are stacked on a substrate in a multilayer structure by changing the composition of atoms constituting the crystal. For the purpose of this, a crystal layer containing the constituent atoms of a compound semiconductor crystal to be formed on a substrate is formed in advance on the substrate, and then the substrate on which the crystal layer is formed and the compound semiconductor crystal to be formed on the substrate are formed. A melt for epitaxial growth composed of atoms constituting the above is placed in a sealed tube, and the sealed tube is heated to produce a molten melt obtained by melting the crystal layer and the melt for epitaxial growth, and vapor evaporated from the molten melt. After converting the crystal layer into a compound semiconductor crystal by an isothermal vapor phase growth method using a three-phase equilibrium, the temperature of the molten melt is lowered, and the compound semiconductor crystal is brought into contact with the molten melt, and then the crystal layer is converted into a compound semiconductor crystal by a liquid phase epitaxial growth method. , a second compound semiconductor crystal having a composition different from that of the compound semiconductor crystal is laminated on the compound semiconductor crystal.

〔産業上の利用分野〕[Industrial application field]

本発明は水銀を含む化合物半導体結晶の製造方法に係り
、特に該化合物半導体結晶を構成する原子の組成を変化
させた結晶を多層構造に積層形成する方法に関する。
The present invention relates to a method for manufacturing a compound semiconductor crystal containing mercury, and more particularly to a method for forming a multilayer structure of crystals in which the composition of atoms constituting the compound semiconductor crystal is changed.

赤外線検知素子の形成材料として、サファイア基板上に
形成したカドミウムテルル(CdTe)のような化合物
半導体結晶上に、エネルギーバンドギャップの狭い水銀
・カドミウム・テルル(Hgl−xCdXTe)の化合
物半導体結晶をエピタキシャル成長して形成した基板が
用いられている。
As a material for forming an infrared sensing element, a compound semiconductor crystal of mercury-cadmium-tellurium (Hgl-xCdXTe) with a narrow energy band gap is epitaxially grown on a compound semiconductor crystal such as cadmium tellurium (CdTe) formed on a sapphire substrate. A substrate formed using the same method is used.

このようなI(g、XCd工Teの結晶は、X値が異な
ると、その結晶のエネルギーバンドギャップも異なり、
該結晶で製造した赤外線検知素子で検知できる赤外線の
波長も異なるようになる。
In such a crystal of I(g,
The wavelength of infrared rays that can be detected by an infrared sensing element made of the crystal also differs.

また該HgI−x cd、 Teの結晶の厚さが薄い程
、高感度に赤外線を検知するとされている。
It is also said that the thinner the HgI-x cd, Te crystal is, the more sensitive it is to detect infrared rays.

ところでCdTe結晶上にHgr−x C(!+ Te
結晶を例えば液相エピタキシャル成長方法を用いて薄く
形成すると、CdTe結晶を構成する原子とl(g+□
Cd、 Te結晶を構成する原子との間で相互拡散を生
じるようになり、所望の組成のHg1−x Cdx T
eの結晶が得られない。
By the way, Hgr-x C(!+ Te
When a crystal is formed thinly using, for example, a liquid phase epitaxial growth method, the atoms constituting the CdTe crystal and l(g+□
Interdiffusion occurs between Cd and the atoms constituting the Te crystal, resulting in a desired composition of Hg1-x Cdx T
Crystals of e cannot be obtained.

そこで、最近はCdTe結晶上にバッファ層として高X
値のHgl−x CdX Te結晶を形成した後、更に
その上に低X値のHgl−x Cdx Te結晶を薄く
形成する技術の開発が望まれている。
Therefore, recently, high-X
It is desired to develop a technique for forming a Hgl-x Cdx Te crystal with a low X value and then forming a thin Hgl-x Cdx Te crystal with a low X value thereon.

〔従来の技術〕[Conventional technology]

従来、このようなCdTe結晶上に高X値のHgl−x
Cdx Te結晶を成長した後、その上に低xjKHg
+−xCd、 Te結晶を成長する方法は、第3図(a
)に示すように、水6m (Hg) とカドミウム(C
d)とテルル(Te)とを所定重量秤量し、溶融後、固
化して形成したHgl−x cdX Te(に=0.3
)のエピタキシャル成長用メルト(合金)■と、基板設
置治具2に設置したCdTe結晶を形成したサファイア
基板3とを、前記エピタキシャル成長用メルト1とCd
Te結晶を形成したサファイア基板3とが対向するよう
に封管4内に設置する。
Conventionally, Hgl-x with a high X value was deposited on such a CdTe crystal.
After growing Cdx Te crystal, low xj KHg on top of it.
The method for growing +-xCd, Te crystals is shown in Figure 3 (a
), 6m of water (Hg) and cadmium (C
Hgl-x cdX Te (=0.3
) and the sapphire substrate 3 on which a CdTe crystal is formed, which is placed on the substrate installation jig 2, are placed between the epitaxial growth melt 1 and Cd
It is placed in a sealed tube 4 so that it faces a sapphire substrate 3 on which a Te crystal is formed.

そして上記封管4を加熱炉内の炉芯管(図示せず)の内
部に挿入し、第3図(b)に示すように、前記エピタキ
シャル成長用メルト1を溶融して該溶融したメルトに、
前記封管4を回転させてCdTe結晶を形成したサファ
イア基板3に接触させ、該溶融したエピタキシャル成長
用メルト1の温度を降下させながら基板上に第1層のH
g1−x Cd、 Te(x=0.3)を液相エピタキ
シャル成長する。
Then, the sealed tube 4 is inserted into a furnace core tube (not shown) in a heating furnace, and as shown in FIG. 3(b), the epitaxial growth melt 1 is melted and the melted melt is
The sealed tube 4 is rotated and brought into contact with the sapphire substrate 3 on which a CdTe crystal is formed, and a first layer of H is deposited on the substrate while lowering the temperature of the melted epitaxial growth melt 1.
g1-x Cd, Te (x=0.3) are grown by liquid phase epitaxial growth.

次いで上記封管4を割って基板を取り出し、図示しない
が、再び他の封管内に前記Hg+−x Cdx Te(
x=0.3)を成長したサファイア基板と、x =0.
2のHgl−x Cdz Teのエピタキシャル成長用
メルトとを封入し、前記したようにして、第1層のHg
l−エCd、 Te(x=0.3)の結晶を形成したサ
ファイア基板上にx =0.2のHgH−xCd、 T
eの結晶を第2層の結晶として液相エピタキシャル成長
により形成していた。
Next, the sealed tube 4 is broken, the substrate is taken out, and the Hg+-x Cdx Te(
A sapphire substrate on which x = 0.3) was grown, and a sapphire substrate on which x = 0.3) was grown.
The Hgl-x Cdz Te epitaxial growth melt of 2.
HgH-xCd with x = 0.2, T
The crystal of e was used as the second layer crystal and was formed by liquid phase epitaxial growth.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記した従来の方法では第1層のHgl−9Cd
、 Teの結晶を形成したサファイア基板3を取り出ず
際に、−々封管4を破損しなければ成らない問題があり
、封管の損失が大である問題がある。
However, in the conventional method described above, Hgl-9Cd in the first layer
, There is a problem in that the sealed tube 4 must be damaged when the sapphire substrate 3 on which Te crystals are formed is not removed, and there is a problem in that the loss of the sealed tube is large.

また封管を破損してエピタキシャル結晶を形成した基板
を取り出す際に、該基板が大気に触れて汚染する問題が
あり、工程が煩雑で容器を破損する必要があり問題が多
い。
Furthermore, when the sealed tube is broken and the substrate on which the epitaxial crystal has been formed is taken out, there is a problem that the substrate comes into contact with the atmosphere and becomes contaminated, and the process is complicated and the container needs to be damaged, which causes many problems.

また組成の異なった第2層のエピタキシャル結晶成長用
のHgl−x Cdg Teのメルトを作り、第1層の
エピタキシャル結晶成長用のHgl−x CdつTeの
メルトと交換する必要があり、第1層のエピタキシャル
結晶の成長の際に使用したメルトは廃棄する等、材料の
損失が大きい。
It is also necessary to create a melt of Hgl-x Cdg Te for epitaxial crystal growth of the second layer with a different composition and replace it with a melt of Hgl-x Cd Te for epitaxial crystal growth of the first layer. The melt used to grow the epitaxial crystal of the layer must be discarded, resulting in a large loss of material.

本発明は上記した問題点を解決し、封管を破損すること
なく、またエピタキシャル結晶の成長用メルトを交換す
ることなく、簡単な方法でCdTe結晶を形成したサフ
ァイア基板上にHg+−x Cdx Teの結晶を水銀
の組成比を変動させた状態で多層に形成する方法の提供
を目的とする。
The present invention solves the above-mentioned problems, and produces Hg+-x Cdx Te on a sapphire substrate on which a CdTe crystal is formed by a simple method without damaging the sealed tube or replacing the melt for growing the epitaxial crystal. The object of the present invention is to provide a method for forming multilayer crystals with varying composition ratios of mercury.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の方法は、基板上に形成すべ
き化合物半導体結晶の構成原子を含む結晶層を、前記基
板上に予め形成した後、該結晶層を形成した基板と該基
板上に形成すべき化合物半導体結晶を構成する原子で構
成されたエピタキシャル成長用メルトとを封管内に設置
し、該封管を加熱して、前記結晶層と、前記エピタキシ
ャル成長用メルトを溶融した溶融メルトと、該溶融メル
トより蒸発した蒸気の三相平衡による等温気相成長方法
で前記結晶層を化合物半導体結晶に変換した後、 前記溶融メルトの温度を降下させて、該溶融メルトに前
記化合物半導体結晶を接触させて液相エピタキシャル成
長方法で、該化合物半導体結晶上に該結晶と組成の異な
る第2の化合物半導体結晶を積層形成することで構成す
る。
The method of the present invention for achieving the above object includes forming a crystal layer containing constituent atoms of a compound semiconductor crystal to be formed on a substrate in advance on the substrate, and then disposing the substrate on which the crystal layer is formed and the substrate. A melt for epitaxial growth composed of atoms constituting a compound semiconductor crystal to be formed is placed in a sealed tube, and the sealed tube is heated to melt the crystal layer and the melt for epitaxial growth; After converting the crystal layer into a compound semiconductor crystal by an isothermal vapor phase growth method using three-phase equilibrium of vapor evaporated from the molten melt, the temperature of the molten melt is lowered, and the compound semiconductor crystal is brought into contact with the molten melt. A second compound semiconductor crystal having a composition different from that of the compound semiconductor crystal is layered on the compound semiconductor crystal using a liquid phase epitaxial growth method.

〔作 用〕[For production]

CdTe結晶を形成したサファイア基板と、Hg+−x
Cd、 Teのメルトとを、該CdTe結晶とメルトと
が接触しない状態で封管内に封止し、該封管を所定の温
度に加熱して上記メルトを溶融させ、基板と、溶融した
メルトと、溶融メルトからの蒸気の三相平衡の等温気相
成長方法で気相成長すると、基板上にHg+−x Cd
XTeのエピタキシャル結晶が成長する。そして、この
エピタキシャル結晶の構成原子とCdTe結晶の構成原
子との相互拡散によってCdTe結晶がHg+−x C
dx Teの結晶に変換され、このようにしてCdTe
結晶をHg+−x Cdx Te結晶に変換してHg+
−x Cd、 Te結晶を形成することを本出願人は特
願平1−187990号に於いて提案しており、この方
法を用いて例えばサファイア基板に形成したCdTe結
晶をエピタキシャル成長用メルトのHg1−x Cdx
 Teの結晶と同一組成の)Ig+−、Cd、 Te結
晶に変換形成する。
A sapphire substrate formed with CdTe crystal and Hg+-x
A melt of Cd and Te is sealed in a sealed tube without contact between the CdTe crystal and the melt, and the sealed tube is heated to a predetermined temperature to melt the melt, and the substrate and the melt are combined. , Hg + -x Cd is grown on the substrate by vapor phase growth using a three-phase equilibrium isothermal vapor phase growth method of vapor from a molten melt.
An epitaxial crystal of XTe is grown. Then, due to mutual diffusion between the constituent atoms of this epitaxial crystal and the constituent atoms of the CdTe crystal, the CdTe crystal becomes Hg+-x C
dx Te crystal, and in this way CdTe
Convert the crystal to Hg+-x Cdx Te crystal to Hg+
The present applicant has proposed in Japanese Patent Application No. 1-187990 that -x Cd, Te crystals are formed, and using this method, for example, a CdTe crystal formed on a sapphire substrate can be formed with Hg1- of a melt for epitaxial growth. x Cdx
The crystals are converted into Ig+-, Cd, and Te crystals (having the same composition as Te crystals).

第2図は、水銀、カドミウム、テルルのメルトの三相平
衡状態図で文献(Journal of Electo
ronic Materials vo+ 9 (19
80) )によるもので、横軸はHg、  Cd XT
eに於けるCdの原子分率、縦軸はHgの原子分率であ
り、曲線31.32,33.34.35は温度が450
℃、500℃、550℃、600℃、650℃で三相平
衡となるHg+−x Cd工Teの液相化温度曲線であ
り、曲線41,42,43,44,45.46,47.
48は三相平衡となる時のHg+−x Cdx Te結
晶の固相のX値を示す曲線である。
Figure 2 is a three-phase equilibrium phase diagram of a melt of mercury, cadmium, and tellurium, as described in the literature (Journal of Elect.
ronic Materials vo+ 9 (19
80) ), the horizontal axis is Hg, Cd XT
The atomic fraction of Cd at e, the vertical axis is the atomic fraction of Hg, and the curves 31.32, 33.34.35 show that the temperature is 450
℃, 500℃, 550℃, 600℃, and 650℃ are liquidus temperature curves of Hg+-xCd-Te which have three-phase equilibrium, and curves 41, 42, 43, 44, 45. 46, 47.
48 is a curve showing the X value of the solid phase of the Hg+-x Cdx Te crystal when three-phase equilibrium is achieved.

この第2図に示すHg+−x Cdx Teの三相平衡
状態図により、上記Hg+−x Cdx Te (x 
=0.3)の溶融メルト(曲線43に示す固相値x =
0.3)を、曲線33に示す550℃のHg+−x C
dg Teの液相化温度曲線の温度から曲!32に示す
500°CのHg+−x Cdx Teの液相化温度曲
線の温度迄冷却する。
According to the three-phase equilibrium state diagram of Hg+-x Cdx Te shown in FIG. 2, the above-mentioned Hg+-x Cdx Te (x
=0.3) (solidus value x = shown in curve 43)
0.3) at 550°C shown in curve 33.
A song from the temperature of the liquidus temperature curve of dg Te! It is cooled to the temperature of the liquidus temperature curve of Hg+-x Cdx Te of 500°C shown in No. 32.

すると、Hg1−x cci、 Teのメルトの中のC
d原子が偏析してHg+−x CdX Teの溶融メル
トの固相値は固相値曲線42に示す固相値x =0.2
1となり、この溶融メルトに前記第1層の)Igl−x
Cd、1Te(x=0.3 )の結晶を接触させると、
その上に第2層のHg+−xCd、 Te (x =0
.21)のHg+−x Cdx Te結晶が形成され、
封管を破損することなく、またエピタキシャル成長用メ
ルトを交換することなくx値の異なるHg+−x cd
、 Te結晶を多層構造に形成することができる。
Then, Hg1-x cci, C in the Te melt
The solidus value of the molten melt of Hg+-x CdX Te due to the segregation of d atoms is the solidus value x = 0.2 shown in the solidus value curve 42.
1, and this molten melt contains Igl-x of the first layer.
When Cd and 1Te (x=0.3) crystals are brought into contact,
On top of that, a second layer of Hg+-xCd, Te (x = 0
.. 21) Hg+-x Cdx Te crystals are formed,
Hg+-x cd with different x values without damaging the sealed tube or replacing the epitaxial growth melt
, Te crystal can be formed into a multilayer structure.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図(a)に示すように、サファイア基板11上にM
OCVD法、ホントウオールエピタキシャル成長方法、
或いは分子線エピタキシャル成長方法等を用いて、Cd
Te結晶層12を4.5μmの厚さにエピタキシャル成
長する。
As shown in FIG. 1(a), M
OCVD method, real wall epitaxial growth method,
Alternatively, using a molecular beam epitaxial growth method etc., Cd
A Te crystal layer 12 is epitaxially grown to a thickness of 4.5 μm.

次いで第1図(blに示すように、このCdTe結晶層
12を形成した基板11と組成が、Hgo、 zssc
do、 o+ e+Te。、74.のメルト13とを封
管14内に上記メルトと基板とを所定の距離を隔てて対
向配置して封入し、該封管14を550℃の温度に加熱
する。
Next, as shown in FIG. 1 (bl), the composition of the substrate 11 on which this CdTe crystal layer 12 was formed was Hgo,
do, o+e+Te. , 74. The melt 13 is sealed in a sealed tube 14 with the melt and the substrate facing each other at a predetermined distance, and the sealed tube 14 is heated to a temperature of 550.degree.

上記メルト13は第2図に示すように、曲線33に示す
550℃の液相化温度に加熱溶融した場合は、そのメル
トの有するHg原子とCd原子の原子分率より、その同
相値x =0.3となりA点に示す位置となる。
As shown in FIG. 2, when the melt 13 is heated and melted to the liquidus temperature of 550°C shown in the curve 33, the in-phase value x = 0.3, resulting in the position shown at point A.

そして上記550°Cの温度で72時間保持すると、第
1図fa)に示されたCdTe結晶12は、第1図fb
)で示されるように厚さが15.crmのHg1−XC
dXTe(x=0.3)結晶15に変換される。
When kept at the above temperature of 550°C for 72 hours, the CdTe crystal 12 shown in Fig. 1fa) becomes as shown in Fig. 1fb
), the thickness is 15. crm Hg1-XC
dXTe (x=0.3) crystal 15.

つまり第1図(a)に示した厚さが4.5 μmのCd
Te結晶層12が、x =0.3のt(g、−XCdx
Te結晶に変換された後、更にその上にx =0.3の
HgI−x Cdx Te結晶が気相エピタキシャル成
長して形成され、全体として第1図(blに示す厚さが
15μmのHgI−w CdxTe(x=0.3)結晶
15が形成される。
In other words, the Cd with a thickness of 4.5 μm shown in Figure 1(a)
The Te crystal layer 12 has t(g, -XCdx
After being converted into a Te crystal, a HgI-x Cdx Te crystal with A CdxTe (x=0.3) crystal 15 is formed.

次いで第2図に示すように、前記したHgo、 z3s
cdO,0I83TeO,フa7のメルト13を曲線3
2に示す500℃の液相化曲線上冷却すると、そのメル
ト13の組成はB点の位置になり、曲線42に示すx 
=0.20固相線の近傍に来るようになり、その時のメ
ルトはHg + −x Cdx Te (x =O−2
1) となる。そしてこのメルトに第1図(C1に示す
ように、基板を接触させると第1層のHgI−x Cd
XTe(x=0.3)結晶15上に第2層のHgI−x
 Cdx Te(x=0.21)結晶16が形成され、
このようにして封管を破ることなく、かつエピタキシャ
ル成長用メルトを交換することなくX値の異なるHgI
−8CdXTe結晶が積層形成できる。
Next, as shown in FIG. 2, the above-mentioned Hgo, z3s
cdO, 0I83TeO, melt 13 of f a7 is curve 3
When the melt 13 is cooled on the 500°C liquidus curve shown in 2, the composition becomes at point B, and the composition becomes x as shown in curve 42.
= 0.20 comes to be near the solidus line, and the melt at that time is Hg + -x Cdx Te (x = O-2
1) becomes. When a substrate is brought into contact with this melt as shown in Figure 1 (C1), the first layer of HgI-x Cd
A second layer of HgI-x on the XTe (x=0.3) crystal 15
CdxTe (x=0.21) crystal 16 is formed,
In this way, HgI with different X values can be grown without breaking the sealed tube or replacing the epitaxial growth melt.
-8CdXTe crystals can be stacked.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば封管を破
損することなく、またHg、−x Cdx Teのエピ
タキシャル成長用メルトを交換することなく、CdTe
結晶上に組成の異なるHg+□Cdx Teの結晶を積
層形成することができ、この材料を用いて赤外線検知素
子を形成すると高性能な赤外線検知素子が得られる効果
がある。
As is clear from the above description, according to the present invention, CdTe can be grown without damaging the sealed tube and without replacing the melt for epitaxial growth of Hg, -x Cdx Te.
Crystals of Hg+□CdxTe having different compositions can be layered on a crystal, and when an infrared sensing element is formed using this material, a high-performance infrared sensing element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+alより第1図(C1迄は、本発明の方法の工
程を示す断面図、 第2図はHg1.□XCd、 Teの三相平衡状態図、
第3図(alより第3図山)迄は、従来の方法の工程を
示す断面図である。 図において、 11はサファイア基板、12はCdTe結晶層、13は
エピタキシャル成長用メルト、14は封管、15はHg
I−xCdXTe(x=0.3)結晶、16はHgI−
x ca、 Te(x=0.21)結晶、31.32,
33,34.35は、三相平衡となるHgI−xCcL
 Teの液相化温度曲線、4L42,43,44,45
,46.4748は三相平衡となる時のHg1−x C
dx Te結晶のX値を示す曲線である。 (C) 本発明、1太珪偽工薪1ネT杵飴図 第1図 H94す#卆−−中 TQ) (1 (b) 従束mlわb1社eネオ村酌m 第3図
Figure 1 from Figure 1+al (up to C1 is a sectional view showing the steps of the method of the present invention, Figure 2 is a three-phase equilibrium state diagram of Hg1.□XCd, Te,
FIG. 3 (from al to FIG. 3 mountain) is a cross-sectional view showing the steps of the conventional method. In the figure, 11 is a sapphire substrate, 12 is a CdTe crystal layer, 13 is a melt for epitaxial growth, 14 is a sealed tube, and 15 is a Hg
I-xCdXTe (x=0.3) crystal, 16 is HgI-
x ca, Te (x=0.21) crystal, 31.32,
33, 34.35 is HgI-xCcL, which is a three-phase equilibrium
Liquidus temperature curve of Te, 4L42, 43, 44, 45
, 46.4748 is Hg1-x C at three-phase equilibrium
dx This is a curve showing the X value of Te crystal. (C) The present invention, 1 large piece of fake firewood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of wood, 1 piece of firewood

Claims (1)

【特許請求の範囲】[Claims] 基板(11)上に形成すべき化合物半導体結晶(15)
の構成原子を含む結晶層(12)を前記基板上に予め形
成した後、該結晶層(12)を形成した基板(11)と
該基板上に形成すべき化合物半導体結晶(15)を構成
する原子で構成されたエピタキシャル成長用メルト(1
3)とを封管(14)内に設置し、該封管(14)を加
熱して、前記結晶層(12)と、前記エピタキシャル成
長用メルト(13)を溶融した溶融メルトと、該溶融メ
ルトより蒸発した蒸気の三相平衡による等温気相成長方
法で前記結晶層(12)を化合物半導体結晶(15)に
変換した後、前記溶融メルトの温度を降下させて、該溶
融メルトに前記化合物半導体結晶(15)を接触させて
液相エピタキシャル成長方法で、該化合物半導体結晶(
15)上に該結晶と組成の異なる第2の化合物半導体結
晶(16)を積層形成することを特徴とする化合物半導
体結晶の製造方法。
Compound semiconductor crystal (15) to be formed on substrate (11)
After forming a crystal layer (12) containing constituent atoms on the substrate in advance, a substrate (11) on which the crystal layer (12) is formed and a compound semiconductor crystal (15) to be formed on the substrate are formed. Melt for epitaxial growth composed of atoms (1
3) is placed in a sealed tube (14), and the sealed tube (14) is heated to melt the crystal layer (12) and the epitaxial growth melt (13); After converting the crystal layer (12) into a compound semiconductor crystal (15) by an isothermal vapor phase growth method using three-phase equilibrium of evaporated vapor, the temperature of the molten melt is lowered and the compound semiconductor is added to the molten melt. The compound semiconductor crystal (15) is grown by a liquid phase epitaxial growth method by bringing the crystal (15) into contact with each other.
15) A method for manufacturing a compound semiconductor crystal, comprising laminating a second compound semiconductor crystal (16) having a different composition from that of the crystal.
JP34448989A 1989-12-29 1989-12-29 Manufacture of compound semiconductor crystal Pending JPH03204923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34448989A JPH03204923A (en) 1989-12-29 1989-12-29 Manufacture of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34448989A JPH03204923A (en) 1989-12-29 1989-12-29 Manufacture of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH03204923A true JPH03204923A (en) 1991-09-06

Family

ID=18369662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34448989A Pending JPH03204923A (en) 1989-12-29 1989-12-29 Manufacture of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH03204923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251726A (en) * 1991-10-15 1993-09-28 Santa Barbara Res Center Photosensitive device including contact provided with compositional gradient and recess for trapping minority carriers and producing method therefor
CN1096966C (en) * 1997-07-01 2002-12-25 住友橡胶工业株式会社 Heavy load radial tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251726A (en) * 1991-10-15 1993-09-28 Santa Barbara Res Center Photosensitive device including contact provided with compositional gradient and recess for trapping minority carriers and producing method therefor
CN1096966C (en) * 1997-07-01 2002-12-25 住友橡胶工业株式会社 Heavy load radial tire

Similar Documents

Publication Publication Date Title
US5441897A (en) Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
EP0763859B1 (en) A thin film solar cell comprising a I-III-VI(2) type compound semiconductor for its absorption layer and method for manufacturing the same
KR100922890B1 (en) CIGS absorber layer fabrication method and solar cell including CIGS absorber layer
WO1996025768A1 (en) METHOD OF FABRICATING HIGH-EFFICIENCY Cu(In,Ga)(Se,S)2 THIN FILMS FOR SOLAR CELLS
JPS59108371A (en) Solar battery
US4135027A (en) Semiconductor element embodying an optical coating to enhance thermal gradient zone melting processing thereof
US4418096A (en) Process for preparing layers of Hg1-x Cdx Te
US4642142A (en) Process for making mercury cadmium telluride
US4042447A (en) Crystallizing a layer of silicon on a sodium thallium type crystalline alloy substrate
JP2754765B2 (en) Method for manufacturing compound semiconductor crystal
JPH03204923A (en) Manufacture of compound semiconductor crystal
TW201305059A (en) New compound semiconductors and their application
Hartnauer et al. In-situ XRD study of alloyed Cu2ZnSnSe4–CuInSe2 thin films for solar cells
US3826700A (en) Welding method for fabricating large area single crystals and the product thereof
Moss et al. Impurity effects on the structure of amorphous silicon and germanium prepared in various ways
JP2556159B2 (en) Method for manufacturing semiconductor crystal
JPH04192427A (en) Manufacture of compound semiconductor crystal
JPH04309237A (en) Manufacturing method of chalcopyrite thin film and solar cell
JPH01201094A (en) Method for liquid-phase epitaxial growth
Schäffler et al. Composition dependent optical properties of polycrystalline CuInSe2 thin films
JPS6126598A (en) Preparation of germanium thin film crystal
JPH027918B2 (en)
JPH01297814A (en) Manufacture of single crystal
JPH0524884A (en) Production of cu-based chalopyrite film
US4115625A (en) Sodium thallium type crystal on crystalline layer