JPS62214537A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS62214537A
JPS62214537A JP5612386A JP5612386A JPS62214537A JP S62214537 A JPS62214537 A JP S62214537A JP 5612386 A JP5612386 A JP 5612386A JP 5612386 A JP5612386 A JP 5612386A JP S62214537 A JPS62214537 A JP S62214537A
Authority
JP
Japan
Prior art keywords
recording medium
film
medium
added
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5612386A
Other languages
Japanese (ja)
Inventor
Akira Aoyama
明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5612386A priority Critical patent/JPS62214537A/en
Publication of JPS62214537A publication Critical patent/JPS62214537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To decrease the noise level generated from a recording medium by adding B, Ge, Sr, Si to a rare earth transtion metal which is the essential compsn. of an amorphous photomagnetic recording layer in a manner as to attain the specified compsn., thereby forming the recording medium. CONSTITUTION:The amorphous photomagnetic recording film 6 which is formed on a substrate 4 and with which the direction of the magnetization is perpendicular to the film plane and has two values of either upward or downward is formed by using the rate earth transtion metal contg. at least >=1 kinds of heavy rare earth metals among Gd, Tb, Dy and Ho and at least >=1 kinds of transition metals of Fe and co and adding B, Ge, Sr, and Si to said compsn. in a manner as to attain the compsn. expressed by the formula. The recording film 6 is provided by sandwiching the same between protective films 5, 7 consisting of silicon nitride in order to protect the film against oxidation. the noise level generated from the recording medium is decreased at the time of making recording, reproduction and erasure by irradiating light to the photomagnetic recoding medium formed in the above-mentioned manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体の光磁気記録層の組成に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the composition of a magneto-optical recording layer of a magneto-optical recording medium.

〔従来の技術〕[Conventional technology]

光磁気メモリの研究は、1957年にMnB1薄膜上に
熱ペンを用いて記録を行い、その書き込み磁区を磁気光
学効果によって観察したのがその端緒であるといわれて
いる。その後のレーザの発展に刺激されて、MnEi系
の材料を中心として精力的な研究が行なわれてきたが、
レーザ光源ならびにその利用技術が未成熟であったため
に実用化には至らなかりだ。
Research on magneto-optical memory is said to have its origins in 1957, when recording was performed on an MnB1 thin film using a hot pen, and the written magnetic domain was observed using the magneto-optic effect. Stimulated by the subsequent development of lasers, vigorous research has been carried out mainly on MnEi-based materials.
It was never put into practical use because the laser light source and its utilization technology were immature.

しかし、1970年代における光情報処理関連技術の進
展および非晶質希土類遷移金属合金薄膜に代表される新
しい磁性薄膜材料の研究が進み、Gd7e、’I’bl
Fe、DyFe、GdCoなどの合金薄膜が開発されて
きた。これらの材料は、一般に次のような特徴を有して
いる。
However, in the 1970s, advances in optical information processing related technology and research into new magnetic thin film materials such as amorphous rare earth transition metal alloy thin films led to Gd7e, 'I'bl
Alloy thin films such as Fe, DyFe, and GdCo have been developed. These materials generally have the following characteristics.

GdFe、GdCoなどの補償点記録用光磁気記録媒体
は、カー回転角がキュリ一点記録用光磁気記録媒体に比
較して大きく、光再生特性は優れているものの保磁力が
小さく(数百エルステッド) 1 tt m径程度の微
小ビットが安定に得られない、また、T’b?e、Dy
Feなどのキュリ一点記録用光磁気記録媒体は、上述と
逆に保磁力が大きく(数キロエルステッド)1μm径程
度の微小ビットを安定に得ることが出来るものの、カー
回転角が小さく光再生特性があまり良くないなどの欠点
を有していた。
Compensation point recording magneto-optical recording media such as GdFe and GdCo have a larger Kerr rotation angle than Curie single-point recording magneto-optical recording media, and although they have excellent optical reproduction characteristics, their coercive force is small (several hundred oersteds). 1 tt It is not possible to stably obtain a minute bit with a diameter of about m, and T'b? e, Dy
Magneto-optical recording media for Currie single-point recording, such as Fe, have a large coercive force (several kilo Oersteds) and can stably obtain minute bits with a diameter of about 1 μm, contrary to the above, but have a small Kerr rotation angle and poor optical reproduction characteristics. It had drawbacks such as not being very good.

これらの2元合金薄膜の欠点を補うため、従来2つの方
法が試みられてきた。
In order to compensate for the drawbacks of these binary alloy thin films, two methods have been attempted in the past.

1) 3元あるいは4元化する。例えば、2元のGdF
eとTbPθの長所を生かし、欠点を補うGdTbFe
3元合金あるいはGdTb1reO04元合金のように
多元化していく方法。(電信手研′yR,cpMao−
44) 2) 多層構造化する方法。記録媒体に誘電体層を重ね
て多重反射によるカー効果の増大をはかる。(工EEK
  Trans Magn  MAG −16(198
0(356,秋季応物学会予稿、 9p−P−9(19
〔発明が解決しようとする問題点〕 しかしながら、前述の従来技術では、カー回転角は大き
くなるものの反射率は低下し、信号強度はカー回転角と
反射率の平方根との積のため十分大きくならなかった。
1) Make it ternary or quaternary. For example, binary GdF
GdTbFe takes advantage of the advantages of e and TbPθ and compensates for the disadvantages.
Methods of diversification such as ternary alloys or GdTb1reO0 quaternary alloys. (Telegraph Handken'yR, cpMao-
44) 2) Method of creating a multilayer structure. A dielectric layer is layered on the recording medium to increase the Kerr effect due to multiple reflections. (Eng.EEK
Trans Magn MAG-16 (198
0 (356, Autumn Biological Science Conference Proceedings, 9p-P-9 (19
[Problems to be Solved by the Invention] However, in the above-mentioned prior art, although the Kerr rotation angle increases, the reflectance decreases, and the signal strength is not sufficiently large because it is the product of the Kerr rotation angle and the square root of the reflectance. There wasn't.

そこで信号強度の増大化が望めないため、現在ではノイ
ズレベルの低減化が期待されている。
Therefore, since it is not possible to increase the signal strength, reduction of the noise level is currently expected.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、媒体から発生するノイズレベル
を低減し、信号強度は出来るだけ低減させずに、信号と
ノイズの比(C!/N)を大きく出来る材料を提供する
ところにある。
The present invention is intended to solve these problems, and its purpose is to reduce the noise level generated from the medium, reduce the signal strength as much as possible, and improve the signal-to-noise ratio (C! The goal is to provide materials that can increase the /N).

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光磁気記録媒体は、磁化の向きが膜面に垂直で
上向きか下向きかの2値をとる非晶質光磁気記録層に、
光を照射し記録・再生・消去を行う光磁気記録媒体にお
いて、非晶質光磁気記録層の主だす組成である希土類遷
移金属に、B、Gθ、 Sr 、 Si、のうち少なく
とも1種類以上の元素を添加し次に示す組成及び不純物
からなることを特徴とする。
The magneto-optical recording medium of the present invention has an amorphous magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward.
In a magneto-optical recording medium that performs recording, reproduction, and erasing by irradiating light, at least one of B, Gθ, Sr, and Si is added to the rare earth transition metal that is the main composition of the amorphous magneto-optical recording layer. It is characterized by adding elements and having the following composition and impurities.

(希土類遷移金属)、oo−a(BwGexSrySi
z)。
(Rare earth transition metal), oo-a (BwGexSrySi
z).

0くα< 15 at%  0≦Wくj00at%0≦
X≦100 at% 0≦Y≦100 at%o<zく
1ooat% W+X+7+Z:100at% 〔作用〕 従来の媒体であるGdFe、TbF’e、DyFe  
t’L A n M tP JJ /n 嬰キ鞘X依1
b HIS−Ab 薯R11! l+本来は非晶質であ
るため、媒体ノイズの原因となる結晶粒界は存在しなψ
と考えられる。しかし、これら希土類遷移金属薄膜の電
子線回折像を見ると完全な非晶質にはなっていない。(
日本応用磁気学会誌、 Vo’1 B 、 No 2.
1984sテレビジーsン学会技術報告VR59−5) つまり、完全な非晶質の電子線、回折像はリングは見ら
れないにもかかわらず、実際は不明瞭ながらもリングが
観察されている。これは、とりもなおさず膜中の一部は
結晶化あるいは結晶化に近い吠態になりでいるものと思
われる。さらに、HOCO膜を高分解能電子顕微鏡で見
た場合、確かに結晶化が一部存在している様子が観察さ
れている。
0kuα< 15 at% 0≦Wkuj00at%0≦
X≦100 at% 0≦Y≦100 at%o<z×1ooat% W+X+7+Z: 100 at% [Action] Conventional media GdFe, TbF'e, DyFe
t'L A n M tP JJ /n Yakisaya X-1
b HIS-Ab 薯R11! l+ Since it is originally amorphous, there are no grain boundaries that cause media noise ψ
it is conceivable that. However, electron diffraction images of these rare earth transition metal thin films show that they are not completely amorphous. (
Journal of the Japanese Society of Applied Magnetics, Vo'1 B, No. 2.
1984s Television Engineers Society Technical Report VR59-5) In other words, although no ring is seen in the completely amorphous electron beam and diffraction image, the ring is actually observed although it is unclear. This seems to be because a part of the film is crystallized or in a state close to crystallization. Furthermore, when the HOCO film is viewed using a high-resolution electron microscope, it is observed that some crystallization does exist.

(J、 ApplPhys、、Vol、57.No、1
. 15 April。
(J, ApplPhys, Vol. 57. No. 1
.. 15 April.

そこで、本発明によれば、希土類遷移金属に、B、Gθ
、Sr 、81のうち少なくとも1種類以上の元素を添
加することにより、従来の媒体よりも非晶化をより一層
進め媒体からのノイズが少な(なり、a / Nを大き
くできるものである。
Therefore, according to the present invention, rare earth transition metals include B, Gθ
By adding at least one element among , Sr, and 81, amorphization is further promoted than in conventional media, noise from the medium is reduced (and a/N can be increased).

〔実施例1〕 第1図は本発明による、Tb−?e合金薄膜にBを添加
した場合のO/ Nの組成依存性を示した図である。さ
らに、第2図はカー回転角の組成依存性の図であり、基
板側から測定したものである。媒体の作製にはスパッタ
法を用い、基板は1.6μmピッチ、溝深さ700Xの
’PC基板を用いTheターゲット上にTbとBのチッ
プ登記しDC3マグネトロンスパッタにより成膜した。
[Example 1] FIG. 1 shows Tb-? according to the present invention. FIG. 3 is a diagram showing the composition dependence of O/N when B is added to an e-alloy thin film. Furthermore, FIG. 2 is a diagram showing the composition dependence of the Kerr rotation angle, which was measured from the substrate side. A sputtering method was used to produce the medium, and a PC board with a pitch of 1.6 μm and a groove depth of 700× was used as the substrate. Tb and B chips were registered on the target, and a film was formed by DC3 magnetron sputtering.

Tb1Feの組成はTb25Fe75at%である。尚
、媒体の構造は第3図に示す。4はPC基板、5は窒化
シリコン膜1000X、6はTb?eB膜400人、7
は窒化シリコン膜1oooXである。ここでTbFeB
膜を窒化シリコン膜でサンドイッチしたのはTl)11
!’θB膜が酸化しやすいため、保護膜として用いたの
であり、本発明に対′して本質的な意味はない。
The composition of Tb1Fe is Tb25Fe75 at%. The structure of the medium is shown in FIG. 4 is a PC board, 5 is a silicon nitride film 1000X, and 6 is Tb? eB membrane 400 people, 7
is a silicon nitride film 1oooX. Here TbFeB
The film was sandwiched with a silicon nitride film in Tl)11.
! Since the θB film is easily oxidized, it was used as a protective film and has no essential meaning for the present invention.

まず第1図を説明する。媒体の書き込み、読み出し条件
は、Write Power 4 mW 、 Read
 Power 1mW、バイアス磁場4000e 、回
転′fk450 rpm、周波W!、I MB2 、線
速2.5 tn / see eバンド幅50に111
zである。1はキャリアレベ/I/(0)で、2がキャ
リアとノイズの比(C/N)、3はノイズレベル(N)
である。この図から、C/NはBの添加量が8at% 
ぐらいまでは増加している( 94B  の向上)。も
う少し詳しく見ると、キャリアレベルは変わらないが、
ノイズレベルが小さくなったためO/Nが大きくなった
ものである。
First, FIG. 1 will be explained. The conditions for writing and reading the medium are: Write Power 4 mW, Read
Power 1mW, bias magnetic field 4000e, rotation 'fk 450 rpm, frequency W! , I MB2, linear speed 2.5 tn/see e-bandwidth 50 to 111
It is z. 1 is carrier level/I/(0), 2 is carrier to noise ratio (C/N), and 3 is noise level (N)
It is. From this figure, the C/N is 8 at% B added.
It has increased to about 94B (improvement of 94B). If you look a little more closely, your career level will remain the same, but
The O/N ratio has increased because the noise level has decreased.

さらにBの添加量を増やすと、ノイズレベルは変化ない
ものの、キャリアレベルが小さくなっていくため、0/
Nは減少していくことがわかる。しかしBの添加量が1
5at%以下であればT’b?eだけ(B添加なし)の
媒体のC/ Nより大きくすることが出来る。一方、第
2図から、カー回転角(θk) のB添加量依存性と、
キャリアレベルのB添加量依存性が同じであることがわ
かる。つまりθにはB添加8at%までは変化がなく、
8at%を超えると減少している。尚、ここに示したカ
ー回転角は、TbP8本来のカー回転角ではなく、窒化
シリコン膜にエンハンスされて大きくなりだものである
If the amount of B added is further increased, the noise level remains the same, but the carrier level decreases, resulting in 0/
It can be seen that N is decreasing. However, the amount of B added is 1
If it is less than 5at%, is it T'b? The C/N can be made larger than that of the medium with only e (without B addition). On the other hand, from Fig. 2, the dependence of the Kerr rotation angle (θk) on the amount of B added,
It can be seen that the dependence of the carrier level on the amount of B added is the same. In other words, there is no change in θ up to 8 at% B addition,
It decreases when it exceeds 8 at%. Note that the Kerr rotation angle shown here is not the original Kerr rotation angle of TbP8, but is enhanced by the silicon nitride film and becomes large.

以上のことから、Tb1FeにBを添加することにより
、媒体のノイズレベルを減少させ相対的にa / Xを
増加させ得ることがわかった。
From the above, it was found that by adding B to Tb1Fe, it was possible to reduce the noise level of the medium and relatively increase a/X.

尚、ここではTb1FeはTb25?e75at%のも
のを用いたが、これ以外の組成比’[’b15?e85
at%、T’b30?e70at%等の組成比でも同様
の効果を示す。
In addition, Tb1Fe is Tb25 here? Although e75at% was used, other composition ratios'['b15? e85
at%, T'b30? A similar effect is exhibited even with a composition ratio such as e70at%.

〔実施例2〕 次に、T b −7e合金薄膜にGeを添加した場合の
結果を示す。実験方法、媒体構造等は実施例1と同じで
ある。第4図が、C/HのGe添加に対する組成依存性
の図で、第5図がθにのGe添加に対する組成依存性の
図である。第4図の8がキャリアレベル、9がC/N1
10がノイズレベルを示す。第4図、第5図から、実施
例1と全く同様のことが言える。つまり、Geの添加に
ともなっテ媒体のノイズレベルが下がり相対的にC/N
は向上する、そして、C/NのピークはGeがSat%
近傍であり、Geが15at%までの添加であれば、’
rbyeだけ(Ge添加なしンの媒体のO/ Nより大
きくすることが出来る。
[Example 2] Next, the results when Ge was added to the T b -7e alloy thin film will be shown. The experimental method, medium structure, etc. were the same as in Example 1. FIG. 4 is a graph showing the compositional dependence of C/H on Ge addition, and FIG. 5 is a graph showing the compositional dependence of θ on Ge addition. 8 in Figure 4 is carrier level, 9 is C/N1
10 indicates the noise level. From FIGS. 4 and 5, the same thing as in the first embodiment can be said. In other words, with the addition of Ge, the noise level of the medium decreases and the relative C/N
The C/N peak increases when Ge is Sat%
If Ge is added up to 15 at%, '
Only rbye (O/N of the medium without Ge addition can be made larger).

〔実施例3〕 次に、’rby6合金薄膜にSrを添加した場合の結果
を示す。実験方法、媒体構造等は実施例1と同じである
。第6図が、C/NのSr添加に対する組成依存性の図
で、第7図がθにのSr添加に対する組成依存性の図で
ある。、第6図の11がキャリアレベル、12がO/N
、13がノイズレベルを示す、第6図、窮7図から、実
施例1と全く同様のことが言える。つまり、Srの添加
にともなって媒体のノイズレベルが下がり相対的にC/
Nは向上する。そして、O/HのピークはSrが8at
%近傍であり、Srが1sat%までの添加であれば、
Tb?eだけ(Sr添加なし)の媒体の○/Nより大き
くすることが出来る。
[Example 3] Next, the results when Sr was added to the 'rby6 alloy thin film are shown. The experimental method, medium structure, etc. were the same as in Example 1. FIG. 6 is a graph showing the compositional dependence of C/N on Sr addition, and FIG. 7 is a graph showing the compositional dependence of θ on Sr addition. , 11 in Figure 6 is carrier level, 12 is O/N
, 13 indicate the noise level, and from FIGS. 6 and 7, it can be said that the same thing as in the first embodiment can be said. In other words, with the addition of Sr, the noise level of the medium decreases and the C/
N will improve. And the O/H peak is Sr at 8at.
%, and if Sr is added up to 1 sat%,
Tb? It can be made larger than the ○/N of the medium with only e (without Sr addition).

〔実施例4〕 次に、’I’l)76合金薄膜に81を添加した場合の
結果を示す。実験方法、媒体構造等は実施例1と同じで
ある。第8図がa / Nの81添加に対する組成依存
性の図で、第9図がθにの81添加に対する組成依存性
の図である。第8図の14がキャリアレベル、15がC
/N%16がノイズレベルを示す。第8図、第9図から
、実施例1と全く同様のことが言える。つまり、Siの
添加にともなって媒体のノイズレベルが下がり相対的r
ia7Nは向上する。そして、C/Nのピークはslが
8at%近傍であり、Slが1 sat%までの添加で
あれば、’rb1Peだけ(Si添加なし)の媒体のO
/ Nより大きくすることができる。
[Example 4] Next, the results when 81 was added to the 'I'l) 76 alloy thin film are shown. The experimental method, medium structure, etc. were the same as in Example 1. FIG. 8 shows the composition dependence of a/N on addition of 81, and FIG. 9 shows the composition dependence of θ on addition of 81. 14 in Figure 8 is career level, 15 is C
/N%16 indicates the noise level. From FIGS. 8 and 9, the same thing as in the first embodiment can be said. In other words, with the addition of Si, the noise level of the medium decreases relative to r
ia7N will improve. The C/N peak is around 8 at% sl, and if Sl is added up to 1 sat%, the O of the medium with only 'rb1Pe (no Si addition)
/N can be made larger.

〔実施例5〕 さらに、TbFe合金薄膜にBとGeを添加した場合の
結果を示す。BとGSの組成比は5o;50at%であ
る。実験方法、媒体構造等は実施例1と同じである。第
10図が、C/NのB−Go添加に対する組成依存性の
図で、前11図がθにのB −G o添加に対する組成
依存性の図である。第10図の17がキャリアレベル、
1BがO/N、19がノイズレベルを示す。第10図、
第11図から実施例1と全く同様のことが言える。
[Example 5] Furthermore, the results when B and Ge were added to the TbFe alloy thin film will be shown. The composition ratio of B and GS is 50; 50 at%. The experimental method, medium structure, etc. were the same as in Example 1. FIG. 10 is a diagram showing the compositional dependence of C/N on the addition of B-Go, and the previous diagram 11 is a diagram of the compositional dependence of θ on the addition of B-Go. 17 in Figure 10 is career level.
1B indicates O/N, and 19 indicates the noise level. Figure 10,
From FIG. 11, the same thing as in Example 1 can be said.

つまり、B−Geの添加にともなって媒体のノイズレベ
ルが下がり相対的にc / Nは向上する。そしてO/
 HのピークはB −G eが8at%近傍であり、B
−Geが15at%までの添加であれば、TbIreだ
け(B −G e添加なし)の媒体の0/Nより大きく
することが出来る。
In other words, with the addition of B-Ge, the noise level of the medium decreases and c/N relatively improves. And O/
The peak of H is B-Ge near 8 at%, and B
If -Ge is added up to 15 at%, it can be made larger than 0/N of a medium containing only TbIre (no B-Ge addition).

又、今回用いたB −G eの比はs o : s o
 at%のものであるが、BとGeがいかなる比のもの
でも本発明の効果は同じである。さらに、B−Geだけ
でなく、B−8r 、 B−8i 、 G e−8r 
Also, the ratio of B-Ge used this time is s o : s o
Although the ratio of B and Ge is at %, the effect of the present invention is the same regardless of the ratio of B and Ge. Furthermore, not only B-Ge but also B-8r, B-8i, Ge-8r
.

ee−3i、8r−8i、B  Ge78r、E−G 
e −S i 、 G e −S r −S i 、 
B −G s −S r−31を添加したものでも何ら
さしつかえない、又それらの比率も任意であることは言
うまでもない。
ee-3i, 8r-8i, B Ge78r, E-G
e −S i , G e −S r −S i ,
It goes without saying that a material to which B-Gs-Sr-31 is added is also acceptable, and the ratio thereof is also arbitrary.

次に希土類遷移金属合金がTl)76以外の場合の本発
明を示す。
Next, the present invention will be described where the rare earth transition metal alloy is other than Tl)76.

〔実施例6〕 第12図は、本発明によるGd−Tb−11’θ−CO
合金膜にBを添加した場合のC/Nの組成依存性の図で
ある。成膜方法、媒体構造等は実施例1と同じであり、
組成はGd1λ5Tb12.5?e680o7at%で
ある。第12図の20が中ヤリアレベル、21がO/N
、22がノイズレベルを示す。第12図、第13図から
実施例1と全く同様のことが言える。ただ媒体は′l′
b7e2元でなく、Gd’I’bFeOoJ元系のため
θkが太きく O/Nは実施例1より大きい。
[Example 6] FIG. 12 shows Gd-Tb-11'θ-CO according to the present invention.
FIG. 3 is a diagram showing the composition dependence of C/N when B is added to an alloy film. The film formation method, medium structure, etc. are the same as in Example 1,
Is the composition Gd1λ5Tb12.5? It is e680o7at%. 20 in Figure 12 is medium level, 21 is O/N
, 22 indicate the noise level. From FIG. 12 and FIG. 13, the same thing as in the first embodiment can be said. However, the medium is 'l'
Since it is not a b7e binary element system but a Gd'I'bFeOoJ element system, θk is thicker and the O/N is larger than in Example 1.

又、B添加以外にGo、3r、Si、及びそれらの2元
、5元、4元も添加した実験を行なった所全て本発明の
効果が認められ、ノイズレベルが減少した。
Further, in addition to the addition of B, the effects of the present invention were observed in all the cases in which Go, 3r, Si, and their binary, penta, and quaternary elements were added, and the noise level was reduced.

尚、本実施例はTbFe 、GdTb?eCoについて
述べたが、GdFe 、’I”bFeoo、Gd?bI
Fe、T’b(So、GaCo、EIoOo、’I’b
Dy?eOoDylFeOo 、等の重希土類遷移金属
であれば本発明効果がある。そして、本発明による実施
例で用いた・媒体を電子顕微鏡にて観察した所、電子線
回折像は全て完全なハローパターンであり、不明瞭なリ
ングも観察されていない。
In this example, TbFe, GdTb? I mentioned eCo, but GdFe, 'I"bFeoo, Gd?bI
Fe, T'b(So, GaCo, EIoOo, 'I'b
Dy? The present invention is effective if it is a heavy rare earth transition metal such as eOoDylFeOo. When the medium used in the Examples according to the present invention was observed under an electron microscope, all electron beam diffraction images were complete halo patterns, and no unclear rings were observed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、Ga、Tl)、Dy
、HOのうち少なくとも1種類以上の重希土類金属と、
かつ?e、Coのうち少なくとも1種類以上の遷移金属
を含む光磁気記録膜において、、B、Ge、8r、Si
、のうち少なくとも1種類以上の元素を添加することに
より、媒体のノイズレベルを減少させることが出来、O
/Hの向上をはかることが出来るものであ・る。
As described above, according to the present invention, Ga, Tl), Dy
, at least one heavy rare earth metal among HO;
and? In the magneto-optical recording film containing at least one transition metal among e, Co, B, Ge, 8r, Si
The noise level of the medium can be reduced by adding at least one element among the following.
/H can be improved.

尚、本実施例に示したものは、PC基板だけであるが、
PMMA、エポキシ樹脂基板を用いても何らさしつかえ
なく、さらにガラス基板でもよい。又、媒体の構造は5
層でも4層でもよく、誘電体も窒化シリコン以外にもS
iO、SiO□ 。
Although only the PC board is shown in this example,
PMMA or epoxy resin substrates may be used, and glass substrates may also be used. Also, the structure of the medium is 5
The dielectric material may be S or 4 layers, and the dielectric material may be S instead of silicon nitride.
iO, SiO□.

窒化アルミニウム、ZnS等を用いても何ら本発明をそ
こなうものではない。
Even if aluminum nitride, ZnS, etc. are used, the present invention will not be impaired in any way.

【図面の簡単な説明】[Brief explanation of drawings]

11g1図は、’l”b−1B合金簿膜にBを添加した
場合のO/ Nの組成依存性の図。 第2図はT b −F e合金薄膜にBを添加した場合
のカー回転角の組成依存性の図。 第3図は媒体の構造図。 第4図はTb−713合金薄膜にGeを添加した場合の
c / Hの組成依存性の図。 第5図はT b −IF e合金薄膜に()eを添加し
た場合のカー回転角の組成依存性の図。 第6図が’1”bl!’e合金薄膜にSrを添加した場
合のc / Hの組成依存性の図。 第7図は、Tb?e合金薄膜にSrを添加した場合のカ
ー回転角の組成依存性の図。 第8図は、Tb?e合金薄膜にSlを添加した場合のO
/Nの組成依存性の図。 第9図は、Tb?a合金薄膜に31を添加した場合のカ
ー回転角の組成依存性の図。 第10図は、TbIre合金薄膜にB −G eを添加
した場合のc / Nの組成依存性の図。 第11図は、Tb?e合金薄膜にB −G eを添加し
た場合のカー回転角の組成依存性の図。 第12図は、G (L−1’ b −II’ e−00
合金膜にBを添加した場合のO/ Nの組成依存性の図
。 第13図は、G a−T b −? e −Oo合金薄
膜にBを添加した場合のカー回転角の組成依存性の図で
ある。 1・・・・・・キャリア(Cン 2・・・・・・キャリアとノイズの比((:!/N)3
・・・・・・ノイズ(N) 4・・・・・・PC基板 5・・・・・・窒化シリコン膜1000^6−−−−−
− T 1) F e B膜400又7・・・・・・窒
化シリコン膜1000X8・・・・・・キャリア(0) 9・・・・・・キャリアとノイズの比(0/N)10・
・・ノイズ(N) 11・・・キャリア(C) 12・・・キャリアとノイズの比(C!/N)13・・
・ノイズ(N) 14・・・キャリア(C) 15・・・キャリアとノイズの比(0/N)16・・・
ノイズ(N) 17・・・キャリア(1 18・・・キャリアとノイズの比(C!/N)19・・
・ノイズ(N) 20・・・キャリア(C) 21・・・キャリアとノイズの比(0/N)22・・・
ノイズ(N) 以上 出願人 セイコーエプソン株式会社 憾 1 図 ζ 第2図 G−TI−Fe B 41 襲  菊4図 冬S図 妬 6 図 襲 % 7図 (≧iBヵ、) % g図 ミ 葛 ヲ図 〔迂は一〕 ネlO1辺 責
Figure 11g1 is a diagram of the composition dependence of O/N when B is added to the 'l''b-1B alloy thin film. Figure 2 is the Kerr rotation when B is added to the Tb-Fe alloy thin film. A diagram of the composition dependence of the angle. Figure 3 is a diagram of the structure of the medium. Figure 4 is a diagram of the composition dependence of c / H when Ge is added to a Tb-713 alloy thin film. Figure 5 is a diagram of the composition dependence of Tb - A diagram of the composition dependence of the Kerr rotation angle when ()e is added to the IF e alloy thin film. Figure 6 is '1''bl! A diagram of the composition dependence of c/H when Sr is added to the 'e alloy thin film. Figure 7 shows Tb? FIG. 3 is a diagram showing the composition dependence of the Kerr rotation angle when Sr is added to the e-alloy thin film. Figure 8 shows Tb? O when Sl is added to the e-alloy thin film
A diagram of the composition dependence of /N. Figure 9 shows Tb? FIG. 3 is a diagram showing the composition dependence of the Kerr rotation angle when 31 is added to the a-alloy thin film. FIG. 10 is a graph showing the composition dependence of c/N when B-Ge is added to a TbIre alloy thin film. Figure 11 shows Tb? FIG. 3 is a diagram showing the composition dependence of the Kerr rotation angle when B-Ge is added to the e-alloy thin film. FIG. 12 shows G (L-1' b -II' e-00
A diagram showing the composition dependence of O/N when B is added to the alloy film. FIG. 13 shows Ga-T b-? FIG. 3 is a diagram showing the composition dependence of the Kerr rotation angle when B is added to the e-Oo alloy thin film. 1...Carrier (Cn2...Ratio of carrier to noise ((:!/N)3)
...Noise (N) 4...PC board 5...Silicon nitride film 1000^6------
- T 1) F e B film 400 or 7...Silicon nitride film 1000X8...Carrier (0) 9...Ratio of carrier to noise (0/N) 10.
...Noise (N) 11...Carrier (C) 12...Ratio of carrier to noise (C!/N)13...
・Noise (N) 14...Carrier (C) 15...Ratio of carrier to noise (0/N) 16...
Noise (N) 17... Carrier (1 18... Carrier to noise ratio (C!/N) 19...
・Noise (N) 20...Carrier (C) 21...Ratio of carrier to noise (0/N) 22...
Noise (N) Applicant: Seiko Epson Co., Ltd. 1 Fig. ζ Fig. 2 G-TI-Fe B 41 Assault Kiku 4 Fig. Winter S Fig. 6 Fig. % Fig. 7 (≧iBka,) % g Fig. Mikuzu wo diagram [circumstance is one]

Claims (2)

【特許請求の範囲】[Claims] (1)磁化の向きが膜面に垂直で上向きか下向きかの2
値をとる非晶質光磁気記録層に、光を照射し記録・再生
・消去を行う光磁気記録媒体において、前記非晶質光磁
気記録層の主たる組成である希土類遷移金属に、B、G
e、Sr、Siのうち少なくとも1種類以上の元素を添
加し次に示す組成及び不純物からなることを特徴とする
光磁気記録媒体。 (希土類遷移金属)_1_0_0_−_α(Bw Ge
x SrySiz)_α 0<α≦15at%、 0≦W≦100at%0≦X≦
100at%、0≦Y≦100at%0≦Z≦100a
t%、 w+x+y+z=100at%
(1) The direction of magnetization is perpendicular to the film surface and is either upward or downward.
In a magneto-optical recording medium in which recording, reproduction, and erasing is performed by irradiating light onto an amorphous magneto-optical recording layer that takes a value, B, G
1. A magneto-optical recording medium characterized in that it is doped with at least one element among e, Sr, and Si and has the following composition and impurities. (Rare earth transition metal)_1_0_0_-_α(Bw Ge
x SrySiz)_α 0<α≦15at%, 0≦W≦100at%0≦X≦
100at%, 0≦Y≦100at%0≦Z≦100a
t%, w+x+y+z=100at%
(2)前記希土類遷移金属が、Gd、Tb、Dy、Ho
のうち少なくとも1種類以上の重希土類金属と、かつF
e、Ceのうち少なくとも1種類以上の遷移金属を含む
ことを特徴とする特許請求の範囲第1項記載の光磁気記
録媒体。
(2) The rare earth transition metal is Gd, Tb, Dy, Ho
at least one heavy rare earth metal, and F
2. The magneto-optical recording medium according to claim 1, wherein the magneto-optical recording medium contains at least one transition metal among e and Ce.
JP5612386A 1986-03-14 1986-03-14 Photomagnetic recording medium Pending JPS62214537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5612386A JPS62214537A (en) 1986-03-14 1986-03-14 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5612386A JPS62214537A (en) 1986-03-14 1986-03-14 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62214537A true JPS62214537A (en) 1987-09-21

Family

ID=13018295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5612386A Pending JPS62214537A (en) 1986-03-14 1986-03-14 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62214537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262245A (en) * 1986-05-07 1987-11-14 Seiko Epson Corp Magneto-optical recording medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS61196445A (en) * 1985-02-27 1986-08-30 Toshiba Corp Photomagnetic disk
JPS61196440A (en) * 1985-02-25 1986-08-30 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS61246946A (en) * 1985-04-23 1986-11-04 Pioneer Electronic Corp Photomagnetic recording medium
JPS61253655A (en) * 1985-05-02 1986-11-11 Pioneer Electronic Corp Photomagnetic recording medium
JPS621151A (en) * 1985-06-26 1987-01-07 Ricoh Co Ltd Photomagnetic recording medium
JPS62165753A (en) * 1986-01-16 1987-07-22 Sumitomo Electric Ind Ltd Magnetooptic recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS61196440A (en) * 1985-02-25 1986-08-30 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS61196445A (en) * 1985-02-27 1986-08-30 Toshiba Corp Photomagnetic disk
JPS61246946A (en) * 1985-04-23 1986-11-04 Pioneer Electronic Corp Photomagnetic recording medium
JPS61253655A (en) * 1985-05-02 1986-11-11 Pioneer Electronic Corp Photomagnetic recording medium
JPS621151A (en) * 1985-06-26 1987-01-07 Ricoh Co Ltd Photomagnetic recording medium
JPS62165753A (en) * 1986-01-16 1987-07-22 Sumitomo Electric Ind Ltd Magnetooptic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262245A (en) * 1986-05-07 1987-11-14 Seiko Epson Corp Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
US5204193A (en) Recording magnetooptical recording medium
JPH1139736A (en) Magneto-optical recording medium
US5639563A (en) Magneto-optical recording medium
EP0513668B1 (en) Magneto-optical recording medium
JP2504946B2 (en) Magneto-optical recording medium
US5100741A (en) Magneto-optic recording systems
JPH0351082B2 (en)
JPS62214537A (en) Photomagnetic recording medium
JPS61246946A (en) Photomagnetic recording medium
EP0391738A2 (en) Magneto-optic memory medium
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
JPH05250742A (en) Magneto-optical recording medium and stamper employed in production thereof
US5529854A (en) Magneto-optic recording systems
JP2000132879A (en) Magneto-optical recording medium
US6118736A (en) Magneto-optical recording medium having a reading layer in which transferred recording marks are extended
JPS62226450A (en) Photomagnetic recording medium
JP2681199B2 (en) Magneto-optical recording element
US6048597A (en) Optical device and manufacturing method thereof
KR100209584B1 (en) Magneto-optical disk
JPS61243976A (en) Photomagnetic recording medium
JPH05198027A (en) Magneto-optical recording medium
JPS62246160A (en) Medium for photomagnetic recording
JPS61243977A (en) Photomagnetic recording medium
JPH0697516B2 (en) Magneto-optical recording medium