JPS62214369A - Zero-phase voltage detector - Google Patents

Zero-phase voltage detector

Info

Publication number
JPS62214369A
JPS62214369A JP61060391A JP6039186A JPS62214369A JP S62214369 A JPS62214369 A JP S62214369A JP 61060391 A JP61060391 A JP 61060391A JP 6039186 A JP6039186 A JP 6039186A JP S62214369 A JPS62214369 A JP S62214369A
Authority
JP
Japan
Prior art keywords
container
detection electrodes
zero
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61060391A
Other languages
Japanese (ja)
Other versions
JPH0579147B2 (en
Inventor
Kazuaki Kato
和明 加藤
Mitsuharu Hisatomi
久富 光春
Yasuhiro Tanahashi
康博 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Takamatsu Electric Works Ltd
Original Assignee
NGK Insulators Ltd
Takamatsu Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Takamatsu Electric Works Ltd filed Critical NGK Insulators Ltd
Priority to JP61060391A priority Critical patent/JPS62214369A/en
Publication of JPS62214369A publication Critical patent/JPS62214369A/en
Publication of JPH0579147B2 publication Critical patent/JPH0579147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain a detector which is easily fitted and low in manufacture cost by piercing three window holes at the top surface of a shield container and arranging plate type detection electrodes which are supported at every phase on rod type support members made of insulating materials in the container. CONSTITUTION:The three insulating support members 6 are fixed in the shield container C at positions corresponding to the window holes 5u-5w provided to the lid of the container. The flat plate type detection electrodes 7u-7w corresponding to respective power distribution lines Lu-Lw are fixed to the upper end parts of the members 6. Those electrodes 7u-7w are connected to lead wires R by connectors, etc., through branch lead wires Ru-Rw and led out to a signal processing circuit in a detector box K. In this constitution, a displacement current conducted from an electrostatic charging part through a space is utilized to simplify the structure of the detection part and also manufacture the detection electrodes for the three phases integrally, and further facilitates the opposite fitting operation of the detection part to the electrostatic charging part.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は零相電圧検出器に関するものである。[Detailed description of the invention] purpose of invention (Industrial application field) This invention relates to a zero-phase voltage detector.

(従来の技術) 従来の零相電圧検出方法において、配電線路に取着され
る電圧センサとしては計器用変圧器(以下、PTという
)、又はコンデンサ分圧形計器用変圧器(以下、PDと
いう)が使用されており、また近年PT以外ではオプト
エレクトロニクス技術を応用したものも提案されている
。前記オプトエレクトロニクス技術のものは計器周光変
圧器(以下、光PT)と呼ばれ、多くのものが研究され
ている。この光PTはポッケルス効果を有する素子を電
界中におき、これに電界と同じ方向に直線偏光を入射さ
せると、その直交二成分に対する屈曲率が電界の強さに
対して異なる変化を示すとともに伝播速度も異なり、そ
の結果、光の直交二成分間に位相差が生じ、出射光は楕
円偏光になることを利用したものである。
(Prior art) In the conventional zero-sequence voltage detection method, the voltage sensor attached to the distribution line is a potential transformer (hereinafter referred to as PT) or a capacitor-divided voltage transformer (hereinafter referred to as PD). ) have been used, and in recent years, products other than PT that apply optoelectronic technology have also been proposed. The optoelectronic technology is called an optical power transformer (hereinafter referred to as optical PT), and many of them are being researched. This light PT is produced by placing an element with the Pockels effect in an electric field, and when linearly polarized light is incident on it in the same direction as the electric field, the curvature index for the two orthogonal components changes differently with the strength of the electric field and propagates. This method takes advantage of the fact that the speeds are different, and as a result, a phase difference occurs between two orthogonal components of light, and the emitted light becomes elliptically polarized light.

(発明が解決しようとする問題点) 前記のような従来のPT又はPDは配電線路に対しては
直接ケーブル等の帯電部に取着する接触方式であり、そ
のため、絶縁を考慮する必要があるばかりか、PT、P
Dにおいてはコイル、鉄芯。
(Problems to be Solved by the Invention) The conventional PT or PD as described above is a contact type in which it is attached directly to a charged part of a cable, etc. for power distribution lines, and therefore it is necessary to consider insulation. Not only that, PT, P
In D, coil, iron core.

コンデンサ等を使用することから全体が大型化するとと
もにitが重くなり、そのため取付作業に手間がかかる
問題がある。
The use of capacitors and the like increases the overall size and weight of IT, which poses a problem in that it takes time and effort to install.

また、後者の光PTのものは非接触方式のものであり、
絶縁性には優れるが直線偏光を得るためにレーザ発振器
等が必要であり、装置全体として高価になるという問題
がある。
In addition, the latter optical PT is a non-contact type,
Although it has excellent insulation properties, it requires a laser oscillator or the like to obtain linearly polarized light, and there is a problem that the device as a whole becomes expensive.

上記した零相電圧検出器は軽量にして比較的安価となっ
たものの、この零相電圧検出器では各相銀に検出部を設
ける必要があり、取付けが煩雑であるとともに、部品点
数が多くなり製造コストの点にもなお問題を残した。従
って、取付けが容易で製造コストがより低い零相電圧検
出器の実現が懸案されていた。本発明はこの点を鑑みて
なされたものであり、その目的は取付けが容易にして製
造コストが低い零相電圧検出器を提供することにある。
Although the above-mentioned zero-phase voltage detector has become lightweight and relatively inexpensive, it is necessary to provide a detection part for each phase, making installation complicated and requiring a large number of parts. There still remained problems in terms of manufacturing costs. Therefore, it has been desired to realize a zero-sequence voltage detector that is easy to install and has a lower manufacturing cost. The present invention has been made in view of this point, and its object is to provide a zero-sequence voltage detector that is easy to install and has low manufacturing costs.

発明の構成 (問題点を解決するための手段) この発明は前記した目的を達成するために、導電性部材
からなり電気的に接地されたシールド容器の上面に3個
の窓孔を透設し、同容器内には同容器に対し絶縁材から
なる棒状支持部材にて各相ごとに支持された板状の検出
電極を配し、各検出電極の上面にて前記各窓孔をそれぞ
れ前記容器内面との間に空隙を介して閉塞するように配
置するとともに、前記各検出電極に接続され、導出され
た分岐リード線Ru、Rv、Rwはコネクタ等にてリー
ド線Rに接続し、さらには前記分岐リード線Ru、Rv
、Rw又はリード線Rの少なくとも一方のリード線に増
幅回路とバンドパスフィルタとからなる信号処理回路を
配したものである。
Structure of the Invention (Means for Solving Problems) In order to achieve the above-mentioned object, the present invention provides three window holes through the upper surface of an electrically grounded shielding container made of a conductive member. A plate-shaped detection electrode supported for each phase by a rod-shaped support member made of an insulating material is disposed in the container, and each window hole is connected to the container on the upper surface of each detection electrode. The branch lead wires Ru, Rv, and Rw are connected to each of the detection electrodes and led out, and are connected to the lead wire R using a connector or the like. The branch lead wires Ru, Rv
, Rw or the lead wire R is provided with a signal processing circuit including an amplifier circuit and a bandpass filter.

(作用) この発明は上記した手段を採用したことにより、帯電部
からの空間を介して流入する変位電流を利用することに
より、検出部は簡単な構造となるばかりか、三相分を一
体に製作でき、かつ同検出部の帯電部への対向取付作業
が容易となる。
(Function) By adopting the above-mentioned means, the present invention not only has a simple structure of the detection part by utilizing the displacement current flowing from the charged part through the space, but also integrates three phases into one. It is easy to manufacture, and it is easy to mount the detection section opposite to the charging section.

(実施例) 以下、この発明を具体化した第1実施例を第1図〜第6
図に従って詳述する。
(Example) The first example embodying the present invention will be described below in Figures 1 to 6.
The details will be explained according to the figures.

三相の配電線路Lu、Lv、Lwに対し離間配置される
電圧センサSのシールド容器Cは断面チャンネル状のケ
ース1とこれに被せられる蓋2とから構成されている。
A shield container C of a voltage sensor S that is placed apart from three-phase power distribution lines Lu, Lv, and Lw is composed of a case 1 having a channel-shaped cross section and a lid 2 that is placed over the case 1.

第3図に示すように、前記ケース1の互いに相対する側
壁の両端部及び底壁の両端部には取付片3がそれぞれ内
方へ直角に折り曲げ形成されている。また、第2図に示
すように、前記シールド容器Cの蓋2はケース1の両端
開口部長d上方を覆うように逆チヤンネル状をなし、そ
の両端壁から挿通されるビス4により前記ケース1の取
付片に締付固定されている。前記蓋2には長方形状をな
す変位電流流入部としての窓孔5u、5v、5wが第1
図に示す各配電線路Lu、Lv、Lwに対応するように
長さ方向に3個並んで透設されている。前記シールド容
器C内において、ケース1には窓孔5u、5v、5wと
対応する位置に3 f[!itの絶縁支持部材6が固設
され、同支持部材6の上端部には各配電線路Lu、Lv
As shown in FIG. 3, mounting pieces 3 are formed by bending inward at right angles at both ends of the side walls and both ends of the bottom wall of the case 1, which face each other. Further, as shown in FIG. 2, the lid 2 of the shield container C has a reverse channel shape so as to cover the upper part of the opening length d at both ends of the case 1, and the lid 2 of the shield container C has a reverse channel shape so as to cover the upper part of the opening length d at both ends of the case 1. It is fastened to the mounting piece. The lid 2 has first window holes 5u, 5v, and 5w each having a rectangular shape and serving as a displacement current inflow portion.
Three of them are lined up and transparently installed in the length direction so as to correspond to each of the distribution lines Lu, Lv, and Lw shown in the figure. In the shield container C, the case 1 has 3 f[! An insulating support member 6 is fixedly installed at the upper end of the support member 6 for each distribution line Lu, Lv.
.

Lwに対応する平板状の検出電極7u、7v、7Wがそ
れぞれとス11により締付固定されている。
Flat detection electrodes 7u, 7v, and 7W corresponding to Lw are fastened and fixed by screws 11, respectively.

なお、このシールド容器Cはアルミニウム等の導電体に
て形成され、前記検出電極7u、7v、7Wのシールド
電極となっている。
The shield container C is made of a conductive material such as aluminum, and serves as a shield electrode for the detection electrodes 7u, 7v, and 7W.

前記検出電極7u、7v、7wは金属、導電性樹脂、導
電性ゴム等の導電性部材にて構成され、この実施例では
加工し易いアルミニウムが使用されている。そして、前
記のようにケース1に支持部材6及び検出電極7u、7
v、7wが組付けられた後、これら検出電極7u、7v
、7wは分岐リード線Ru、Rv、Rwを介してコネク
タ等にてリード線Rに接続されて後記する信号処理回路
9に導出されている。
The detection electrodes 7u, 7v, and 7w are made of a conductive member such as metal, conductive resin, or conductive rubber, and in this embodiment, aluminum, which is easy to process, is used. Then, as described above, the support member 6 and the detection electrodes 7u, 7 are attached to the case 1.
After the detection electrodes 7u and 7w are assembled, these detection electrodes 7u and 7v
, 7w are connected to a lead wire R via a connector or the like via branch lead wires Ru, Rv, and Rw, and are led out to a signal processing circuit 9 to be described later.

前記信号処理回路9について、第4図に従って説明する
と、この信号処理回路9は後記電源回路20とともに検
出器ボックスに内に収納され、大きく分けて増幅回路A
及びバンドパスフィルタ回路Bによって構成されている
The signal processing circuit 9 will be explained according to FIG. 4. The signal processing circuit 9 is housed in a detector box together with a power supply circuit 20, which will be described later, and is roughly divided into an amplifier circuit A.
and a bandpass filter circuit B.

前記増幅回路Aは検出電極7u、7v、7wからの合成
した変位電流を入力すると、その変位電流を増幅し、変
位電流に相似の波形出力するようになっており、具体的
には以下のように構成されている。すなわち、信号処理
回路9の入力端子P1は抵抗R1を介して接地線E1に
接続され、またシールド容器Cは前記分岐リード線Ru
、Rv。
When the amplifier circuit A receives the combined displacement current from the detection electrodes 7u, 7v, and 7w, it amplifies the displacement current and outputs a waveform similar to the displacement current. It is composed of That is, the input terminal P1 of the signal processing circuit 9 is connected to the ground wire E1 via the resistor R1, and the shield container C is connected to the branch lead wire Ru.
, Rv.

Rwとリード線Rを単心シールド付電線を使用する等の
方法にて、シールド編組線をもって端子P2を介して接
地線E1に接続されている。前記抵抗R1の両端子間に
は互いに反対方向に指向する一対のダイオードDi、D
2の並列回路が接続され、検出電極7u、7v、7wが
過大人力阻止のための保護回路となっている。
Rw and the lead wire R are connected to the grounding wire E1 via the terminal P2 with a shielded braided wire by a method such as using a single-core shielded electric wire. A pair of diodes Di, D oriented in opposite directions are connected between both terminals of the resistor R1.
Two parallel circuits are connected, and the detection electrodes 7u, 7v, and 7w serve as a protection circuit to prevent excessive human power.

前記抵抗R1は演算増幅器OPIの反転入力端子に接続
されており、同演算増幅器OPIの非反転入力端子は抵
抗R3を介して接地線E1に接続されている。前記演算
増幅器OPIの反転入力端子と出力端子との間にはコン
デンサC1と抵抗R4との並列回路が接続されている。
The resistor R1 is connected to the inverting input terminal of the operational amplifier OPI, and the non-inverting input terminal of the operational amplifier OPI is connected to the ground line E1 via the resistor R3. A parallel circuit including a capacitor C1 and a resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier OPI.

なお、コンデンサC2,C3は前記演算増幅器OPIの
電源安定用である。
Note that the capacitors C2 and C3 are used to stabilize the power supply of the operational amplifier OPI.

前記抵抗R1〜R4、ダイオードDI、D2゜コンデン
サC1及び演算増幅器OPIとにより増幅回路Aが構成
されるとともに、同増幅回路Aの出力端子は次段のバン
ドパスフィルタBに接続されている。
The resistors R1 to R4, the diode DI, the D2° capacitor C1, and the operational amplifier OPI constitute an amplifier circuit A, and the output terminal of the amplifier circuit A is connected to a bandpass filter B at the next stage.

前記バンドパスフィルタBは増幅回路Aから送られる変
位電流に相似な信号が印加されると、その信号に基づい
て周波数60Hz或いは50Hzを中心周波数として選
択的に増幅して取り出すように設定されており、具体的
には次のように構成されている。
The band pass filter B is set to selectively amplify and extract a frequency of 60 Hz or 50 Hz as a center frequency based on the applied signal when a signal similar to the displacement current sent from the amplifier circuit A is applied. , Specifically, it is structured as follows.

すなわち、前記増幅回路Aの出力端子と演算増幅5OP
2の反転入力端子間にはコンデンサC4と抵抗R5の直
列回路が接続され、また同演算増幅器OP2の非反転入
力端子は抵抗R6を介して接地線E1に接続されている
。前記演算増幅器OP2の反転入力端子と出力端子間に
はコンデンサC5,C6の直列回路と、抵抗R7,R8
の直列回路とからなる並列回路が接続されている。また
、前記抵抗R7,R8間のa点と接地線E1との間には
コンデンサC7が接続されている。演算増幅器OP2の
出力端子と信号処理回路9の出力端子23間には抵抗R
9が接続されている。
That is, the output terminal of the amplifier circuit A and the operational amplifier 5OP
A series circuit of a capacitor C4 and a resistor R5 is connected between the inverting input terminals of the operational amplifier OP2, and the non-inverting input terminal of the operational amplifier OP2 is connected to the ground line E1 via a resistor R6. A series circuit of capacitors C5 and C6 and resistors R7 and R8 are connected between the inverting input terminal and the output terminal of the operational amplifier OP2.
A parallel circuit consisting of a series circuit and a series circuit are connected. Further, a capacitor C7 is connected between a point a between the resistors R7 and R8 and the ground line E1. A resistor R is connected between the output terminal of the operational amplifier OP2 and the output terminal 23 of the signal processing circuit 9.
9 is connected.

前記抵抗R5〜R8、コンデンサC4〜c7及び演算増
幅器OP2とによりバンドパスフィルタBが構成されて
いる。
A bandpass filter B is constituted by the resistors R5 to R8, the capacitors C4 to c7, and the operational amplifier OP2.

次に、第5図に従って電源回路20について説明すると
、100VAC電源端子には電源変圧器21が接続され
、さらに同電源変圧器21の二次側には全波整流器22
が接続されている。前記電源変圧器21の二次側におけ
るb点は接地線E2が接続され、前記全波整流器22の
プラス端子と接地線E2との間には平滑コンデンサc8
及びコンデンサC9が接続されている。
Next, the power supply circuit 20 will be explained according to FIG. 5. A power transformer 21 is connected to the 100VAC power terminal, and a full-wave rectifier 22 is connected to the secondary side of the power transformer 21.
is connected. A grounding wire E2 is connected to point b on the secondary side of the power transformer 21, and a smoothing capacitor c8 is connected between the positive terminal of the full-wave rectifier 22 and the grounding wire E2.
and a capacitor C9 are connected.

また、前記全波整流器22のプラス端子と接地線E2と
の間には三端子レギュレータ23が接続され、この三端
子レギュレータ23の出力端子は+Vcc端子に接続さ
れるとともに、三端子レギュレータ23の出力端子と接
地線E2との間にはコンデンサCIO及びコンデンサC
1lが接続されている。
Further, a three-terminal regulator 23 is connected between the positive terminal of the full-wave rectifier 22 and the ground wire E2, and the output terminal of the three-terminal regulator 23 is connected to the +Vcc terminal, and the output terminal of the three-terminal regulator 23 is connected to the +Vcc terminal. A capacitor CIO and a capacitor C are connected between the terminal and the ground wire E2.
1l is connected.

また、前記全波整流器22のマイナス端子と接地線E2
との間には平滑コンデンサC12及びコンデンサC13
が接続されている。また、全波整流器22のマイナス端
子と接地線E2との間には三端子レギュレータ24が接
続され、この三端子レギュレータ24の出力端子は−V
cc端子に接続されるとともに、三端子レギュレータ2
4の出力端子と接地線E2との間にはコンデンサC14
及びコンデンサC15が接続されている。
In addition, the negative terminal of the full-wave rectifier 22 and the grounding wire E2
A smoothing capacitor C12 and a capacitor C13 are connected between
is connected. Further, a three-terminal regulator 24 is connected between the negative terminal of the full-wave rectifier 22 and the ground wire E2, and the output terminal of this three-terminal regulator 24 is -V
It is connected to the cc terminal, and the three-terminal regulator 2
A capacitor C14 is connected between the output terminal of 4 and the ground wire E2.
and a capacitor C15 are connected.

さて、以上のように構成された零相電圧検出器の作用に
ついて説明する。
Now, the operation of the zero-sequence voltage detector configured as above will be explained.

第1図では各配電線Lu、Lv、Lwに定常の負荷電流
が流れている場合には配電線路Lu、Lv、Lwと基準
電位点であるアースとの間に形成される静電容量Cu、
Cv、Cwを介して流れる変位電流が変位電流流入部と
しての電圧センサSの窓孔5u、5v、5wを通して検
出電極7u。
In Fig. 1, when a steady load current is flowing through each distribution line Lu, Lv, Lw, the capacitance Cu formed between the distribution lines Lu, Lv, Lw and the ground, which is a reference potential point, is
The displacement current flowing through Cv and Cw passes through the window holes 5u, 5v, and 5w of the voltage sensor S as a displacement current inflow part to the detection electrode 7u.

7v、7wに捕集される。It is collected by 7v and 7w.

そして、この変位電流は合成された後に信号処理回路8
の増幅回路Aに出力され、増幅回路Aはその変位電流を
増幅し、変位電流に相似な波形をバンドパスフィルタB
に出力する。この場合、端子Pi、P2からみた入力イ
ンピーダンスは抵抗R1とR2との並列値と考えられる
。周知ように演算増幅器の典型的な使用例においては抵
抗R2はにΩオーダの値である。また、閉ループ利得R
4/R2は充分な出力を得るために1000程度に取ら
れる。
After this displacement current is combined, the signal processing circuit 8
The amplifier circuit A amplifies the displacement current, and passes the waveform similar to the displacement current to the bandpass filter B.
Output to. In this case, the input impedance seen from the terminals Pi and P2 is considered to be a parallel value of resistors R1 and R2. As is well known, in typical applications of operational amplifiers, the resistance R2 has a value on the order of Ω. Also, the closed loop gain R
4/R2 is set to about 1000 to obtain sufficient output.

従って、上記の入力インピーダンスは事実上抵抗R2に
より充分に低い値に保たれ、しかも高い閉ループ利得の
ために演算増幅器opiの出力には大きな信号が得られ
る。なお、周知のように演算増幅器OPIの入出力の位
相差は抵抗R4,コンデンサC1のインピーダンスの大
小関係により変化し、前者が相対的に小さければ位相差
は無視され、変位電流に比例した出力が得られる。逆の
場合には積分値、すなわち配電線路の電位に比例した値
が得られる。いずれにしてもこの出力には変位電流に相
似な波形が得られる。
Therefore, the above-mentioned input impedance is effectively kept at a sufficiently low value by the resistor R2, yet a large signal is available at the output of the operational amplifier opi due to the high closed-loop gain. As is well known, the phase difference between the input and output of the operational amplifier OPI changes depending on the magnitude relationship between the impedances of the resistor R4 and the capacitor C1, and if the former is relatively small, the phase difference is ignored and the output is proportional to the displacement current. can get. In the opposite case, an integral value, ie a value proportional to the potential of the distribution line, is obtained. In any case, this output has a waveform similar to the displacement current.

次に、バンドパスフィルタBは前記変位電流に相似な信
号が印加されると、その信号に基づいて周波数60+1
z或いは50)1zを中心周波数とする信号を選択的に
増幅して取り出し、零相電圧■0信号を出力端子Pに出
力する(第6図参照)。この第6図において、α、β、
Tは各配電線路Lu。
Next, when a signal similar to the displacement current is applied, the bandpass filter B operates at a frequency of 60+1 based on the signal.
A signal whose center frequency is z or 50)1z is selectively amplified and extracted, and a zero-phase voltage 0 signal is output to the output terminal P (see FIG. 6). In this Figure 6, α, β,
T is each distribution line Lu.

LV、l、wに印加された電圧の波形である。This is the waveform of the voltage applied to LV, l, and w.

このように、通常の場合には各相の対地電圧が平衡であ
るため、3つの検出電極7u、7v、7Wの電圧を合成
して得られる零相電圧■0はOとなる。
In this way, since the ground voltages of each phase are normally balanced, the zero-sequence voltage 0 obtained by combining the voltages of the three detection electrodes 7u, 7v, and 7W is O.

次に配電線路Lu、Lv、Lwのうちいずれか一相の配
電線路に地絡故障が生ずると、各相の対地電圧の平衡が
崩れるため、三相の検出電極7u。
Next, if a ground fault occurs in any one phase of the distribution lines Lu, Lv, and Lw, the balance between the ground voltages of each phase will be disrupted, so the three-phase detection electrode 7u.

7v、7wにて合成された電圧は信号処理回路9に入力
されたのち、この入力された電圧に対応する信号を出力
し、零相電圧が検出される。これにより、配電線路に地
絡故障が生じたことが検知される。
After the combined voltage of 7V and 7W is input to the signal processing circuit 9, a signal corresponding to the input voltage is outputted, and a zero-phase voltage is detected. As a result, it is detected that a ground fault has occurred in the power distribution line.

また、前記電圧センサSのシールド容’lACはケース
1及び蓋2がシールド電極となっており、被測定物であ
る配電線路以外からの変位電流の流入を防止するため、
被測定物である配電線路以外の他の配電線路の悪影響を
受けることがない。
In addition, the shield capacity 'lAC of the voltage sensor S is such that the case 1 and the lid 2 serve as shield electrodes, and in order to prevent the inflow of displacement current from sources other than the distribution line that is the object to be measured,
There is no adverse effect from other power distribution lines other than the power distribution line that is the object to be measured.

次に、この発明の第2の実施例を第7図及び第8図に従
って詳述する。
Next, a second embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8.

この実施例では、第7図に示すように、三相の検出電極
7u、7v、7wのリード線を互いに連結することなく
、検出器ボックスに内に電源回路20とともに設けた加
算回路25に連結し、この加算回路25にて三相の電圧
を合成する構成としたものである。
In this embodiment, as shown in FIG. 7, the lead wires of three-phase detection electrodes 7u, 7v, and 7w are not connected to each other, but are connected to an adder circuit 25 provided inside the detector box together with a power supply circuit 20. However, this adder circuit 25 is configured to combine three-phase voltages.

前記加算回路25は各ヰ★出電極7u、7v、7Wから
出力された所定の周波数に選択された信号を合成してそ
の出力端子Poに零相電圧Voを出力するようになって
いる。以下、第8図に従って加算回路25の具体的構成
を述べる。
The adder circuit 25 is configured to synthesize signals output from the respective output electrodes 7u, 7v, and 7W and selected at a predetermined frequency, and output a zero-phase voltage Vo to its output terminal Po. The specific configuration of the adder circuit 25 will be described below with reference to FIG.

すなわち、演算増幅器OP3の反転入力端子のG点には
それぞれ可変の入力抵抗RIO,R11゜R12を介し
て前記検出電極7u、7v、7wの出力端子pv、pu
、Pwが接続され、その非反転入力端子は抵抗R13を
を介して接地されている。また、演算増幅器OP3の出
力端子は抵抗R14を介して前記G点に接続されている
。さらに前記演算増幅器OP3の出力端子は演算増幅器
OP4を使用した電圧ホロア及び抵抗15を介して出力
端子Poに接続されている。この電圧ホロアは入力イン
ピーダンスを高くして出力インピーダンスを低くし、イ
ンピーダンスの変換を行っている。
That is, the output terminals pv, pu of the detection electrodes 7u, 7v, 7w are connected to the inverting input terminal G of the operational amplifier OP3 via variable input resistors RIO, R11°R12, respectively.
, Pw are connected, and their non-inverting input terminals are grounded via a resistor R13. Further, the output terminal of the operational amplifier OP3 is connected to the point G via a resistor R14. Further, the output terminal of the operational amplifier OP3 is connected to the output terminal Po via a voltage follower using an operational amplifier OP4 and a resistor 15. This voltage follower converts impedance by increasing input impedance and decreasing output impedance.

前記抵抗RIO〜R15及び演算増幅器OP 3゜0P
4によって加算回路25が構成されている。
The resistors RIO to R15 and operational amplifier OP 3°0P
4 constitutes an adder circuit 25.

また、前記加算回路25は電源回路20とともに検出器
ボックスに内に収納されて零相電圧検出器26を構成す
るものであるが、電源回路20の構成は前記第1実施例
と同一であるため、その説明を省略する。
Further, the addition circuit 25 is housed in a detector box together with the power supply circuit 20 to constitute a zero-phase voltage detector 26, but the configuration of the power supply circuit 20 is the same as that of the first embodiment. , the explanation thereof will be omitted.

続いてこの発明の第3の実施例を第9図に従って述べる
Next, a third embodiment of the present invention will be described with reference to FIG.

この実施例ではシールド容器Cを断面チャンネル状に形
成して底部を省略し、さらに三相の検出電極7u、7v
、7wをそれぞれ一対の絶縁支持部材27を介してシー
ルド容器Cの上面内側から垂下したものである。前記絶
縁支持部材27には絶縁ひだ28が形成されて検出電極
7u、7v。
In this embodiment, the shield container C is formed into a channel-shaped cross section, the bottom part is omitted, and three-phase detection electrodes 7u and 7v are formed.
, 7w are suspended from the inside of the upper surface of the shield container C via a pair of insulating support members 27, respectively. Insulating folds 28 are formed on the insulating support member 27 to form detection electrodes 7u and 7v.

7Wからシールド電極に流れる電流の漏洩が軽減するよ
うになっている。また、前記第2実施例と同様に、各検
出電極7u、7v、7wは零相電圧検出器26内の加算
回路25に連結され、同加算回路25にて電圧の合成が
行われたのち、出力端子Pに対し零相電圧Voを出力す
るようになっている。
From 7W onwards, the leakage of the current flowing into the shield electrode is reduced. Further, as in the second embodiment, each of the detection electrodes 7u, 7v, 7w is connected to an adder circuit 25 in the zero-phase voltage detector 26, and after the voltages are combined in the adder circuit 25, A zero-phase voltage Vo is output to the output terminal P.

発明の効果 以上詳述したように、この発明は導電性部材からなり電
気的に接地されたシールド容器の上面に3個の窓孔を透
設し、同容器内には同容器に対し絶縁材からなる棒状支
持部材にて各相ごとに支持された板状の検出電極を配し
、各検出電極の上面にて前記各窓孔をそれぞれ前記容器
内面との間に空隙を介して閉塞するように配置するとと
もに、前記各検出電極に接続され、導出された分岐リー
ド線Ru、Rv、Rwはコネクタ等にてリード線Rに接
続し、さらには前記分岐リード線Ru、Rv、Rw又は
リード線Rの少なくとも一方のリード線に増幅回路とバ
ンドパスフィルタとからなる信号処理回路を配したこと
によって、製造コストを低減することができるとともに
、取付けが簡単であるという優れた効果を発揮する。
Effects of the Invention As detailed above, the present invention has three transparent windows in the upper surface of the electrically grounded shield container made of a conductive material, and an insulating material inside the container. plate-shaped detection electrodes supported for each phase by rod-shaped support members made of At the same time, the branch lead wires Ru, Rv, and Rw connected to each of the detection electrodes and led out are connected to the lead wire R with a connector or the like, and the branch lead wires Ru, Rv, and Rw or the lead wires are By disposing a signal processing circuit consisting of an amplifier circuit and a bandpass filter on at least one lead wire of R, manufacturing costs can be reduced and installation is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を具体化した第1実施例の零相電圧検
出器の全体図、第2図は電圧センサの断面図、第3図は
モールド材を除いた電圧センサの分解斜視図、第4図は
増幅回路及びフィルタの電気回路図、第5図は零相電圧
検出器の検出回路の電気回路図、第6図はこの零相電圧
検出器にて検出された零相電圧と各相配電線の電圧オシ
ログラフ、第7図は第2の実施例を示す全体図、第8図
は同じく第2の実施例を示す電気回路図、第9図は第3
の実施例を示す断面図である。 シールド容器C1窓孔5u、5v、5w、支持部材6、
検出電極7u、7v、7w、信号処理回路9、増幅回路
A、バンドパスフィルタB1リード線R1分岐リード線
Ru、Rv、Rw。 特許出願人     日本碍子株式会社株式会社高松電
気製作所
FIG. 1 is an overall view of a zero-phase voltage detector according to a first embodiment embodying the present invention, FIG. 2 is a sectional view of the voltage sensor, and FIG. 3 is an exploded perspective view of the voltage sensor excluding the molding material. Figure 4 is an electric circuit diagram of the amplifier circuit and filter, Figure 5 is an electric circuit diagram of the detection circuit of the zero-phase voltage detector, and Figure 6 is the electric circuit diagram of the zero-phase voltage detected by this zero-phase voltage detector and each Voltage oscilloscope of phase distribution line, Fig. 7 is an overall diagram showing the second embodiment, Fig. 8 is an electric circuit diagram also showing the second embodiment, and Fig. 9 is a diagram showing the third embodiment.
FIG. Shield container C1 window holes 5u, 5v, 5w, support member 6,
Detection electrodes 7u, 7v, 7w, signal processing circuit 9, amplifier circuit A, bandpass filter B1 lead wire R1 branch lead wires Ru, Rv, Rw. Patent applicant: Nippon Insulators Co., Ltd. Takamatsu Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、導電性部材からなり電気的に接地されたシールド容
器の上面に3個の窓孔を透設し、同容器内には同容器に
対し絶縁材からなる棒状支持部材にて各相ごとに支持さ
れた板状の検出電極を配し、各検出電極の上面にて前記
各窓孔をそれぞれ前記容器内面との間に空隙を介して閉
塞するように配置するとともに、前記各検出電極に接続
され、導出された分岐リード線Ru、Rv、Rwはコネ
クタ等にてリード線Rに接続し、さらには前記分岐リー
ド線Ru、Rv、Rw又はリード線Rの少なくとも一方
のリード線に増幅回路とバンドパスフィルタとからなる
信号処理回路を配したことを特徴とする零相電圧検出器
1. Three window holes are made through the upper surface of an electrically grounded shielding container made of a conductive material, and a rod-shaped support member made of an insulating material is installed inside the container for each phase. Supported plate-shaped detection electrodes are arranged, each of the window holes is arranged on the upper surface of each detection electrode so as to be closed with a gap between them and the inner surface of the container, and is connected to each of the detection electrodes. The branch lead wires Ru, Rv, and Rw are connected to the lead wire R using a connector or the like, and an amplifier circuit is connected to at least one of the branch lead wires Ru, Rv, and Rw, or the lead wire R. A zero-phase voltage detector characterized in that it is equipped with a signal processing circuit consisting of a bandpass filter.
JP61060391A 1986-03-17 1986-03-17 Zero-phase voltage detector Granted JPS62214369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060391A JPS62214369A (en) 1986-03-17 1986-03-17 Zero-phase voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060391A JPS62214369A (en) 1986-03-17 1986-03-17 Zero-phase voltage detector

Publications (2)

Publication Number Publication Date
JPS62214369A true JPS62214369A (en) 1987-09-21
JPH0579147B2 JPH0579147B2 (en) 1993-11-01

Family

ID=13140803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060391A Granted JPS62214369A (en) 1986-03-17 1986-03-17 Zero-phase voltage detector

Country Status (1)

Country Link
JP (1) JPS62214369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206269A (en) * 1988-02-13 1989-08-18 Energy Support Corp Zero phase current detector and zero phase current and voltage detector
JPH03167485A (en) * 1989-11-27 1991-07-19 Meidensha Corp Method for detecting ground fault of gas insulated switchgear
JP2007289000A (en) * 2007-08-08 2007-11-01 Mitsubishi Electric Corp Failure detection apparatus of invertor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206269A (en) * 1988-02-13 1989-08-18 Energy Support Corp Zero phase current detector and zero phase current and voltage detector
JPH03167485A (en) * 1989-11-27 1991-07-19 Meidensha Corp Method for detecting ground fault of gas insulated switchgear
JP2007289000A (en) * 2007-08-08 2007-11-01 Mitsubishi Electric Corp Failure detection apparatus of invertor
JP4573859B2 (en) * 2007-08-08 2010-11-04 三菱電機株式会社 Inverter failure detection device

Also Published As

Publication number Publication date
JPH0579147B2 (en) 1993-11-01

Similar Documents

Publication Publication Date Title
US4879509A (en) Zero-phase-sequence voltage sensing apparatus
US4240059A (en) Current divider for a current sensing transducer
US5383084A (en) Circuit analyzing system
GB2198854A (en) Poynting vector probe for measuring electrical power
JPS62214369A (en) Zero-phase voltage detector
JPH0668510B2 (en) Voltage sensor
US5693988A (en) Filtering device
JPS62112072A (en) Zero-phase voltage detecting device
JP6989346B2 (en) Voltage measuring device
JPS62214365A (en) Switch
JPS62214362A (en) Voltage sensor
SE422374B (en) ELECTRICAL FILTER EQUIPMENT
JPS62214361A (en) Voltage sensor
JPS62214363A (en) Fitting structure for voltage sensor
JPS58124960A (en) Current measuring device
JPS5916835Y2 (en) Input circuit of electronic equipment
JPS57189074A (en) Corona measuring method for power cable
JPH01136074A (en) Detector for voltage of gas insulated closed appliance and partial discharge
SU1330583A1 (en) Device for two=frequency measurement of two-terminal network full admittance
JPS62214360A (en) Collection electrode for voltage sensor
SU714282A1 (en) Ac tachogenerator
SU752592A1 (en) Apparatus for differential protection with phase braking of electric installation
DE59909559D1 (en) Electronic transformer
SU1161897A2 (en) Device for polarization measurements
JPS562571A (en) Measuring circuit for impedance of electric parts