JPS62214361A - Voltage sensor - Google Patents

Voltage sensor

Info

Publication number
JPS62214361A
JPS62214361A JP61060393A JP6039386A JPS62214361A JP S62214361 A JPS62214361 A JP S62214361A JP 61060393 A JP61060393 A JP 61060393A JP 6039386 A JP6039386 A JP 6039386A JP S62214361 A JPS62214361 A JP S62214361A
Authority
JP
Japan
Prior art keywords
detection electrode
container
window hole
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61060393A
Other languages
Japanese (ja)
Other versions
JPH0668504B2 (en
Inventor
Kazuaki Kato
和明 加藤
Mitsuharu Hisatomi
久富 光春
Katsunori Aoki
青木 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Takamatsu Electric Works Ltd
Original Assignee
NGK Insulators Ltd
Takamatsu Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Takamatsu Electric Works Ltd filed Critical NGK Insulators Ltd
Priority to JP61060393A priority Critical patent/JPH0668504B2/en
Publication of JPS62214361A publication Critical patent/JPS62214361A/en
Publication of JPH0668504B2 publication Critical patent/JPH0668504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain an inexpensive sensor of simple constitution which performs accurate detecting operation by arranging a detection electrode supported by an insulating material in a shield case which is made of a conductive member and grounded. CONSTITUTION:A window hole 5 is bored in the top surface of the shield container 1 which is made of the conductive member and electrically grounded and the plate type detection electrode 10 which is supported by the thin rod type support member 6 made of the insulating material is arranged in the container 1. The window hole 5 is closed with the top surface of the detection electrode 10 while a gap is left opposite the internal surface of the container. The detection electrode 10 is connected to a signal processing circuit composed of an amplifying circuit and a BPF. The sensor arranged at distance from an electrostatic charging part such as a power distribution line is not affected by other electrostatic charging parts because the detection electrode 10 faces it across the window hole 5 of the shield container 1. The window hole 5 is closed at the time of outdoor use, so rain and foil matter are prevented from entering the shield container 1.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は電圧センサに関するものである。[Detailed description of the invention] purpose of invention (Industrial application field) TECHNICAL FIELD This invention relates to voltage sensors.

(従来の技Wi ) 従来から交流の電圧検出をする方法としては一般に商用
周波において計器用変圧器(以下、PTという)、又は
コンデンサ分圧形計器用変圧器(以下、PDという)が
使用されている。
(Conventional Techniques Wi) Traditionally, as a method for detecting alternating current voltage, a potential transformer (hereinafter referred to as PT) or a capacitor voltage division type potential transformer (hereinafter referred to as PD) is generally used at commercial frequencies. ing.

(発明が解決しにうとする問題点) 前記のような従来のPT又はPDは配電線路に対しては
直)妄ケーブル等の帯電部に取着する接触方式であり、
そのため、絶縁を考慮する必要があるばかりか、PT、
f)Dにおいてはコイル、鉄芯。
(Problems to be Solved by the Invention) The conventional PT or PD as described above is a contact type that is attached to a charged part of a cable, etc., which is not directly connected to a distribution line.
Therefore, not only is it necessary to consider insulation, but also PT,
f) In D, coil, iron core.

コンデンサ等を使用することから全体が大型化するとと
もに@量が重くなる問題があり、そのため取イ」作業に
手間がかかることから、配電線等帯電部と空間を介して
検出電極を配置し、空間の静電容量を介して前記帯電部
から流入する変位電流を利用する検出手段が発明される
に至った。しかしながら、この電圧センサの使用場所と
しては、屋内外あるいはJg塵埃地域といった幅広い範
囲を考FIRする必要があり、特に雨水による検出出力
に及ぼ1影響回避が問題視されるところである。
The use of capacitors, etc. increases the overall size and weight, which makes the removal process time-consuming, so the detection electrode is placed between the electrically charged parts such as distribution lines and the space. A detection means has been invented that utilizes the displacement current flowing from the charging section via the capacitance of the space. However, when using this voltage sensor, it is necessary to consider a wide range of FIRs, such as indoors and outdoors or areas with JG dust, and avoidance of the influence of rainwater on the detection output is particularly problematic.

この発明は前記問題点を踏まえ構成が簡単であリ、かつ
安価にして正確なる検出動作を得る電圧センサを提供す
ることを目的としている。発明の構成 (問題点を解決するための手段) 前記問題点を解消するためにこの発明は導電性部材から
なり電気的に接地されたシールド容器の上面に窓孔を透
設し、同容器内には同容器に対し絶縁材からなる細い棒
状支持部材にて支持された板状の検出電極を配し、同検
出電極の上面にて前記窓孔を前記容器内面との間に空隙
を介して閉塞するよう辷装置するとともに、前記検出電
極には(作用) 前記構成により配電線等の帯1部に対し1llli間し
て配置される本発明の電圧センサは検出電極がシールド
容器の窓孔を介して対向するため、他の帯電部からの影
響を受けることはなく、又、屋外使用にあっては窓孔を
閉塞するように検出電極が配置されることからこのシー
ルド容器内への雨水あるいは汚損物の侵入が阻まれ、雨
水あるいは汚損物の前記検出電極の裏面に位置する支持
部材への付着が抑えられるとともに、同支持部材は細い
棒状であることから表面積は小であり、かりに雨水が付
着したとしてもそのイ」着面積は小さく検出出力に与え
る影響はない。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a voltage sensor that is simple in construction, inexpensive, and provides accurate detection operation. Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a transparent window hole in the upper surface of an electrically grounded shield container made of a conductive member, and A plate-shaped detection electrode supported by a thin rod-shaped support member made of an insulating material is arranged on the container, and the window hole is connected to the upper surface of the detection electrode with a gap between it and the inner surface of the container. In the voltage sensor of the present invention, which is arranged at a distance of 1 mm from one part of a belt of a distribution line, etc., the detection electrode is placed in the window hole of the shield container. Because they face each other through the shield, they are not affected by other charged parts, and when used outdoors, the detection electrode is placed so as to close the window hole, preventing rainwater or The intrusion of contaminants is prevented, and the adhesion of rainwater or contaminants to the support member located on the back side of the detection electrode is suppressed.Since the support member is thin and rod-shaped, its surface area is small, and rainwater is prevented from entering. Even if it does adhere, the area of the adhesion is small and has no effect on the detection output.

(実施例) 以下、この発明を零相電圧検出装置の電圧センサに具体
化した実施例を第1図〜第6図に従って説明する。
(Example) Hereinafter, an example in which the present invention is embodied in a voltage sensor of a zero-phase voltage detection device will be described with reference to FIGS. 1 to 6.

60Hzあるいは501−1 zの各相配電線路L(」
60Hz or 501-1 z each phase distribution line L("
.

LV、LWに対しほぼ等距離をおいてmt間配置される
電圧センサSu、Sv、Swは同一構成のため、電圧セ
ンサSuについて説明する。この電圧センサ3uは検出
部7と信号処理回路8から構成されている。
Since the voltage sensors Su, Sv, and Sw arranged between mt at substantially equal distances from the LV and LW have the same configuration, the voltage sensor Su will be explained. This voltage sensor 3u is composed of a detection section 7 and a signal processing circuit 8.

ケース1は断面ヂャンネル状に形成さ゛れ、互いに相対
する側壁の両端部及び底壁の両端部には取付片2がそれ
ぞれ内方へ直角に折曲げ形成されている。前記ケース1
の取付片2にはケース10両端開口部及び上方を覆うよ
うに逆チヤンネル状に形成されたM3がその両端壁から
挿通されるビス4により締付固定され、同着3の上面に
は長方形状をなす変位電流流入部としての窓孔5が透設
されている。このケース1とM3とはアルミニウム咎の
1ffi体にて形成され、後記する検出電極10のシー
ルド容器となっている。
The case 1 has a channel-shaped cross section, and mounting pieces 2 are formed at both ends of the side walls facing each other and at both ends of the bottom wall, respectively, to be bent inward at right angles. Said case 1
An M3 formed in a reverse channel shape so as to cover both end openings and the upper part of the case 10 is tightened and fixed to the mounting piece 2 by screws 4 inserted through both end walls, and a rectangular shaped M3 is attached to the upper surface of the mounting piece 3. A window hole 5 is provided as a displacement current inflow portion. The case 1 and M3 are formed of a 1ffi aluminum body, and serve as a shield container for a detection electrode 10, which will be described later.

前記ケース1の中央部上面には合成樹脂等の絶縁材から
細い丸棒状に形成された絶縁支持部材6を介して平板状
の検出電極10がビス11により固定されており、前記
絶縁支持部材6はできる限りその表面積を小さくするの
が好ましく実験においては検出電極の短辺寸法に対し、
絶縁支持部材の直径を17′5としている。そして、前
記検出電極10G、を蓋3に対して平行に配置されると
ともに、ケース1及び蓋3に対し空隙を介して窓孔5を
内方より閉塞するように配置されている。なお、前記検
出電極10は金属、S電性樹脂、導電性ゴム等の導電性
部材にて構成し、この実施例ではステンレスが使用され
ている。
A flat detection electrode 10 is fixed to the upper surface of the central part of the case 1 with screws 11 via an insulating support member 6 formed from an insulating material such as synthetic resin into a thin round bar shape. It is preferable to make the surface area as small as possible, and in experiments, the short side dimension of the detection electrode is
The diameter of the insulating support member is 17'5. The detection electrode 10G is arranged parallel to the lid 3, and is arranged so as to close the window hole 5 from the inside with a gap between the case 1 and the lid 3. The detection electrode 10 is made of a conductive material such as metal, S-conductive resin, or conductive rubber, and stainless steel is used in this embodiment.

そして前記ケース1.蓋3.検出電極10等により検出
部7が構成されている。
And the above case 1. Lid 3. A detection section 7 is configured by the detection electrode 10 and the like.

前記検出部7の絶縁支持部材6の内部には単心シールド
付電線31が挿通され、同単心シールド付1!線31の
心線は検出電極10に接続され、同単心シールド付電極
31はケース1から導出されて後記零相電圧検出蔦20
のケース(図示しない)内に内装される信号処理回路8
に接続されている。
A single-core shielded electric wire 31 is inserted into the inside of the insulating support member 6 of the detection section 7, and the same single-core shielded electric wire 1! The core wire of the wire 31 is connected to the detection electrode 10, and the single-core shielded electrode 31 is led out from the case 1 and connected to the zero-phase voltage detection tube 20 described later.
A signal processing circuit 8 installed inside the case (not shown)
It is connected to the.

又、前記単心シールド付電線31のシールド編組線はケ
ース1に接続されている。この信号処理回路8は各電圧
センサ3u 、3v 、3wとも同一構成のため、検出
電極10に接続される信号処理回路8について説明する
Further, the shield braided wire of the single-core shielded electric wire 31 is connected to the case 1. Since this signal processing circuit 8 has the same configuration as each voltage sensor 3u, 3v, 3w, the signal processing circuit 8 connected to the detection electrode 10 will be explained.

信号処理回路8は大きく分けて増幅回路へとバンドパス
フィルタBとから構成されている。
The signal processing circuit 8 is roughly divided into an amplifier circuit and a bandpass filter B.

増幅回路Aは前記検出電極10からの変位?ti流を入
力すると、その変位電流を増幅し、変位電流に相似な波
形を出力するようになっており、具体的には以下のよう
に構成されている。ずなわち、信号処理回路8の入力端
子P1は抵抗R1を介して接地線E1に接続され、又、
シールド容器を構成づるケース1は端子P2を介して接
地線E1に接続されている。前記抵抗R1の両端子間に
は互いに逆を向く一対のダイオードD1.D2の並列回
路が接続され、検出電極10からの過大入力阻止のため
の保護回路となっている。
Is the amplifier circuit A displaced from the detection electrode 10? When a ti current is input, the displacement current is amplified and a waveform similar to the displacement current is output. Specifically, the configuration is as follows. That is, the input terminal P1 of the signal processing circuit 8 is connected to the ground line E1 via the resistor R1, and
A case 1 constituting a shielded container is connected to a ground line E1 via a terminal P2. Between both terminals of the resistor R1, a pair of diodes D1. A parallel circuit of D2 is connected, and serves as a protection circuit for preventing excessive input from the detection electrode 10.

前記入力端子P1は抵抗R2を介して演算増幅器OP1
の反転入力端子に接続されており、又、同演算増幅器O
P1の非反転入力端子は抵抗R3を介して接地線E1に
接続されている。前記演算増幅器○P1の反転入力端子
と出力端子間にはコンデンサC1と抵抗R4との並列回
路が接続されている。なJ3、コンデンサC2,C3は
前記演算増幅器OP1の電源安定用である。
The input terminal P1 is connected to the operational amplifier OP1 via a resistor R2.
is connected to the inverting input terminal of the operational amplifier O.
The non-inverting input terminal of P1 is connected to the ground line E1 via a resistor R3. A parallel circuit of a capacitor C1 and a resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier ○P1. J3 and capacitors C2 and C3 are for stabilizing the power supply of the operational amplifier OP1.

前記抵抗R1〜R4、ダイオードD1.D2、コンデン
サC1及び演算増幅器OP1とにより増幅回路Aが構成
されている。
The resistors R1 to R4, the diode D1. An amplifier circuit A is constituted by D2, a capacitor C1, and an operational amplifier OP1.

バンドパスフィルタBは前記増幅回路Δから変位電流に
比例した信号が印加されると、その信号に基づいて周波
数601」Zあるいは5011zを中心周波数として選
択的に増幅して取り出ずように設定されており、具体的
には次のように構成されている。すなわち、演算増幅器
oP1の出力端子と演算増幅器OP2の反転入力端子間
にはコンデンサC6と抵抗R5の直列回路が接続され、
又、同演算増幅器○P2の非反転入力端子は抵抗R6を
介して接地線E1に接続されている。面記演筒増幅器○
P2の反転入力端子と出力端子間にはコンデンサC4,
C5の直列回路と、抵抗R7,R8の直列回路とからな
る並列回路が接続されCいる。又、前記抵抗R7,R8
間のa点と接地線E1との間にはコンデンサC7が接続
されている。
When a signal proportional to the displacement current is applied from the amplifier circuit Δ, the bandpass filter B is set to selectively amplify the frequency 601'Z or 5011z based on the signal and not extract it. Specifically, it is structured as follows. That is, a series circuit of a capacitor C6 and a resistor R5 is connected between the output terminal of the operational amplifier oP1 and the inverting input terminal of the operational amplifier OP2.
Further, the non-inverting input terminal of the operational amplifier ○P2 is connected to the ground line E1 via a resistor R6. Masked tube amplifier ○
A capacitor C4 is connected between the inverting input terminal and the output terminal of P2.
A parallel circuit consisting of a series circuit of C5 and a series circuit of resistors R7 and R8 is connected. Moreover, the resistors R7 and R8
A capacitor C7 is connected between a point a in between and the ground line E1.

前記抵抗R5〜R9、コンデンサC4〜C7及び演算増
幅器OP2とによりバンドパスフィルタBが構成される
とともに、同バンドパスフィルタBの出力端子は出力端
子Puに接続されている。
The resistors R5 to R9, the capacitors C4 to C7, and the operational amplifier OP2 constitute a bandpass filter B, and the output terminal of the bandpass filter B is connected to the output terminal Pu.

そして、前記検出電極10.信号処理回路8とにより電
圧センサ3uが構成されている。なお、他の電圧センサ
Sv、Swの出力端子は説明の便宜上puの代りにpv
、pwで表わす。
Then, the detection electrode 10. The signal processing circuit 8 constitutes a voltage sensor 3u. Note that the output terminals of the other voltage sensors Sv and Sw are pv instead of pu for convenience of explanation.
, pw.

前記各相の配電線路Lu、Lv、LWに配置される電圧
センサ3u、3v、3wは零相電圧検出器20に接続さ
れていて、同零相電圧検出器20に内装される検出回路
21は加算回路22と、同加算回路22.前記電圧セン
サ用の電源回路23とから構成されている。
The voltage sensors 3u, 3v, 3w arranged on the power distribution lines Lu, Lv, LW of each phase are connected to a zero-phase voltage detector 20, and a detection circuit 21 installed in the zero-phase voltage detector 20 is Adder circuit 22; Adder circuit 22. and a power supply circuit 23 for the voltage sensor.

前記加算回路22は各電圧センサSu、Sv。The adding circuit 22 connects each voltage sensor Su, Sv.

Swから出力された所定の周波数に選択された信号を合
成してその出力端子Pに零相電圧Vo倍信号出力するよ
うになっている。具体的には加算回路22は次のように
なっている。
The signals outputted from Sw and selected at a predetermined frequency are synthesized and a signal multiplied by the zero-phase voltage Vo is outputted to the output terminal P thereof. Specifically, the adder circuit 22 is configured as follows.

すなわら、演算増幅器OP3の反転入力端子のG点には
それぞれ可変の入力抵抗R11,R12゜R13を介し
て前記電圧センサSu、Sv、Swの出力端子Pu、P
v、Pwが接続され、又、その非反転入ツノ端子は抵抗
R14を介して接地されている。
That is, the output terminals Pu, P of the voltage sensors Su, Sv, Sw are connected to the G point of the inverting input terminal of the operational amplifier OP3 via variable input resistors R11, R12 and R13, respectively.
v and Pw are connected, and the non-inverting input horn terminal is grounded via a resistor R14.

又、演算増幅器OP3の出力端子は抵抗R15を介して
前記G点に接続されている。
Further, the output terminal of the operational amplifier OP3 is connected to the point G via a resistor R15.

さらに前記演算増幅器OP3の出力端子は演算増幅器O
P4を使用した電圧ホロア及び抵抗R16を介して出力
端子Pに接続されている。この電圧ボロアは入力インピ
ーダンスを高くして出力インピーダンスを低くし、イン
ピーダンスの変換を行っている。
Further, the output terminal of the operational amplifier OP3 is connected to the operational amplifier O.
It is connected to the output terminal P via a voltage follower using P4 and a resistor R16. This voltage borrow increases the input impedance and lowers the output impedance, thereby performing impedance conversion.

前記抵抗R11〜R16及び演算増幅器OP3゜OR3
により加算回路22が構成されている。
The resistors R11 to R16 and the operational amplifier OP3°OR3
The adder circuit 22 is configured by:

電源回路23について説明すると、M課電圧AC100
Vに一次側が接続される電源変圧器24の二次側には全
波整流器25が接続されている。
To explain the power supply circuit 23, M applied voltage AC100
A full-wave rectifier 25 is connected to the secondary side of the power transformer 24 whose primary side is connected to V.

前記電源変圧器24の二次側におけるd点は接地線E2
が接続されていて、前記全波整流器25のプラス端子と
接地線E2との間、には平滑コンデンサ゛C14及びコ
ンデンサC15が接続されている。
The point d on the secondary side of the power transformer 24 is connected to the ground wire E2.
A smoothing capacitor C14 and a capacitor C15 are connected between the positive terminal of the full-wave rectifier 25 and the ground line E2.

又、全波整流器25のプラス端子と接地線E2間には三
端子レギュレータ26が接続され、その三端子レギュレ
ータ26の出力端子は十VCCE子に接続ざ゛れるとと
もに、三端子レギュレータ26の出力端子と接地線E2
間にはコンデンサC8及びコンデンサC9が接続されて
いる。
Further, a three-terminal regulator 26 is connected between the positive terminal of the full-wave rectifier 25 and the ground wire E2, and the output terminal of the three-terminal regulator 26 is connected to the VCCE terminal, and the output terminal of the three-terminal regulator 26 is also connected to the VCCE terminal. and ground wire E2
A capacitor C8 and a capacitor C9 are connected between them.

又、前記全波整流器25のマイナス端子と接地線E2と
の間には平滑コンデンサC10及びコンデンサC11が
接続されている。又、全波整流器25のマイナス端子と
接地線12間には三端子レギュレータ27が接続され、
その三端子レギュレータ27の出力端子は−Vcc端子
に接続されるとともに、三端子レギュレータ27の出力
端子と接地線12間にはコンデンサC12及びコンデン
サC13が接続されている。
Further, a smoothing capacitor C10 and a capacitor C11 are connected between the negative terminal of the full-wave rectifier 25 and the ground wire E2. Further, a three-terminal regulator 27 is connected between the negative terminal of the full-wave rectifier 25 and the ground wire 12,
The output terminal of the three-terminal regulator 27 is connected to the -Vcc terminal, and a capacitor C12 and a capacitor C13 are connected between the output terminal of the three-terminal regulator 27 and the ground line 12.

さて、以上のように構成された零相電圧検出装置の作用
について説明する。
Now, the operation of the zero-sequence voltage detection device configured as above will be explained.

第3図では帯電部としての各相の配電線路1u。In FIG. 3, the power distribution line 1u of each phase serves as a charging section.

LV、1wに対応して電圧センサsu、sv、sWはそ
れぞれほぼ同距11!互にて離間配置されている。配電
線路に通常の相回転に従った三相電圧が印加されている
場合には配電線路Lu、LV、LWと基Jv電位点であ
るアースとの間にそれぞれ形成される静電容ff1cu
、cv、cwを介して流れる変位電流が変位電流流入部
としての各電圧センサSu、Sv、Swの窓孔5を通し
て検出電極10に捕集される。
Corresponding to LV and 1w, the voltage sensors su, sv, and sW are approximately the same distance 11! They are spaced apart from each other. When a three-phase voltage according to normal phase rotation is applied to the distribution line, the capacitance ff1cu formed between the distribution lines Lu, LV, LW and the ground, which is the base Jv potential point, is
, cv, cw is collected by the detection electrode 10 through the window hole 5 of each voltage sensor Su, Sv, Sw, which serves as a displacement current inflow section.

そして、この変位電流は各電圧センサSU、Sv、3w
における信号処理回路8の増幅回路Aに与えられ、増幅
回路Aはその変位電流を増幅し、変位電流に相似な波形
をバンドパスフィルタBに出力する。
Then, this displacement current is applied to each voltage sensor SU, Sv, 3w.
The displacement current is applied to the amplifier circuit A of the signal processing circuit 8, and the amplifier circuit A amplifies the displacement current and outputs a waveform similar to the displacement current to the bandpass filter B.

この場合、端子Pi、P2からみた入力インピーダンス
は抵抗R1と抵抗R2との並列値と考えられる。演算増
幅器の典型的な使用例においては、抵抗R2はにΩオー
ダの値である。閉ループ利10R4/R2は十分な出力
を得るために1000程度に取られる。又、抵抗R1は
検出器wi10を支持する絶縁支持部材6の沿面漏洩抵
抗より低い値に取られ、入力の安定化あるいは出力の微
調整に利用されるが、その値は10にΩ以上のオーダー
の量である。従って、上記の入力インピーダンスは事実
上抵抗R2により十分に低い値に保たれ、しかも高い閉
ループ利得のために演算増幅器OP1の出力には大きな
信号が17られる。なお、周知のように演算増幅器OP
1の入出力の位相差は抵抗R4,コンデンサC1のイン
ピーダンスの大小関係により変化し前者が相対的に小さ
ければ位相差は無視され、変位電流に比例した出力が得
られる。逆の場合には位相差は90”に近く、出力には
変位電流の積分値すなわち配電線路の電位に比例した値
が得られる。何れにしてもこの出力には変位電流に相似
な波形が得られる。
In this case, the input impedance seen from the terminals Pi and P2 is considered to be a parallel value of the resistors R1 and R2. In typical operational amplifier applications, resistor R2 has a value on the order of Ω. The closed loop profit 10R4/R2 is taken to be around 1000 to obtain sufficient output. Furthermore, the resistance R1 is set to a value lower than the creepage leakage resistance of the insulating support member 6 that supports the detector wi10, and is used for stabilizing the input or finely adjusting the output, but its value is on the order of 10Ω or more. is the amount of Therefore, the input impedance mentioned above is effectively kept at a sufficiently low value by the resistor R2, yet a large signal 17 is provided at the output of the operational amplifier OP1 due to the high closed-loop gain. Furthermore, as is well known, the operational amplifier OP
The phase difference between the input and output of 1 changes depending on the magnitude relationship between the impedances of the resistor R4 and the capacitor C1, and if the former is relatively small, the phase difference is ignored and an output proportional to the displacement current is obtained. In the opposite case, the phase difference is close to 90", and the output is an integral value of the displacement current, that is, a value proportional to the potential of the distribution line. In any case, this output has a waveform similar to the displacement current. It will be done.

次に、バンドパスフィルタBは変位電流に相似な信号が
印加されると、その信号に基づいて周波数60H2ある
いは501−1 zを中心周波数とする信号を選択的に
増幅して取り出す。そして、零相電圧検出器20の加算
回路22は各電圧センサSu、SV、3wから出力され
た所定の周波数に選択された信号を合成してその出力端
子Pに零相電圧VO信号を出力する(第6図参照)。こ
の第6図においてα、β、γは各相の配電線路に印加さ
れた電圧の波形である。
Next, when a signal similar to the displacement current is applied to the bandpass filter B, based on the signal, it selectively amplifies and extracts a signal having a center frequency of 60H2 or 501-1z. Then, the adder circuit 22 of the zero-phase voltage detector 20 synthesizes the signals selected at a predetermined frequency output from each voltage sensor Su, SV, and 3w, and outputs a zero-phase voltage VO signal to its output terminal P. (See Figure 6). In FIG. 6, α, β, and γ are the waveforms of the voltages applied to the distribution lines of each phase.

このように通常の場合には各相の対地電圧が平衡である
ため、加算回路22において合成されて得られる零相電
圧VOはOとなる。
In this way, in a normal case, the ground voltages of each phase are balanced, so the zero-phase voltage VO obtained by combining in the adding circuit 22 becomes O.

次に配電線路しLJ、Lv、LWのうらいずれか一相の
配電線路に地絡故障が生ずると、各相の対地電圧の平衡
が11れるため、各電圧セン1すSu。
Next, if a ground fault occurs in the distribution line of one of the phases of LJ, Lv, and LW, the balance of the ground voltage of each phase will be 11, and each voltage sensor will be 1 Su.

3v、3wの信号処理回路8を経て零相電圧検出器20
に出力された信号が加尊回路22にて合成されると、零
相電圧が検出される。そのことにより配電線路に地絡故
障が生じたことが検知される。
Zero-phase voltage detector 20 via 3V, 3W signal processing circuit 8
When the signals outputted from the above are combined in the enhancement circuit 22, a zero-phase voltage is detected. As a result, it is detected that a ground fault has occurred in the power distribution line.

又、前記電圧センサSu、Sv、Swはケース1及び蓋
3がシールド電極となっており、被測定物である配電線
路以外からの変位電流の流入を効果的に防止するため、
被測定物である配電線路以外の他の配電線路の悪影響を
事実上受けることがない。
In addition, the case 1 and the lid 3 of the voltage sensors Su, Sv, and Sw serve as shield electrodes, and in order to effectively prevent the inflow of displacement current from sources other than the distribution line that is the object to be measured,
There is virtually no negative influence from other power distribution lines other than the power distribution line that is the object to be measured.

さらに、前記検出電極10は細い丸棒状の絶縁支持部材
6にてケース1に支持されているため、窓孔5より雨水
あるいは汚損物が侵入しても検出電極10裏面に位置す
ることから、絶縁支持部材6に付着しにくく、又付着し
たとしてもその表面積は小さくなっているので、検出電
極10とケース1との間の沿面漏洩抵抗は充分保たれる
。従つて、この電圧センサにおいては雨に濡れても正確
な電圧検出を行うことができる。
Furthermore, since the detection electrode 10 is supported by the case 1 by a thin round bar-shaped insulating support member 6, even if rainwater or dirt enters through the window hole 5, it will be located on the back side of the detection electrode 10, so it will not be insulated. Since it is difficult to adhere to the support member 6, and even if it does adhere, its surface area is small, sufficient creepage leakage resistance between the detection electrode 10 and the case 1 can be maintained. Therefore, this voltage sensor can perform accurate voltage detection even when wet with rain.

又、各相電圧センサ311.Sv 、SWの実効利得に
多少の差が生じ、各相の対地電圧が平衡していても出力
端子Pには零相出力が生ずるようなことがあったとして
も、抵抗R11,R12,R13をそれぞれ変化さばて
、零相出力がなるべく零に近づくように調整する。
Moreover, each phase voltage sensor 311. Even if there is a slight difference in the effective gains of Sv and SW and a zero-phase output is generated at the output terminal P even if the ground voltages of each phase are balanced, resistors R11, R12, and R13 are Adjust each change so that the zero-phase output is as close to zero as possible.

(第二実施例) 次に、第二実施例について前記実施例と異なるところに
ついてのみ説明すると、本実施例においては第7図に示
すように絶縁支持部材6の表面に円盤状の絶縁ひだ6a
を設けている。
(Second Embodiment) Next, the second embodiment will be described only with respect to the differences from the previous embodiment. In this embodiment, as shown in FIG.
has been established.

そして、検出電極10は前記絶縁支持部材6に対しポル
1〜33にて固定されるとともに、単心シールトドj電
線31の心線が接続されている。
The detection electrode 10 is fixed to the insulating support member 6 at ports 1 to 33, and the core wire of a single-core shielded J electric wire 31 is connected thereto.

従って、絶縁ひだ6aの下面及び絶縁ひだ6aと絶縁ひ
だ6aの間の部分には雨水や塩水さらには塵埃等が付着
しにくいため、絶縁支持部材6の耐汚損性能は優れたも
のとなり、汚損による漏洩電流経路をしゃ断できる。、
さらに、絶縁ひだ6aにより検出電極1oとシールド電
極としてのケース1及び蓋3との間の絶縁距離が長くな
るため1、絶縁支持部材6表面を介した沿面漏洩抵抗を
充分に確保でき、正確な電圧検出が行なえる。その他の
作用効果は前記第一実施例と同様である。
Therefore, rainwater, salt water, dust, etc. are difficult to adhere to the lower surface of the insulation folds 6a and the area between the insulation folds 6a, so that the insulation support member 6 has excellent stain resistance. Can cut off leakage current path. ,
Furthermore, since the insulation distance between the detection electrode 1o and the case 1 and lid 3 as shield electrodes is increased by the insulation folds 6a, sufficient creepage leakage resistance can be ensured through the surface of the insulation support member 6, and accurate Voltage detection can be performed. Other effects are the same as those of the first embodiment.

発明の効果 以上詳述したようにこの発明は検出電極が接地ケース内
に収納されているため、他の帯電部からの影響を受ける
ことなく目的の帯電部の電圧を正確に測定できる。又、
検出電極は絶縁材よりなる棒状の支持部材にて支持され
ているため、絶縁状態が充分に確保され、同支持部材が
検出出力に影響を与えることはない。ざらに、帯電部に
対して離間して配置する非接触方式を採用することがで
きるため、構成が間中かつ安価で正確な電圧センサを提
供することができる産業利用1優れた発明である。
Effects of the Invention As detailed above, in the present invention, since the detection electrode is housed in the grounded case, it is possible to accurately measure the voltage of the target charged section without being influenced by other charged sections. or,
Since the detection electrode is supported by a rod-shaped support member made of an insulating material, a sufficient insulation state is ensured, and the support member does not affect the detection output. In other words, since a non-contact method can be adopted in which the charging part is placed at a distance, it is possible to provide an inexpensive and accurate voltage sensor with a simple configuration, making it an excellent invention for industrial use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例を示す電圧センサの断面
図、第2図は電圧ヒンサの分解斜視図、第3図は零相電
圧検出装置の全体図、第4図は電圧センサの電気回路図
、第5図は零相電圧検出器の検出回路の電気回路図、第
6図はこの零相電圧検出装置にて検出された零相電圧と
各相配電線の電圧オシログラフ、第7図は第二実施例を
示す電号処理回路、10・・・検出電極、20・・・零
相電圧検出器、21・・・検出回路、A・・・増幅回路
、B・・・バンドパスフィルタ、El、R2・・・接地
線、OP1〜OP4・・・演算増幅器、R1−R16・
・・抵抗、C1〜・C15・・・コンデンサ、Pl・・
・入力端子、R2・・・端子、pu、pv、pw・・・
出力端子、Cu、cv。 Cw・・・0電容ω、Lu+ LV、LW・・・配電線
路。 特許出願人   日本碍子 株式会社 株式会社 高松電気製作所 代 理 人   弁理士  恩1)博宣第1図
Fig. 1 is a sectional view of a voltage sensor showing a first embodiment of the present invention, Fig. 2 is an exploded perspective view of a voltage hinger, Fig. 3 is an overall view of a zero-phase voltage detection device, and Fig. 4 is a diagram of a voltage sensor. Electric circuit diagram, Figure 5 is an electric circuit diagram of the detection circuit of the zero-phase voltage detector, Figure 6 is the zero-phase voltage detected by this zero-phase voltage detection device and voltage oscilloscope of each phase distribution line, and Figure 7 is an electric circuit diagram of the detection circuit of the zero-phase voltage detector. The figure shows a second embodiment of the signal processing circuit, 10...detection electrode, 20...zero phase voltage detector, 21...detection circuit, A...amplification circuit, B...bandpass Filter, El, R2...Grounding wire, OP1-OP4...Operation amplifier, R1-R16.
・Resistance, C1~・C15...Capacitor, Pl...
・Input terminal, R2... terminal, pu, pv, pw...
Output terminal, Cu, cv. Cw...0 capacity ω, Lu+ LV, LW...distribution line. Patent applicant: Nippon Insulators Co., Ltd. Representative: Takamatsu Electric Works Co., Ltd. Patent attorney: On 1) Hironobu Figure 1

Claims (1)

【特許請求の範囲】 1、導電性部材からなり電気的に接地されたシールド容
器の上面に窓孔を透設し、同容器内には同容器に対し絶
縁材からなる細い棒状支持部材にて支持された板状の検
出電極を配し、同検出電極の上面にて前記窓孔を前記容
器内面との間に空隙を介して閉塞するように配置すると
ともに、前記検出電極には増幅回路とバンドパスフィル
タとからなる信号処理回路を接続したことを特徴とする
電圧センサ。 2、支持部材は表面に絶縁ひだを備えたものである特許
請求の範囲第1項記載の電圧センサ。
[Claims] 1. A window hole is provided in the upper surface of an electrically grounded shield container made of a conductive material, and a thin rod-shaped support member made of an insulating material is provided inside the container. A supported plate-shaped detection electrode is arranged, and the window hole is arranged on the upper surface of the detection electrode so as to be closed with a gap between it and the inner surface of the container, and an amplifier circuit is connected to the detection electrode. A voltage sensor characterized in that a signal processing circuit consisting of a bandpass filter is connected. 2. The voltage sensor according to claim 1, wherein the support member has insulating folds on its surface.
JP61060393A 1986-03-17 1986-03-17 Voltage sensor Expired - Lifetime JPH0668504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060393A JPH0668504B2 (en) 1986-03-17 1986-03-17 Voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060393A JPH0668504B2 (en) 1986-03-17 1986-03-17 Voltage sensor

Publications (2)

Publication Number Publication Date
JPS62214361A true JPS62214361A (en) 1987-09-21
JPH0668504B2 JPH0668504B2 (en) 1994-08-31

Family

ID=13140863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060393A Expired - Lifetime JPH0668504B2 (en) 1986-03-17 1986-03-17 Voltage sensor

Country Status (1)

Country Link
JP (1) JPH0668504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872690A (en) * 2018-07-04 2018-11-23 桂林市华谊智测科技有限责任公司 A kind of non-contact inductive piece and test pencil
CN108872690B (en) * 2018-07-04 2024-05-14 桂林市华谊智测科技有限责任公司 Non-contact type induction sheet and test pencil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136378U (en) * 1974-09-11 1976-03-18
JPS55140163A (en) * 1979-04-18 1980-11-01 Kansai Electric Power Co Inc:The Non-contact voltage measurement device
JPS584073U (en) * 1981-06-30 1983-01-11 三菱電機株式会社 voltage detector
JPS6160397A (en) * 1984-08-23 1986-03-28 ユナイテツド・テクノロジーズ・コーポレイシヨン Flexible swash plate centering member
JPS62112072A (en) * 1985-11-09 1987-05-23 Takamatsu Electric Works Ltd Zero-phase voltage detecting device
JPS62201368A (en) * 1985-11-01 1987-09-05 Takamatsu Electric Works Ltd Voltage sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136378U (en) * 1974-09-11 1976-03-18
JPS55140163A (en) * 1979-04-18 1980-11-01 Kansai Electric Power Co Inc:The Non-contact voltage measurement device
JPS584073U (en) * 1981-06-30 1983-01-11 三菱電機株式会社 voltage detector
JPS6160397A (en) * 1984-08-23 1986-03-28 ユナイテツド・テクノロジーズ・コーポレイシヨン Flexible swash plate centering member
JPS62201368A (en) * 1985-11-01 1987-09-05 Takamatsu Electric Works Ltd Voltage sensor
JPS62112072A (en) * 1985-11-09 1987-05-23 Takamatsu Electric Works Ltd Zero-phase voltage detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872690A (en) * 2018-07-04 2018-11-23 桂林市华谊智测科技有限责任公司 A kind of non-contact inductive piece and test pencil
CN108872690B (en) * 2018-07-04 2024-05-14 桂林市华谊智测科技有限责任公司 Non-contact type induction sheet and test pencil

Also Published As

Publication number Publication date
JPH0668504B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4804922A (en) Voltage sensor
CA1067580A (en) Circuit for measuring the ground resistance of an ungrounded power circuit
US4795973A (en) Line mounted apparatus for measuring line potential
US3928796A (en) Capacitive displacement transducer
US20110148393A1 (en) System and device for measuring voltage in a conductor
US4642559A (en) Electrostatic field meter
JP3158063B2 (en) Non-contact voltage measurement method and device
US3988669A (en) Automatic control and detector for three-terminal resistance measurement
JPH0668510B2 (en) Voltage sensor
JPS62214361A (en) Voltage sensor
JPS55155258A (en) Device for measuring characteristic of gapless arrester
JPH0668505B2 (en) Voltage sensor
SE7710752L (en) PROCEDURE AND DEVICE FOR MONITORING AN ELECTRICAL CABLE REGARDING SHORT CIRCUITS
JPH0668507B2 (en) Switch with voltage sensor
JPS62112072A (en) Zero-phase voltage detecting device
JPH0579147B2 (en)
JPH0311743Y2 (en)
JPH0729477U (en) Insulation leakage current measuring device
GB1425485A (en) Power fabtor measuring cell arrangement
JPH0668506B2 (en) Fully closed switch with voltage sensor
JPS62214360A (en) Collection electrode for voltage sensor
JPH074584Y2 (en) Detection current transformer of insulation resistance measuring device
JPH0668520B2 (en) Power line potential measuring device
GB797399A (en) Improvements in or relating to apparatus for making electrical measurements upon coated conductors
SU1330583A1 (en) Device for two=frequency measurement of two-terminal network full admittance