JPS62213890A - Apparatus for purifying and heating waste water - Google Patents

Apparatus for purifying and heating waste water

Info

Publication number
JPS62213890A
JPS62213890A JP5733986A JP5733986A JPS62213890A JP S62213890 A JPS62213890 A JP S62213890A JP 5733986 A JP5733986 A JP 5733986A JP 5733986 A JP5733986 A JP 5733986A JP S62213890 A JPS62213890 A JP S62213890A
Authority
JP
Japan
Prior art keywords
rotor
generated
wastewater
waste water
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5733986A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Matsuoka
松岡 満壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5733986A priority Critical patent/JPS62213890A/en
Publication of JPS62213890A publication Critical patent/JPS62213890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To effectively recover generated heat, by arranging a rotor having undulated parts and a stator in a state close to each other and connecting the rotor to a rotary driving means. CONSTITUTION:A rotor 4 is rotated at 1,500-7,200 rpm by a rotary driving means 10 to continuously introduce ozone-containing air from a waste water introducing pipe 7. Waste water and ozone-containing air are stirred at a high speed by rotating the rotor 4 at a high speed and high speed shearing surfaces are formed between the perforation parts of the perforated plates 3 of a stator and the rotor 4, both of which provided so as to approach each other, and between the perforation parts and the plate parts to generate strong cavitation in waste water. By this mechanism, cavitation air bubbles are generated while the generated air bubbles are suddenly compressed in the compression stage of compression and expansion to generate high temp. and charge is generated on the surfaces of air bubbles to ionize the substance in each air bubble. Thus, reactivity is enhanced and the generated heat is recovered by a heat exchanger 19.

Description

【発明の詳細な説明】 この発明は、廃水中にオゾン含有空気又は空気等の酸素
含有ガスを混入し、起伏部を冑す固定子とこの固定子に
近接して軟けた起伏部付回転子により、回転子の高速回
転で両起伏部間にある上記酸素含有ガスを含む廃水中に
強力なキャピテーシ冨ンを発生させて、廃水中の汚濁物
質を酸化分解、シ、同時に、キャピテーシ冒ン発生時に
生じる熱と酸化熱によって液体温度を上昇せしめる装置
に関するもので、上昇した熱を回収することを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION This invention involves mixing ozone-containing air or oxygen-containing gas such as air into wastewater to create a stator that removes undulating portions and a rotor with undulating portions that are softened in the vicinity of the stator. The high-speed rotation of the rotor generates strong capitivity in the wastewater containing the oxygen-containing gas between the two undulating parts, oxidizes and decomposes the pollutants in the wastewater, and at the same time generates capitivity. It relates to a device that raises the temperature of a liquid using the heat and oxidation heat generated during the process, and its purpose is to recover the increased heat.

従来より、廃水の浄化処理方法として、バクテリアによ
る生物的酸化法、加圧下又は大気圧下での空気ばっ気に
よる酸化法、高温高圧による湿式゛燃焼法、オゾンと紫
外線とだ音波による酸化法、凝集沈でん分層法、浮上分
層法、遠心分層法等があり、有害な有機廃水を逆利用す
る方法として、る方法は無い。
Traditionally, wastewater purification methods include biological oxidation using bacteria, oxidation using air aeration under pressure or atmospheric pressure, wet combustion using high temperature and pressure, oxidation using ozone, ultraviolet rays, and sound waves. There are methods such as flocculation-sedimentation starch layer method, flotation layer method, and centrifugal layer method, but there is no method to reuse harmful organic wastewater.

特にこの発明の主軸となる酸化反応促進のためのポテン
シャルエネルギー、すなわち、キャピテ、これによると
、周波数は大きくできるものの振動子の振幅が数十ミク
ロンから二面ミクロンと小さく衝撃力が弱い、多くの電
気設備を必要として高価になり、エネルギーの発生効率
が低い等で、強力なものであるにもかかわらず、発生量
が少なく、これを利用した廃水の酸化分解法においては
、廃水の処理量が少ないかあるいは量を多くすると効果
が激減する状態であり、又、空気による加方法において
も多くの設備費や運転費用を要し、さらに、有機廃水の
はっ酵法によっても、ばく大な設置費を要し、周囲の条
件変化で有機ガスの発生量が大きく変化する等の欠点を
有した。
In particular, the main focus of this invention is the potential energy for promoting the oxidation reaction, that is, capite.According to this, although the frequency can be increased, the amplitude of the oscillator is small, ranging from several tens of microns to two microns, and the impact force is weak. Although it is powerful, it is expensive, requires electrical equipment, is expensive, and generates only a small amount of energy. If the amount is too small or too large, the effectiveness is drastically reduced, and the addition method using air requires a lot of equipment and operating costs, and the fermentation method of organic wastewater also requires a large amount of installation cost. However, it had drawbacks such as the amount of organic gas generated varied greatly depending on changes in surrounding conditions.

この発明は、上記の問題点を解決し、廃水の浄化処理と
浄化処理時に酸化熱を発生させる装置を小型安価にて提
供するもので、生じた熱の回収によって数百%のエネル
ギー効率も得ることができる。
This invention solves the above problems and provides a compact and inexpensive device for purifying wastewater and generating oxidation heat during the purification process. Energy efficiency of several hundred percent can also be achieved by recovering the generated heat. be able to.

これを図面に示す実施例において説明すると、廃水の浄
化昇温装置1の有底円筒形の密閉状ケーシングは内径l
乙Oミリメートル、長さ200ミリメートルであり、内
部に起伏部6を有す固定子5として、多数の貫通孔(直
径にミリメートル)が全体的に全面積の約半分明けられ
た厚さlミリメートルのドーナツ形多孔板3が一定間隔
で、例えば5枚、ケーシング2内面に密着固定されてお
り、この多孔板3の各間および両側に合計6枚の、固定
子5と同形小円状の多孔板3が、ケーシング2円Ic1
1の長さ方向に配置された回転軸12に一定間隔で固定
され回転子4を形成して設けられており、固定子5と回
転子4の多孔板3は、それぞれが/〜5ミリメートル、
願わくば/、3〜3.0ミリメートルのすき間があるよ
う配置されており、ケーシング2内面と回転子4の多孔
板3外周部および固定子5の多孔板3内周部と回転軸1
2の外周部、はそれぞれ2〜jミリメートルのすき間が
設けられており、回転軸12の両端側はケーシング2[
(IIWに設けられたベアリング11により支えられて
おり、回転軸12の一端はケーシング2外に配置された
回転駆動手段10に連結され、ケーシング2の一端部に
廃水導入管7と酸素含有ガス導入管8が接続され、同他
端部に浄化昇温液排出管9が接続され、ケーシング2、
固定子5、回転子4がそれぞれ腐食しにくい例えばステ
ンレス鋼製であり、ケーシング2と回転駆動手段10は
例えば水平になされた基台13に固定されているこれに
おいて、 1)回転子4が回転駆動手段lOにより毎分/jOO〜
7200回転させられれば、回転子4の多孔板3の周速
が毎秒10−!;0メートルになる。
To explain this with reference to the embodiment shown in the drawings, the closed cylindrical casing of the wastewater purification and temperature raising device 1 has an inner diameter of l.
The stator 5 is 0 mm in length, 200 mm in length, and has an undulating portion 6 inside, and has a thickness of 1 mm in which a large number of through holes (diameter of millimeters) are opened, about half of the total area. For example, five donut-shaped perforated plates 3 are closely fixed to the inner surface of the casing 2 at regular intervals, and between each of the perforated plates 3 and on both sides, a total of six small circular perforated plates having the same shape as the stator 5 are arranged. 3 is the casing 2 yen Ic1
The perforated plates 3 of the stator 5 and the rotor 4 are fixed at regular intervals to a rotating shaft 12 arranged in the length direction of the rotor 1, and the perforated plates 3 of the stator 5 and the rotor 4 each have a diameter of /~5 mm,
Preferably, the arrangement is such that there is a gap of 3 to 3.0 mm between the inner surface of the casing 2, the outer periphery of the perforated plate 3 of the rotor 4, the inner periphery of the perforated plate 3 of the stator 5, and the rotating shaft 1.
A gap of 2 to j millimeters is provided between the outer peripheries of the rotating shaft 12, and both ends of the rotating shaft 12 are connected to the casing 2.
(It is supported by a bearing 11 provided in IIW, one end of the rotating shaft 12 is connected to a rotational drive means 10 arranged outside the casing 2, and a waste water inlet pipe 7 and an oxygen-containing gas inlet are connected to one end of the casing 2. A pipe 8 is connected to the same end, a purified temperature rising liquid discharge pipe 9 is connected to the other end, and the casing 2,
The stator 5 and the rotor 4 are each made of corrosion-resistant stainless steel, for example, and the casing 2 and the rotation drive means 10 are fixed to, for example, a horizontal base 13. In this case, 1) the rotor 4 rotates; per minute/jOO~ by the drive means lO
If it is rotated at 7200 revolutions, the peripheral speed of the perforated plate 3 of the rotor 4 will be 10 - per second! ;becomes 0 meters.

2) 廃水導入管7より廃水の例として例えば有機廃水
が、酸素含有ガス導入管8より酸素含有ガスの例として
オゾン含有空気がそれぞれ連続的に導オゾン含有空気が
小さなすき間で高速回転、高速かくはんさせられる。
2) Waste water, such as organic waste water, is continuously introduced from the waste water introduction pipe 7, and ozone-containing air, which is an oxygen-containing gas, is continuously introduced from the oxygen-containing gas introduction pipe 8. The ozone-containing air is rotated at high speed and stirred at high speed through small gaps. I am made to do so.

4) 近接して設けられている固定子5と回転子4力が
生じて強力なキャビテーション発生となる。
4) Forces between the stator 5 and the rotor 4, which are located close to each other, are generated and strong cavitation occurs.

5) 強い負圧による液体の膨張時キャビテーション気
泡が生じる。この発生した気泡は高周期で繰り返えされ
る圧縮、膨張の圧縮段階で、装置に圧縮されるため、気
泡内が数百気圧とこれに伴う数百℃の高温が生じ、気泡
外の比較的温度の低い液体部と高温域である気泡内との
境、すなわち、気泡表面に電荷が発生する。
5) Cavitation bubbles are generated when liquid expands due to strong negative pressure. This generated bubble is compressed by the device during the compression stage of compression and expansion that is repeated at a high frequency, resulting in several hundred atmospheres inside the bubble and a corresponding high temperature of several hundred degrees Celsius, and the temperature outside the bubble is relatively high. Electric charges are generated at the boundary between the low-temperature liquid part and the high-temperature region inside the bubble, that is, on the bubble surface.

6) 発生する電荷は弱いが気泡自体も0.1〜5ミク
ロンと小さく、気泡内に強い放電が生じ、気泡内にある
蒸気化された物質をイオン化させる。
6) Although the electric charge generated is weak, the bubbles themselves are small, 0.1 to 5 microns, and a strong electrical discharge occurs within the bubbles, ionizing the vaporized substance within the bubbles.

7) キャビテーション気泡はやがて破裂して強い衝激
波を生じて、周囲にある廃水中の汚濁物質の分子結合を
切断して低分子化し、気泡中に発生したイオンは廃水中
に入り込んで酸化反応の反応性を高める。この発生する
*m力はさらに混入されたオゾン含有空気の気泡を超微
粒状の7〜10ミクロンに分散して、反応面積をばく大
にし反応性を高める。
7) The cavitation bubbles eventually burst and generate a strong shock wave, which breaks the molecular bonds of the pollutants in the surrounding wastewater and turns them into low-molecular molecules.The ions generated in the bubbles enter the wastewater and undergo an oxidation reaction. Increases reactivity. This generated *m force further disperses the ozone-containing air bubbles mixed into ultrafine particles of 7 to 10 microns, thereby increasing the reaction area and increasing the reactivity.

8) 回転子4の高速回転により、回転子4と固定子5
の表面がS擦で熱を発生し、キャビチーシコンによるエ
ネルギーとともに、オゾンおよび空気中の酸素による酸
化反応のポテンシャルエネルギーとなり、液温も高める
8) Due to the high speed rotation of rotor 4, rotor 4 and stator 5
When the surface of the liquid is rubbed with S, heat is generated, and along with the energy from the cavity silicone, the potential energy for the oxidation reaction due to ozone and oxygen in the air increases the temperature of the liquid.

9) 殺菌力の強いオゾンは強力な酸化力で廃水中のを
機物質を短時間で酸化分解するのみでなく、細菌類も完
全に殺して廃水中の有害な物質をなくす。
9) Ozone, which has a strong bactericidal power, not only oxidizes and decomposes organic substances in wastewater in a short time with its strong oxidizing power, but also completely kills bacteria and eliminates harmful substances in wastewater.

10)  上記のごとく作用が固定子5と回転子4の各
多孔板3間でおこなわれ、廃水とオゾン含有空気が多孔
板3の間を排出側へ移送される過程において廃水中の汚
濁物質は完全に酸化分解され、液体が酸化熱、キャビテ
ーションの熱、摩擦熱等で昇温される。
10) The above-mentioned action takes place between the perforated plates 3 of the stator 5 and rotor 4, and in the process in which wastewater and ozone-containing air are transferred between the perforated plates 3 to the discharge side, pollutants in the wastewater are removed. It is completely oxidized and decomposed, and the temperature of the liquid is raised by oxidation heat, cavitation heat, friction heat, etc.

11)浄化昇温された気体を含む液体は浄化昇温液排出
[9より熱回収装置、例えば熱交換器19に送られ、水
等の液体又は空気等の気体と熱交換され、使用目的によ
って冷暖房あるいは、各種加熱用に使用され、低温化し
た浄化水は浄化水排出管20より、河川又は海に放出さ
れる。
11) The purified and heated liquid containing the gas is sent from the purified heated liquid discharge [9] to a heat recovery device, for example, a heat exchanger 19, where it is heat exchanged with a liquid such as water or a gas such as air, depending on the purpose of use. The purified water, which is used for heating and cooling or various types of heating, is discharged into a river or the sea from the purified water discharge pipe 20.

なお、上記実施例においては、廃水中の汚濁物質を酸化
するために、酸化力の強いオゾンを含んだオゾン含有空
気を使用したが、空気中において発生できるオゾンは高
々2〜4!重量%であり、一番安価となる空気のみによ
っても、空気量を増やし、処理時間を少し多くすること
により、完全な酸化へ導くことは、キャビチーシコンに
よる強力なエネルギーを得ることにより可能となるもの
であり、熱回収装置においても、ヒートパイプ、ヒート
ポンプでも良いし、回転子4および固定子5の起伏部6
として使用した多孔板3に限定されることなく、第2実
施例として示した第3図、第を図、第5図、!6図のご
とく、全円周にわたって各5度ごとに設けた放射状の凸
条の山形、歯形でなく、短片となる凸起W(あっても、
第1実施例したごとく、第1実施例および第2実施例の
装置に廃水として固形物を含まないものを導入する場合
は、浄化昇温液は直接熱回収装置に送られるが、廃水中
に固形曖質を含む場合は上記装置を使って、汚濁物質の
酸化分解用に使用した酸紫含有ガ上分鴫槽17に送り、
酸化分解がなされなかった固形物質を浮上分喝し、この
状態のものを、浮上分離槽16の底部に接続した浄化昇
温液排出vR9より前実施例のごとく熱回収装置に送ら
れる。この工程を第r図に工程図として示した。
In the above example, ozone-containing air containing ozone with strong oxidizing power was used to oxidize pollutants in wastewater, but the amount of ozone that can be generated in the air is at most 2 to 4! It is possible to achieve complete oxidation by increasing the amount of air and slightly increasing the processing time, even by using only air, which is the cheapest method (% by weight), by obtaining strong energy from cavities. The heat recovery device may be a heat pipe, a heat pump, or the undulating portions 6 of the rotor 4 and stator 5.
Without being limited to the perforated plate 3 used as the second embodiment, FIG. 3, FIG. 5, FIG. As shown in Figure 6, the radial protrusions W provided every 5 degrees over the entire circumference are not chevrons or tooth shapes, but are short pieces (even if there are
As in the first embodiment, when wastewater that does not contain solids is introduced into the devices of the first and second embodiments, the purified and heated liquid is sent directly to the heat recovery device, but the wastewater is If it contains solid fugitives, use the above device to send it to the upper separation tank 17 for acid purple-containing gas used for oxidative decomposition of pollutants.
The solid substances that have not been oxidized and decomposed are floated and fractionated, and the solid substances in this state are sent to the heat recovery device from the purified temperature rising liquid discharge vR9 connected to the bottom of the flotation tank 16 as in the previous embodiment. This process is shown as a process diagram in Figure R.

第9図、第1O図は第3実月例であり、第1実施例との
ちがいは、同転子4に3枚設けられている多孔板3の廃
水導入側にこの多孔板3と約70ミリメートルのすき間
をおいて1.ドーナツ形の平板状邪魔板14がケーシン
グ2円面に密aI固定されており、さらに、この邪魔板
14の廃水導入側に約lOミリメートルのすき間をおく
とともに、各10ミリメートル間隔で、第1実施例にお
いて使用した回転子4の多孔板3と同一の形状をなした
多孔板3を3枚回転軸12に固定し、邪魔板14際廃水
導入側のケーシング2に高比重物質排出管11を接続し
、さらに、この高比重物質排出管11には排出量調整用
のパルプ18が接続され、ケーシング2の排出側端部に
は/次浄化昇隠液排出管15が接続されている。又、廃
水の浄化昇温装置llのケーシング2の一側壁には、フ
ランジ形モーター10 (回転駆動手段)が直接接続さ
れ、装置1の回転軸12にモーター10の回転軸がlα
接かん入されており、ケーシグ2の両端部のみがt、1 これにおいて、廃水導入管7より固形物質を含む廃水が
、酸素含有ガス導入管8よりオゾン含有空気がそれぞれ
連続1的に導入されれば、廃水導入側の3枚設けられた
多孔板3の高速回転で、廃水中に含まれる高比重物質が
遠jヒ力によってケーシング2の内面部に集められ、高
比重物質排出管11よりバルブ18によって量を調整さ
れながら分離排出され、IliJm後焼却される。一方
、高比重物質が分離された後の廃水やオゾン含有空気は
、3枚設けた多孔板3の数多くある直径約gミリメート
ルの孔部を排出側へ移行したり、多孔板3外周部の比較
的中+5に近い部分を径由して・、回転軸12外周部と
S〜10ミリメートルのすき間が設けられている平板状
のドーナツ形をなす邪魔板14の中心孔のすき間を径由
し、でその後は第1実施例、第2実施例においておこな
った状態の酸化分解と液体の昇温かなされるが、処理に
よっても不完全処理の状態である固形物質が含まれる場
合、当固形物質にはその表面に超微細な空気の気泡が多
数付着して比重が小さい状態になされており、この状態
の固形物質を含む処理過程にある廃水は、7次浄化昇温
液排出管15より浮上分離槽16に送られ、固形物質が
分離されて、浄化昇温状態の液体が各種熱回収装置、例
えば熱交換器19によって気体又は液体に熱交換された
後、各種使用目的によって利用される。この工程を工程
図とじて第11図に示した装 置1運転用電力に比べて数倍のカロリーに達する効果が
る。このような廃水中に含まれる汚matsの酸化分解
と酸化分解時に多くの熱が発生できるのは、前述した通
り、振幅の小さな超音波では得られなかった強力かつ大
量のキャビテーションがこの発明による装置によって発
生できることによるものである。
Figure 9 and Figure 1O are the third actual example, and the difference from the first embodiment is that the three perforated plates 3 provided on the same trochanter 4 have approximately 70 mm diameter on the waste water introduction side. Leave a millimeter gap 1. A donut-shaped flat plate baffle plate 14 is tightly fixed to the circular surface of the casing 2, and a gap of about 10 mm is provided on the waste water introduction side of the baffle plate 14, and a gap of about 10 mm is provided at intervals of 10 mm each. Three perforated plates 3 having the same shape as the perforated plates 3 of the rotor 4 used in the example are fixed to the rotating shaft 12, and the high-density substance discharge pipe 11 is connected to the casing 2 on the waste water introduction side beside the baffle plate 14. Furthermore, a pulp 18 for adjusting the discharge amount is connected to this high-density substance discharge pipe 11, and a secondary purification liquid discharge pipe 15 is connected to the discharge side end of the casing 2. Further, a flange type motor 10 (rotation drive means) is directly connected to one side wall of the casing 2 of the wastewater purification and temperature raising device ll, and the rotation shaft of the motor 10 is connected to the rotation shaft 12 of the device 1.
Only both ends of the casing 2 are injected at t, 1. In this, wastewater containing solid substances is continuously introduced from the wastewater introduction pipe 7, and ozone-containing air is continuously introduced from the oxygen-containing gas introduction pipe 8. In this case, high-density substances contained in the wastewater are collected on the inner surface of the casing 2 by force due to the high-speed rotation of the three perforated plates 3 on the wastewater introduction side, and are discharged from the high-density substance discharge pipe 11. It is separated and discharged while adjusting the amount by the valve 18, and is incinerated after IliJm. On the other hand, wastewater and ozone-containing air after high-density substances have been separated migrate to the discharge side through the many holes with a diameter of about g millimeters in the three perforated plates 3. Via the part close to the hit +5, Via the gap between the center hole of the flat donut-shaped baffle plate 14 with a gap of S ~ 10 mm from the outer circumference of the rotating shaft 12, After that, the oxidative decomposition and heating of the liquid are carried out in the same manner as in the first and second embodiments, but if the solid material contains incompletely treated solid material, the solid material may has a low specific gravity with many ultra-fine air bubbles attached to its surface, and the wastewater in the treatment process containing solid substances in this state is floated and separated from the 7th purification heated liquid discharge pipe 15. It is sent to a tank 16, solid substances are separated, and the purified and heated liquid is heat-exchanged into gas or liquid by various heat recovery devices, such as a heat exchanger 19, and then used for various purposes. This process has the effect of reaching several times the calories compared to the operating power of the apparatus 1 shown in FIG. 11. The reason why a lot of heat can be generated during the oxidative decomposition and oxidative decomposition of the polluted mats contained in such wastewater is because, as mentioned above, the device of this invention produces a powerful and large amount of cavitation that could not be obtained with small amplitude ultrasonic waves. This is due to the fact that it can occur due to

なお、上記実施例においては、起伏部6の例として用い
た多孔板3の孔が貫通したものを用いたが、キャビテー
ション発生用の固定子5と回転子4が近接状に配置され
ている部分の多孔板3にお濡した不完全浄化状態の廃水
から熱だけを取り出し、これを生物的酸化処理をなし完
全浄化する方法でもよいし、装置llに使用する回転駆
動手段10においても、安価で運転ができるディーゼル
エンジンや蒸気タービンを用いてもよく、回転駆動手段
10と回転子4との接続方法もベルト駆動あるいは間接
的なマグネット使用による駆動でもよい。
In the above embodiment, the perforated plate 3 used as an example of the undulating part 6 was used, but the part where the stator 5 and rotor 4 for cavitation generation are arranged close to each other was used. A method may be used in which only heat is extracted from the incompletely purified wastewater that has wetted the perforated plate 3, and then the heat is completely purified through biological oxidation treatment. A diesel engine or a steam turbine that can be operated may be used, and the rotary drive means 10 and the rotor 4 may be connected by belt drive or indirect magnet drive.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図は第1実
施例の縦断面図、第2図は第1因におけるA−A線にそ
った断面図、7113図は第2実施例の縦断面図、第4
図は第3図のB−B線にそう断第3実施例の縦断面図、
第1OrMは第9図のD−D線にそう断面図、第11図
は工程図である。
The drawings show embodiments of the present invention; FIG. 1 is a longitudinal sectional view of the first embodiment, FIG. 2 is a sectional view taken along line A-A in the first factor, and FIG. 7113 is a second embodiment. Longitudinal sectional view of, No. 4
The figure is a vertical cross-sectional view of the third embodiment taken along line B-B in FIG.
The first OrM is a sectional view taken along the line DD in FIG. 9, and FIG. 11 is a process diagram.

Claims (3)

【特許請求の範囲】[Claims] (1)有底円筒形の密閉状ケーシング2内に、起伏部6
を有す回転子4と固定子5が両者4、5の起伏部6を近
接状に配置して設けられており、回転子4がケーシング
2の一側に設けた回転駆動手段10に接続され、ケーシ
ング2の一側に廃水導入管7と酸素含有ガス導入管8が
接続され、同他端側に浄化昇温液排出管9が接続された
廃水の浄化昇温装置。
(1) An undulating portion 6 is provided inside the closed cylindrical casing 2 with a bottom.
A rotor 4 and a stator 5 having undulating portions 6 of both 4 and 5 are arranged in close proximity to each other, and the rotor 4 is connected to a rotation driving means 10 provided on one side of the casing 2. , a wastewater purification and heating device in which a wastewater introduction pipe 7 and an oxygen-containing gas introduction pipe 8 are connected to one side of a casing 2, and a purification temperature raising liquid discharge pipe 9 is connected to the other end thereof.
(2)起伏部6が貫通又は不貫通孔を有した多孔板3で
ある特許請求の範囲第1項記載の廃水の浄化昇温装置。
(2) The wastewater purification and temperature raising device according to claim 1, wherein the undulating portion 6 is a perforated plate 3 having through or non-through holes.
(3)起伏部6が山形、歯形、波形状等の凸条又は凸起
である特許請求の範囲第1項記載の廃水の浄化昇温装置
(3) The wastewater purification and temperature raising device according to claim 1, wherein the undulating portions 6 are protrusions or protrusions in a chevron shape, a tooth shape, a wave shape, or the like.
JP5733986A 1986-03-14 1986-03-14 Apparatus for purifying and heating waste water Pending JPS62213890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5733986A JPS62213890A (en) 1986-03-14 1986-03-14 Apparatus for purifying and heating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5733986A JPS62213890A (en) 1986-03-14 1986-03-14 Apparatus for purifying and heating waste water

Publications (1)

Publication Number Publication Date
JPS62213890A true JPS62213890A (en) 1987-09-19

Family

ID=13052810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5733986A Pending JPS62213890A (en) 1986-03-14 1986-03-14 Apparatus for purifying and heating waste water

Country Status (1)

Country Link
JP (1) JPS62213890A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027760A3 (en) * 1998-11-09 2000-08-31 Fantom Tech Inc Pressure swing contactor for the treatment of a liquid with a gas
US6568900B2 (en) 1999-02-01 2003-05-27 Fantom Technologies Inc. Pressure swing contactor for the treatment of a liquid with a gas
KR101231687B1 (en) 2012-10-23 2013-02-08 이춘우 Bubble generating apparatus
CN108343616A (en) * 2017-01-24 2018-07-31 贾克柏·博贺·李 Cavitation pump unit
CN110217957A (en) * 2019-03-30 2019-09-10 山东大学 A kind of inactivated sludge degradation equipment of Hydrodynamic Cavitation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027760A3 (en) * 1998-11-09 2000-08-31 Fantom Tech Inc Pressure swing contactor for the treatment of a liquid with a gas
US6568900B2 (en) 1999-02-01 2003-05-27 Fantom Technologies Inc. Pressure swing contactor for the treatment of a liquid with a gas
KR101231687B1 (en) 2012-10-23 2013-02-08 이춘우 Bubble generating apparatus
CN108343616A (en) * 2017-01-24 2018-07-31 贾克柏·博贺·李 Cavitation pump unit
CN108343616B (en) * 2017-01-24 2020-03-31 贾克柏·博贺·李 Cavitation pump unit
CN110217957A (en) * 2019-03-30 2019-09-10 山东大学 A kind of inactivated sludge degradation equipment of Hydrodynamic Cavitation
CN110217957B (en) * 2019-03-30 2021-11-02 山东大学 Inactivation sludge degradation hydrodynamic cavitation device

Similar Documents

Publication Publication Date Title
US5282980A (en) Method for treatment of waste water sludge
US6386751B1 (en) Diffuser/emulsifier
US3650950A (en) Material shearing mixer and aerator
US20110075507A1 (en) Diffuser/emulsifier
CN109824173B (en) Three-level hydrodynamic cavitation treatment system for organic wastewater
JPS60227883A (en) Method and apparatus for oxidizing organic substance suspension
JPS62213895A (en) Apparatus for purifying and heating waste water
CN111807459A (en) Antibiotic wastewater degradation device coupling hydraulic power, ultrasonic cavitation and oxidation process
KR101682677B1 (en) Device and method for Liquid organic and sludge decrement
CN111807595B (en) Device for degrading antibiotics by combining hydrodynamic cavitation with ultrasonic cavitation and photolysis technology
JPS62213890A (en) Apparatus for purifying and heating waste water
US5240599A (en) Apparatus for treatment of waste water sludge
JPS60226594A (en) Modification of fuel oil and unit therefore
JP3767736B2 (en) Organic waste treatment method and equipment
CN111807644A (en) Antibiotic waste water degradation device of combination hydrodynamic cavitation and biological method
KR100768516B1 (en) The sludge decrease device which uses a ultrasonics
CN111807497A (en) Antibiotic waste water degree of depth degradation device based on hydrodynamic cavitation
RU2304561C2 (en) Installation for purification and decontamination of the water
CN213112675U (en) Ozone equipment for sewage treatment
JP2002282721A (en) Sludge crushing apparatus and apparatus for treating organic sewage by using the same
JP2004141730A (en) Aeration method and aerator
CN217051887U (en) A ACO-NET filter material device for removing ammonia nitrogen in sewage
JP3579667B2 (en) Organic waste treatment equipment
JP2005177702A (en) Treating method and treating apparatus of organic waste water
KR20010005240A (en) Pollutants pretreatment and disintegration process by rotator