JPS62213689A - Chemical heat-accumulating capsule - Google Patents
Chemical heat-accumulating capsuleInfo
- Publication number
- JPS62213689A JPS62213689A JP61057669A JP5766986A JPS62213689A JP S62213689 A JPS62213689 A JP S62213689A JP 61057669 A JP61057669 A JP 61057669A JP 5766986 A JP5766986 A JP 5766986A JP S62213689 A JPS62213689 A JP S62213689A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- chemical heat
- chemical
- capsule
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title claims abstract description 70
- 239000002775 capsule Substances 0.000 title claims abstract description 41
- 239000000919 ceramic Substances 0.000 claims abstract description 6
- 238000005338 heat storage Methods 0.000 claims description 77
- 239000011232 storage material Substances 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 239000000843 powder Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 6
- 230000020169 heat generation Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 239000011230 binding agent Substances 0.000 abstract description 2
- 239000004568 cement Substances 0.000 abstract description 2
- 239000004927 clay Substances 0.000 abstract description 2
- 238000000227 grinding Methods 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 239000013043 chemical agent Substances 0.000 abstract 1
- -1 kaoline Substances 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 16
- 239000011148 porous material Substances 0.000 description 16
- 239000000292 calcium oxide Substances 0.000 description 11
- 235000012255 calcium oxide Nutrition 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 2
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 101100165177 Caenorhabditis elegans bath-15 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013724 M(OH)2 Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/023—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、新規な化学蓄熱カプセルに関する。[Detailed description of the invention] (Industrial application field) This invention relates to a novel chemical heat storage capsule.
更に詳しくは、この発明は、可逆反応を行う化学蓄熱材
の発熱反応により生成した熱を流体の加熱等に使用し、
そして反応終了後の化学蓄熱材を加熱により蓄熱させ、
くり返し使用することが可能な新規な化学蓄熱カプセル
に関する。More specifically, the present invention uses heat generated by an exothermic reaction of a chemical heat storage material that undergoes a reversible reaction to heat a fluid, etc.
After the reaction, the chemical heat storage material is heated to store heat,
This invention relates to a new chemical heat storage capsule that can be used repeatedly.
(従来の技術)
従来、蓄熱方法としては種々検討されており、例えば太
陽熱の熱エネルギーを貯蔵するために水を蓄熱媒体とし
て用いる顕熱を利用する蓄熱方法がある。ところが、こ
のように顕然の形で蓄熱されたものは、エネルギー密度
が相対的に高くないため、多量の蓄熱媒体を必要とし、
大容量の容器及び該容器の断熱効果の優れた材料等への
初期投資が大きくなり、さらに使用するまでにかなりの
エネルギーが放出され、必まり良い蓄熱効率を期待でき
なかった。(Prior Art) Various heat storage methods have been studied in the past. For example, there is a heat storage method that uses sensible heat using water as a heat storage medium to store solar thermal energy. However, heat stored in such an obvious manner does not have a relatively high energy density, so a large amount of heat storage medium is required.
The initial investment in a large-capacity container and a material with excellent heat insulation effect for the container is large, and a considerable amount of energy is released before use, so that good heat storage efficiency cannot necessarily be expected.
また、潜熱を利用して蓄熱する方法もあるが、この場合
は顕然利用に比べ蓄熱量が大きく、放熱温度が融点一定
という特徴がおるが、長門的な蓄熱には不向きである。There is also a method of storing heat using latent heat, but in this case, the amount of heat stored is larger than that of explicit use, and the heat radiation temperature is constant at the melting point, but it is not suitable for Nagato's heat storage.
(発明が解決しようとする問題点)
ところで、上記のような欠点を有しない蓄熱方法として
、化学蓄熱を利用しようとする研究も行なわれている。(Problems to be Solved by the Invention) Research is also being conducted to utilize chemical heat storage as a heat storage method that does not have the above drawbacks.
この場合、体積当りの蓄熱量が大きく、保温の必要もな
いため、長期間の蓄熱が可能でおる。In this case, the amount of heat stored per volume is large and there is no need for heat retention, so long-term heat storage is possible.
さらに、可逆的反応を行なう粉体もしくは固体蓄熱物質
の発熱化学反応による発生熱を利用し、吸熱化学反応に
よる脱水を行なう蓄熱ユニット装置が提案されている(
特開昭54−142401 >。この方法によれば、蓄
熱物質が繰り返しにより変質せず、再生利用が可能であ
るという利点がある。しかし、これまで有望視されてい
る微粉体蓄熱材を使う方法においては、繰り返し使用し
ていると、網目状物が適当な網目サイズでないせいか目
詰りを起こしてしまい、また充填量が適当でないためか
堆積した蓄熱材による自重のため、蓄熱材自身の同化等
が進行し、そのために反応速度の遅れが生じてしまい、
結局繰り返し再生使用ができないという欠点があった。Furthermore, a heat storage unit device has been proposed that uses the heat generated by the exothermic chemical reaction of a powder or solid heat storage material that undergoes a reversible reaction to perform dehydration through an endothermic chemical reaction (
JP-A-54-142401>. This method has the advantage that the heat storage material does not deteriorate due to repeated use and can be recycled. However, in the method of using fine powder heat storage material, which has been shown to be promising so far, if it is used repeatedly, the mesh material becomes clogged, probably because the mesh size is not appropriate, and the amount of filling is not appropriate. Due to the weight of the accumulated heat storage material, assimilation of the heat storage material itself progresses, resulting in a delay in the reaction rate.
In the end, it had the disadvantage that it could not be recycled and used repeatedly.
この発明は上記事情に鑑みて創作されたもので、微細な
化学蓄熱剤が粉末化して気体とともに搬出されることな
く、耐熱性多孔質体の目詰りを起こさずかつそれ自体が
固化することなく、繰り返し再生使用に十分耐え得る化
学蓄熱カプセルを提供することにある。This invention was created in view of the above circumstances, and the fine chemical heat storage agent is not powdered and carried out together with gas, and the heat-resistant porous material is not clogged and the heat storage agent itself is not solidified. The object of the present invention is to provide a chemical heat storage capsule that can withstand repeated recycling and use.
(問題点を解決するための手段)
前記開目的は、この発明の粉体化学蓄熱材を耐熱性多孔
質体の筒状体内に充填することを特徴とする化学蓄熱カ
プセルにより達成される。(Means for Solving the Problems) The above object is achieved by a chemical heat storage capsule characterized in that the powder chemical heat storage material of the present invention is filled into a cylindrical body of a heat-resistant porous body.
また、この発明は耐熱性多孔質体が多孔質セラミックま
たは多孔質粉末焼結体から成ることを特徴とするカプセ
ルに関る。The present invention also relates to a capsule characterized in that the heat-resistant porous body is made of porous ceramic or porous powder sintered body.
MOOH2OHM (OH)2 十〇KCal(ただし
式中M=Ca、 )tg、 Sr、 BaQ=正の値(
発熱))
次に図面を用いて、この発明の化学蓄熱カプセルについ
て具体的に説明する。MOOH2OHM (OH)2 10 KCal (where M=Ca, )tg, Sr, BaQ=positive value (
(Exothermic)) Next, the chemical heat storage capsule of the present invention will be specifically explained using the drawings.
第1図は、この発明に係る化学蓄熱カプセル1の一部破
断斜視図であり、化学蓄熱材2が耐熱性多孔質体の筒状
体3内に充填されている。水蒸気を含む気体または水蒸
気の流れの中にさらすと該カプセル中の化学蓄熱材と水
蒸気とが反応しくMO+H20’;’!M (OH)
2 +QKcal)、その発熱量により該流体を加熱を
することができる。また、発熱反応終了後、該化学蓄熱
カプセルを加熱することにより
加熱
(M(OH)2→MO+H20)
蓄熱し、これらの操作を繰り返すことが可能である。FIG. 1 is a partially cutaway perspective view of a chemical heat storage capsule 1 according to the present invention, in which a chemical heat storage material 2 is filled in a cylindrical body 3 made of a heat-resistant porous body. When exposed to a gas containing water vapor or a flow of water vapor, the chemical heat storage material in the capsule reacts with the water vapor.MO+H20';'! M (OH)
2 +QKcal), the fluid can be heated by its calorific value. Further, after the exothermic reaction is completed, it is possible to heat the chemical heat storage capsule by heating (M(OH)2→MO+H20) and store heat, and repeat these operations.
この発明に使用される化学蓄熱材2は可逆反応[MO+
H20ヰM (OH)2コを行なう物質でおり、酸化カ
ルシウム、水酸化カルシウム、酸化マグネシウム、水酸
化マグネシウム、酸化ストロンチウム、水酸化ストロン
チウム、酸化バリウム、水酸化バリウムから成る群から
選ばれた少なくとも1種のものである。またこの化学蓄
熱材に、炭酸塩等が該化学蓄熱材に対して0〜10重量
%混入してもにい。また、化学蓄熱材2の粒径は水酸化
物状態で1〜590μm、さらに好ましくは5〜30μ
mである。The chemical heat storage material 2 used in this invention has a reversible reaction [MO+
At least one substance selected from the group consisting of calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, strontium oxide, strontium hydroxide, barium oxide, and barium hydroxide. It is of seeds. Further, it is also harmful if carbonate or the like is mixed in this chemical heat storage material in an amount of 0 to 10% by weight based on the chemical heat storage material. Further, the particle size of the chemical heat storage material 2 is 1 to 590 μm in the hydroxide state, more preferably 5 to 30 μm.
It is m.
化学蓄熱材2の筒状体内部空間に対する充填割合は60
〜10容量%、好ましくは40〜.ZO容量%である。The filling ratio of the chemical heat storage material 2 to the internal space of the cylindrical body is 60
~10% by volume, preferably ~40. ZO volume %.
もし60容量%より多い場合には、化学蓄熱材2の粉体
の自重により繰り返し使用後固化し発熱および再生効率
が著しく低下し、10容量%未満では発熱等所定の効果
が得られない。If it is more than 60% by volume, the powder of the chemical heat storage material 2 will solidify after repeated use due to its own weight, and the heat generation and regeneration efficiency will be significantly lowered, and if it is less than 10% by volume, the desired effects such as heat generation cannot be obtained.
さらに化学蓄熱材2は、発熱反応終了後、加熱により蓄
熱し、例えば、水酸化カルシウムの場合再使用するため
に、400〜800℃、好ましくは450〜550℃の
温度で加熱処理する。もし800℃以上の温度で加熱処
理すると化学蓄熱材2が可逆反応を起こさなくなり、4
00℃以下の温度で加熱処理しても蓄熱のための反応を
起こさない。水酸化マグネシウムの場合は200〜40
0℃、水酸化カルシウムの場合は400〜600℃、水
酸化ストロンチウムの場合は600〜800°C1およ
び水酸化バリウムの場合は800〜1000℃のもとで
蓄熱する。Further, the chemical heat storage material 2 is heated to store heat after the exothermic reaction is completed, and for example, in the case of calcium hydroxide, it is heat-treated at a temperature of 400 to 800°C, preferably 450 to 550°C, in order to reuse it. If heat treated at a temperature of 800°C or higher, chemical heat storage material 2 will not undergo a reversible reaction, and 4
Even when heat treated at a temperature of 00°C or lower, no reaction for heat storage occurs. 200-40 for magnesium hydroxide
Heat is stored at 0°C, 400-600°C for calcium hydroxide, 600-800°C for strontium hydroxide, and 800-1000°C for barium hydroxide.
この発明に使用される耐熱性多孔質体は、細長い筒状体
であり、その管内に化学蓄熱材2を充填し得るものであ
り、その長手方向に対する垂直方向の断面形状は、四角
形、だ円形、円形、三角形などいずれであっても良い。The heat-resistant porous body used in this invention is an elongated cylindrical body that can be filled with the chemical heat storage material 2, and its cross-sectional shape in the direction perpendicular to the longitudinal direction is square or oval. , circular, triangular, etc.
この場合管の肉厚を適宜薄くすることで、また管径を細
くすることで反応速度を調節できる。管の肉厚は0.3
〜3mm、好ましくは0.7〜1.2mm、管の内径は
2〜50mm、好ましくは4〜25II1mである。ま
た、その細孔の大きさは、充填された化学蓄熱材2が目
詰りすることなくかつ細孔を通り扱けない大きざであり
、好ましくは1〜10μm1より好ましくは3〜10μ
mである。ここで細孔径とは平均細孔直径のことである
。その細孔は、筒状体内壁から外壁へまたはその逆に多
孔質体内を直接または多孔質体内部で絡み合って通じて
いてもよい。また、その気孔率は多い方が望ましい。そ
の気孔率は、通常30〜85%、好ましくは40〜85
%でおる。85%より多い場合には材料強度維持が難か
しく、30%以下の場合には反応の立上りが遅くなり実
用的でない。In this case, the reaction rate can be adjusted by appropriately reducing the wall thickness of the tube or by decreasing the tube diameter. The wall thickness of the tube is 0.3
-3 mm, preferably 0.7-1.2 mm, the inner diameter of the tube is 2-50 mm, preferably 4-25 II1 m. In addition, the size of the pores is such that the filled chemical heat storage material 2 cannot be passed through the pores without clogging, and is preferably 1 to 10 μm, more preferably 3 to 10 μm.
It is m. The pore diameter here refers to the average pore diameter. The pores may communicate directly or intertwined within the porous body from the wall of the cylindrical body to the outer wall or vice versa. Moreover, the higher the porosity, the more desirable. Its porosity is usually 30-85%, preferably 40-85%.
It's %. When it is more than 85%, it is difficult to maintain the material strength, and when it is less than 30%, the reaction starts to slow down and is not practical.
ざらに、その材質は、SiC、カーボン、アルミナ、活
性アルミナ、ガラス、コージェライト、ムライト、リチ
ウムアルミニウムシリケート、チタン酸アルミニウム等
耐熱性多孔質セラミックまたはNi、Qu、△Ω、T
i、 Fe、Coおよびその合金等の耐熱性多孔質粉末
焼結体からなる群から選ばれた少なくとも1種のものが
好ましい。In general, the material is SiC, carbon, alumina, activated alumina, glass, cordierite, mullite, lithium aluminum silicate, heat-resistant porous ceramic such as aluminum titanate, or Ni, Qu, △Ω, T.
At least one selected from the group consisting of heat-resistant porous powder sintered bodies such as i, Fe, Co, and alloys thereof is preferable.
また、耐熱性多孔質体3は化学蓄熱材2を充填したまま
で加熱されるために、前記化学蓄熱材2処理温度におい
ても変質せず、ざらに同温度の繰り返しの処理によって
変質しない材料から成る。尚耐熱性多孔質セラミックは
、耐熱性多孔質粉末焼結体にくらべ細孔の均質性がより
優れているため化学蓄熱カプセル化により適している。In addition, since the heat-resistant porous body 3 is heated while being filled with the chemical heat storage material 2, it is made of a material that does not change in quality even at the processing temperature of the chemical heat storage material 2, and does not change in quality even after repeated treatments at the same temperature. Become. Note that heat-resistant porous ceramics have better pore homogeneity than heat-resistant porous powder sintered bodies, and are therefore more suitable for chemical heat storage encapsulation.
このような化学蓄熱材2および耐熱性多孔質体の筒状体
3から成る化学蓄熱カプセルは、化学蓄熱材2を耐熱性
多孔質体の筒状体3内に充填後、耐熱性多孔質体の筒状
体3と同程度以下の細孔径を有する耐熱性多孔質体の筒
状体の栓を使用し、粘土、陶土、セラミックセメント等
の無機結合剤を使用し、両端を封入する。この操作はあ
らかじめ一方を封じた管またはあらかじめ一端のみ開い
た筒状体を形成し、その内部に化学蓄熱材2を充填した
後、残りの一端を封じてもよい。このようにして得られ
た化学蓄熱カプセルにおいては化学蓄熱材2が筒状体の
系外に出ることはなく、以後直接粉体を取扱う操作がな
く容易に操作できる。A chemical heat storage capsule consisting of such a chemical heat storage material 2 and a cylindrical body 3 made of a heat-resistant porous body is constructed by filling the chemical heat storage material 2 into a cylindrical body 3 made of a heat-resistant porous body, and then filling the chemical heat storage material 2 into a cylindrical body 3 made of a heat-resistant porous body A plug of a cylindrical body made of a heat-resistant porous body having a pore diameter of the same size or smaller as that of the cylindrical body 3 is used, and both ends are sealed using an inorganic binder such as clay, china clay, or ceramic cement. This operation may be performed by first forming a tube with one end sealed or a cylindrical body with only one end open, filling the inside with the chemical heat storage material 2, and then sealing the remaining end. In the chemical heat storage capsule thus obtained, the chemical heat storage material 2 does not come out of the cylindrical body, and there is no need to directly handle the powder thereafter, making the capsule easy to operate.
この化学蓄熱カプセルを、水蒸気を含む気体の流通路中
に投入し該化学蓄熱材を水蒸気との反応により発熱させ
るためには、該化学蓄熱材がMO型の酸化物の形態であ
ることが必要である。M(OH)2型の水酸化物を加熱
処理して直ちに発熱反応に供する場合には、そのままで
よいが、長期間放置後便用する場合又は水分、水蒸気の
多い状態で保存せざるを得ない場合には該カプセル中に
除湿した空気、He、N2またはArガス等の反応不活
性な安定ガスを投入し、または除湿状態で水蒸気不透過
性のプラスチック、またはプラスチックフィルムで覆っ
て保存することが好ましい。In order to insert this chemical heat storage capsule into a gas flow path containing water vapor and cause the chemical heat storage material to generate heat by reaction with the water vapor, the chemical heat storage material must be in the form of an MO-type oxide. It is. When M(OH)2-type hydroxide is heat-treated and subjected to an exothermic reaction immediately, it can be left as is, but when it is left for a long time and then used, or it must be stored in a state with a high amount of moisture or steam. If not, put dehumidified air, a reactive inert stable gas such as He, N2 or Ar gas into the capsule, or store it in a dehumidified state by covering it with water vapor impermeable plastic or plastic film. is preferred.
また発熱に際しては通常常圧であるが加圧させることに
よりより高温発生も実現し得る。また減圧によって低温
再生処理も実現しうる。Furthermore, when heat is generated, it is usually at normal pressure, but by pressurizing it, higher temperature generation can be realized. Low-temperature regeneration treatment can also be realized by reducing the pressure.
(作用)
第1図に示す化学蓄熱カプセル1を水蒸気を含む気体中
に投入すると、化学蓄熱材がMO+H20HM (OH
) 2 + QKCalの如く反応し、発熱する。この
熱により、この流体を加熱し、スチームをさらに高温に
加熱したりしてタービン、エンジン、ラジェータ等を作
動するのに利用できる。この場合、化学蓄熱カプセルの
長手方向を流体の流れに対して垂直または概垂直方向が
好ましい。(Function) When the chemical heat storage capsule 1 shown in FIG. 1 is put into a gas containing water vapor, the chemical heat storage material becomes MO+H20HM
) 2 + Reacts like QKCal and generates heat. This heat can be used to heat the fluid, heat the steam to higher temperatures, and operate turbines, engines, radiators, etc. In this case, the longitudinal direction of the chemical heat storage capsule is preferably perpendicular or approximately perpendicular to the flow of the fluid.
これに対して、化学蓄熱カプセルを再生する場合には、
そのままの状態でまたは水蒸気を含む気体中から取り出
して太陽光集熱、排ガス熱交換による熱等により加熱再
生できる。On the other hand, when regenerating chemical heat storage capsules,
It can be heated and regenerated as it is or by taking it out of a gas containing water vapor and using heat from solar heat collection, exhaust gas heat exchange, etc.
これらの操作を繰り返すことにより再生使用が可能とな
る。By repeating these operations, reuse becomes possible.
(実施例) 以下、実施例を挙げて本発明をより詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
この発明の化学蓄熱カプセルを用いた装置の概略図を第
2図に示す。容量1m3の恒温槽15に熱交換器4、ロ
ータメータ5、反応部6をセットする。図中12はガス
バーナー、13はスチーム発生器、14は電源、9は熱
電対、10はヒータ、16はファンを示す。槽内温度を
120℃一定温度に保ち、過熱水蒸気を銅パイプ製熱交
換器4に流し、槽内温度まで上昇させた俊、反応部下部
より導入する。Example 1 A schematic diagram of an apparatus using the chemical heat storage capsule of the present invention is shown in FIG. A heat exchanger 4, a rotameter 5, and a reaction section 6 are set in a constant temperature bath 15 having a capacity of 1 m3. In the figure, 12 is a gas burner, 13 is a steam generator, 14 is a power source, 9 is a thermocouple, 10 is a heater, and 16 is a fan. The temperature inside the tank is maintained at a constant temperature of 120° C., and the superheated steam is passed through the copper pipe heat exchanger 4, and the steam that has been raised to the temperature inside the tank is introduced from the lower part of the reaction section.
反応部の詳細図を第3図(A)(B)に示す。Detailed views of the reaction section are shown in FIGS. 3(A) and 3(B).
第3図(A>は、第2図における反応部の概略断面図、
第3図(B)は第2図における反応部の要部斜視図であ
る。図中、耐熱性多孔質管3として直径10mmφ長さ
5Qmm厚さ”+mmのアルミナパイプ(細孔3〜4μ
m、気孔率42%)の両端をふさいだパイプを使用し、
化学蓄熱材として粉末化した酸化カルシウムCaO(生
石灰>0.6Qを使用した。(粒径は酸化カルシウムと
して0.59mmまたは粒径は水酸化カルシウムとして
約10μm)
下部から入った水蒸気が多孔質管内のCaOと反応し温
度上昇する。この温度を熱電対7,8で測定し、温度上
昇ΔTを求めた。FIG. 3 (A> is a schematic cross-sectional view of the reaction part in FIG. 2,
FIG. 3(B) is a perspective view of the main part of the reaction section in FIG. 2. In the figure, the heat-resistant porous pipe 3 is an alumina pipe with a diameter of 10 mmφ, a length of 5 Q mm, and a thickness of "+ mm" (pores of 3 to 4 μm).
m, porosity 42%) using a pipe with both ends closed,
Powdered calcium oxide CaO (quicklime > 0.6Q) was used as a chemical heat storage material. (Particle size is 0.59 mm as calcium oxide or approximately 10 μm as calcium hydroxide) Steam entering from the bottom flows into the porous pipe. reacts with CaO, causing a temperature rise.This temperature was measured with thermocouples 7 and 8, and the temperature rise ΔT was determined.
反応部にN2を流して試料を設定温度にしたのち、水蒸
気を流して反応を開始させる。この1界、転化率の経時
変化を調べるため、おる時間反応させたのち水蒸気を止
めてN2を流し反応を停止させる。数分間N2を流した
のち、試料を秤量し、次にその電気炉(約700℃、1
時間)でCa。After flowing N2 into the reaction section to bring the sample to the set temperature, water vapor is introduced to start the reaction. In order to investigate the change in conversion rate over time, the reaction was allowed to take place for a certain period of time, then the steam was stopped and N2 was introduced to stop the reaction. After flowing N2 for several minutes, the sample was weighed and then placed in the electric furnace (approximately 700°C, 1
time) and Ca.
に加熱分解した後秤量する。Weigh it after heating and decomposing it.
CaO質量を0.69として、水蒸気流@由を2゜0〜
9.0g/1IIin変化させ転化率m1は反応後の質
量、〜2は加熱後の質量を示す)と時間との関係を求め
、第4図に示す。The CaO mass is 0.69, and the water vapor flow is 2°0~
The relationship between the conversion ratio (m1 is the mass after reaction, ~2 is the mass after heating) and time was determined and is shown in FIG.
マtc水蒸気流lm=6.2cl/minとし、CaO
質ff1o、 6c+および0.3C7について転化率
と時間との関係を求め第5図に示す。Matc water vapor flow lm = 6.2 cl/min, CaO
The relationship between conversion rate and time was determined for quality ff1o, 6c+ and 0.3C7 and is shown in FIG.
さらに、試験結果と実測値(市=5.2g/min 。Furthermore, test results and actual measurements (city = 5.2 g/min.
m=0.6g)の−例を第6図に示す。m=0.6g) is shown in FIG.
以上の結果から、転化率は水蒸気流置市に依存しさらに
、化学蓄熱材カプセルあたり時間の経過とともに約5℃
の温度上昇が得られた(m−5゜2o/min 、m=
0.6g>。From the above results, the conversion rate depends on the water vapor storage temperature, and furthermore, the conversion rate is approximately 5℃ over time per chemical heat storage material capsule.
A temperature rise of (m-5°2o/min, m=
0.6g>.
(A:ポーラス管伝熱面積、h:伝熱係数、To:出口
水蒸気温度、T; :入口水蒸気温度、C:試実施例2
0.105〜0.250mmの酸化カルシウム(0,5
g>及び1,2.3〜4μ雇の細孔の各アルミナ多孔質
体を使用し、実施例1と同一方法により多孔質体の細孔
の影響を調べ、その結果を第7図に示す。(A: porous tube heat transfer area, h: heat transfer coefficient, To: outlet steam temperature, T: inlet steam temperature, C: Trial example 2 0.105 to 0.250 mm calcium oxide (0.5
Using each alumina porous body with pores of 1,2.3 to 4 μm, the influence of the pores of the porous body was investigated using the same method as in Example 1, and the results are shown in Figure 7. .
図からΔTが最高になる時間θ、すなわちθ鮎Xはほぼ
一定でおり、この範囲では多孔質体の細孔の影響はあま
り見られなかった。As can be seen from the figure, the time θ at which ΔT reaches its maximum, that is, θAyuX, is almost constant, and within this range, the influence of the pores of the porous body was not seen much.
実施例3
実施例1で使用した化学蓄熱材カプセル(酸化カルシウ
ム0.60)で、反応の終了した該カプセルを反応装置
内から取り出し、600’Cx0゜2時間で加熱再生処
理した後、再び実施例1と同様の方法(出=6.20/
min 、m=o、6q)で実施したところ化学蓄熱カ
プセル必たり約5°Cの温度上昇が得られた。Example 3 The chemical heat storage material capsule (calcium oxide 0.60) used in Example 1 was taken out from the reactor after the reaction was completed, heated and regenerated at 600'C x 0° for 2 hours, and then carried out again. Same method as Example 1 (output = 6.20/
min, m=o, 6q), a temperature increase of about 5°C was obtained for each chemical heat storage capsule.
上記、加熱再生処理を10回後、実施例1と同様の方法
で実施したところ化学蓄熱カプセルあたり同様に約5℃
の温度上昇が得られた。After the above heating regeneration treatment 10 times, when carried out in the same manner as in Example 1, the temperature was approximately 5°C per chemical heat storage capsule.
A temperature increase of .
比較例
この発明に使用する酸化カルシウム(0,105〜0.
250mm、0.6g>を細孔直径20μmの耐熱性ガ
ラスの網状の布に包み込み、実施例1の装置と同一方法
により反応したところ、いずれも発熱反応柊了債ガラス
の網目が目詰りを生じ、再生使用できなかった。Comparative Example Calcium oxide used in this invention (0.105-0.
250 mm, 0.6 g> was wrapped in a heat-resistant glass mesh cloth with a pore diameter of 20 μm and reacted in the same manner as in the apparatus of Example 1. In both cases, the exothermic reaction occurred. , could not be used for playback.
これら実施例は、単にこの発明を理解するものであって
、この発明の精神と範囲に反することなく種々の変更態
様のものを行うことができる。These embodiments are merely for understanding the invention, and various modifications may be made thereto without departing from the spirit and scope of the invention.
(発明の効果)
以上述べたごとくこの発明は、粉体の化学蓄熱材を耐熱
性多孔質体の筒状体内に充填した化学蓄熱カプセルであ
るから、発熱(又は吸熱)反応時に粉体が粉末化して気
体とともに多孔質体外へ搬出されることがなく、また粉
体が反応により粉末化した場合の粒子径よりも多孔質体
の細孔が相対的に小さく設定されているので、多孔黄体
目詰りを起こすことなく、また粉体の適度な充填量のた
めそれ自体が固化することなく繰り返し再生使用ができ
る。さらに発生した熱はスチームをさらに高温に加熱し
たりしてさらにタービン、エンジン、ラジェーター等の
作動用に使用できる。また、化学蓄熱材のカプセルの再
生熱源として廃熱、太陽集熱器により集熱された熱、電
気炉の熱、高周波加熱(電子レンジ)、赤外線発熱ラン
プを利用して再生蓄熱が可能である。(Effects of the Invention) As described above, this invention is a chemical heat storage capsule in which a powdered chemical heat storage material is filled into a cylindrical body made of a heat-resistant porous material. Since the pores of the porous body are set to be relatively smaller than the particle size when the powder is pulverized by reaction, the porous body is not transported out of the porous body together with the gas. It can be recycled and used repeatedly without clogging and because of the appropriate amount of powder, it does not solidify. Furthermore, the generated heat can be used to further heat the steam to a higher temperature and further operate turbines, engines, radiators, etc. In addition, it is possible to regenerate heat storage using waste heat, heat collected by solar collectors, heat from electric furnaces, high frequency heating (microwave oven), and infrared heat lamps as regenerative heat sources for chemical heat storage material capsules. .
第1図はこの発明の一実施例を示す化学蓄熱カプセルの
一部破断した斜視図、第2図はこの発明の化学蓄熱カプ
セル(の一実施態様を示す概略装置図、第3図(A>は
第2図における反応部の概略断面図、第3図(B)は第
2図における反応部の要部斜視図、第4,5図はこの発
明の化学蓄熱カプセルの一実施態様における反応時間と
変化率との関係を示す図、第6図はこの発明の化学蓄熱
カプセルの一実施態様における反応時間と温度差(Δ丁
)との関係を示す図、第7図はこの発明の化学蓄熱カプ
セルの一実施態様における多孔質体の細孔径と最高温度
に達するまでの時間(θmax )との関係を示す図で
ある。
1・・・化学蓄熱カプセル、 2・・・化学蓄熱材、3
・・・耐熱性多孔質体の筒状体、 4・・・熱交換器、
5・・・ロータルータ、 6・・・反応部、7.
8,9・・・熱電対(温度計)、10・・・ヒーター、
11・・・ファン、 12・・・ガスバーナ
ー、13・・・スチーム発生器、 14・・・電源、
15・・・恒温槽、 16・・・ファン、
17・・・シリコーンゴム。
特許出願人 三井研削砥石株式会社(ほか1名
)
図面の浄書(内容に変更なし)
第1図
工
第2図
@3図
(A)
(8ン@4図 笥5図
11 M (?fi 時間ゆ第 6
図
@ 7 図
徊υ!:P〕
手続ネ市正伊H(方式)
1、事件の表示
昭和61年 特ム′[願第57,669号2、発明の名
称
化学蓄熱カプセル
4、代理人FIG. 1 is a partially cutaway perspective view of a chemical heat storage capsule showing an embodiment of the present invention, FIG. 2 is a schematic diagram of an apparatus showing an embodiment of the chemical heat storage capsule (A> is a schematic sectional view of the reaction section in FIG. 2, FIG. 3(B) is a perspective view of the main part of the reaction section in FIG. 2, and FIGS. 4 and 5 are reaction times in an embodiment of the chemical heat storage capsule of the present invention. FIG. 6 is a diagram showing the relationship between the reaction time and temperature difference (ΔT) in an embodiment of the chemical heat storage capsule of the present invention, and FIG. 7 is a diagram showing the relationship between the chemical heat storage capsule of the present invention and the rate of change. It is a diagram showing the relationship between the pore diameter of the porous body and the time until the maximum temperature is reached (θmax) in one embodiment of the capsule. 1... Chemical heat storage capsule, 2... Chemical heat storage material, 3
...A cylindrical body of a heat-resistant porous body, 4...A heat exchanger,
5... rotor router, 6... reaction section, 7.
8, 9...Thermocouple (thermometer), 10... Heater,
11...Fan, 12...Gas burner, 13...Steam generator, 14...Power supply,
15... Constant temperature chamber, 16... Fan,
17...Silicone rubber. Patent applicant: Mitsui Grinding Wheel Co., Ltd. (and 1 other person) Engraving of the drawing (no changes to the content) Drawing 1 Drawing 2 @ Drawing 3 (A)
(8@Figure 4, Figure 5, Figure 11 M (?fi Time Yudai 6)
Figure @ 7 Figure Wandering υ! :P] Procedure Neichi Masai H (Method) 1. Indication of the case 1985 Special Mu' [Application No. 57,669 2. Name of the invention Chemical thermal storage capsule 4. Agent
Claims (3)
填したことを特徴とする化学蓄熱カプセル。(1) A chemical heat storage capsule characterized by filling a cylindrical body of a heat-resistant porous body with a powder chemical heat storage material.
粉末焼結体から成ることを特徴とする特許請求の範囲第
1項に記載のカプセル。(2) The capsule according to claim 1, wherein the heat-resistant porous body is made of porous ceramic or porous powder sintered body.
の材料であることを特徴とする特許請求の範囲第1項ま
たは第2項に記載のカプセル。 MO+H_2O■M(OH)_2+QKcal(ただし
式中M=Ca、Mg、Sr、Ba、Q=正の値(発熱)
)(3) The capsule according to claim 1 or 2, wherein the powder chemical heat storage material is at least one material that performs the following reaction. MO+H_2O■M(OH)_2+QKcal (where M=Ca, Mg, Sr, Ba, Q=positive value (heat generation)
)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61057669A JPH0680394B2 (en) | 1986-03-14 | 1986-03-14 | Chemical heat storage capsule |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61057669A JPH0680394B2 (en) | 1986-03-14 | 1986-03-14 | Chemical heat storage capsule |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62213689A true JPS62213689A (en) | 1987-09-19 |
JPH0680394B2 JPH0680394B2 (en) | 1994-10-12 |
Family
ID=13062313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61057669A Expired - Lifetime JPH0680394B2 (en) | 1986-03-14 | 1986-03-14 | Chemical heat storage capsule |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0680394B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009069701A1 (en) * | 2007-11-30 | 2009-06-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Thermal exchange type heat use device and method for manufacturing the same |
JP2009203443A (en) * | 2008-02-29 | 2009-09-10 | Toyota Central R&D Labs Inc | Chemical heat accumulation material molded article and its manufacturing method |
JP2009228952A (en) * | 2008-03-21 | 2009-10-08 | Toyota Central R&D Labs Inc | Chemical thermal storage material composite, thermal storage device using it, and its manufacturing method |
JP2009256518A (en) * | 2008-04-18 | 2009-11-05 | Toyota Central R&D Labs Inc | Chemical heat storage material, chemical heat storage material molded article, and production methods thereof |
JP2010181051A (en) * | 2009-02-03 | 2010-08-19 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and method of manufacturing chemical heat storage material compact with filter |
JP2010185035A (en) * | 2009-02-13 | 2010-08-26 | Toyota Central R&D Labs Inc | Method for producing heat-storage substance powder, as well as chemical heat-storage apparatus and method for manufacturing the apparatus |
JP2010230268A (en) * | 2009-03-27 | 2010-10-14 | Toyoda Gosei Co Ltd | Chemical heat pump device and method of using the same |
JP2013517451A (en) * | 2010-01-12 | 2013-05-16 | シルバン ソース, インコーポレイテッド | Heat transfer interface |
DE102012103427A1 (en) * | 2012-04-19 | 2013-10-24 | Cic Energigune | Forming reaction medium that is used as heat storage medium, by coating portion of surface of particles of powdered base material with coating material, where base material chemically/physically reacts with reactant material using heat |
JP2014185783A (en) * | 2013-03-21 | 2014-10-02 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and chemical heat storage system |
US9120959B2 (en) | 2010-03-25 | 2015-09-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator |
CN109777373A (en) * | 2019-03-06 | 2019-05-21 | 北京理工大学 | Across the season heat accumulating of medium temperature |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5387005B2 (en) * | 2009-01-21 | 2014-01-15 | 株式会社豊田中央研究所 | Chemical heat storage device |
JP5417075B2 (en) * | 2009-07-24 | 2014-02-12 | 株式会社豊田中央研究所 | Chemical heat storage device |
JP5482681B2 (en) | 2011-02-07 | 2014-05-07 | 株式会社豊田中央研究所 | Heat storage device |
JP5749050B2 (en) | 2011-03-18 | 2015-07-15 | 株式会社豊田中央研究所 | Chemical regenerator and manufacturing method thereof |
JP5749049B2 (en) | 2011-03-18 | 2015-07-15 | 株式会社豊田中央研究所 | Chemical regenerator and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178057U (en) * | 1985-04-24 | 1986-11-06 |
-
1986
- 1986-03-14 JP JP61057669A patent/JPH0680394B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178057U (en) * | 1985-04-24 | 1986-11-06 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100252248A1 (en) * | 2007-11-30 | 2010-10-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Heat exchanger heat-utilization device and method of manufacturing the same |
JP2009133588A (en) * | 2007-11-30 | 2009-06-18 | Toyota Central R&D Labs Inc | Heat exchange type heat utilization device and its manufacturing method |
WO2009069701A1 (en) * | 2007-11-30 | 2009-06-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Thermal exchange type heat use device and method for manufacturing the same |
US9074827B2 (en) | 2007-11-30 | 2015-07-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Heat exchanger heat-utilization device and method of manufacturing the same |
JP2009203443A (en) * | 2008-02-29 | 2009-09-10 | Toyota Central R&D Labs Inc | Chemical heat accumulation material molded article and its manufacturing method |
JP2009228952A (en) * | 2008-03-21 | 2009-10-08 | Toyota Central R&D Labs Inc | Chemical thermal storage material composite, thermal storage device using it, and its manufacturing method |
JP2009256518A (en) * | 2008-04-18 | 2009-11-05 | Toyota Central R&D Labs Inc | Chemical heat storage material, chemical heat storage material molded article, and production methods thereof |
JP2010181051A (en) * | 2009-02-03 | 2010-08-19 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and method of manufacturing chemical heat storage material compact with filter |
JP2010185035A (en) * | 2009-02-13 | 2010-08-26 | Toyota Central R&D Labs Inc | Method for producing heat-storage substance powder, as well as chemical heat-storage apparatus and method for manufacturing the apparatus |
JP2010230268A (en) * | 2009-03-27 | 2010-10-14 | Toyoda Gosei Co Ltd | Chemical heat pump device and method of using the same |
JP2013517451A (en) * | 2010-01-12 | 2013-05-16 | シルバン ソース, インコーポレイテッド | Heat transfer interface |
US9120959B2 (en) | 2010-03-25 | 2015-09-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator |
DE102012103427A1 (en) * | 2012-04-19 | 2013-10-24 | Cic Energigune | Forming reaction medium that is used as heat storage medium, by coating portion of surface of particles of powdered base material with coating material, where base material chemically/physically reacts with reactant material using heat |
DE102012103427B4 (en) * | 2012-04-19 | 2017-03-23 | Cic Energigune | Process for the preparation of a reaction medium, reaction medium and use of a reaction medium |
JP2014185783A (en) * | 2013-03-21 | 2014-10-02 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and chemical heat storage system |
CN109777373A (en) * | 2019-03-06 | 2019-05-21 | 北京理工大学 | Across the season heat accumulating of medium temperature |
Also Published As
Publication number | Publication date |
---|---|
JPH0680394B2 (en) | 1994-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62213689A (en) | Chemical heat-accumulating capsule | |
JPH0297895A (en) | Heat accumulator | |
JPS62213690A (en) | Heat accumulating device | |
US4421661A (en) | High-temperature direct-contact thermal energy storage using phase-change media | |
JP4496208B2 (en) | Carbon dioxide absorbent, carbon dioxide separator and reformer | |
Funayama et al. | Composite material for high‐temperature thermochemical energy storage using calcium hydroxide and ceramic foam | |
US20140238634A1 (en) | Reversible metal hydride thermal energy storage systems, devices, and process for high temperature applications | |
US6378601B1 (en) | Hydrogen cooled hydrogen storage unit having a high packing density of storage alloy and encapsulation | |
JP2539480B2 (en) | Chemical heat storage material and manufacturing method thereof | |
Funayama et al. | Calcium hydroxide and porous silicon-impregnated silicon carbide-based composites for thermochemical energy storage | |
JP5231016B2 (en) | Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, and carbon dioxide absorbing device | |
JP3396642B2 (en) | Carbon dioxide absorber, carbon dioxide separation method, and carbon dioxide separator | |
JP3552207B2 (en) | Method for producing carbon dioxide absorber | |
JPH06166572A (en) | Sintering method for silicon nitride article | |
Zhao et al. | Facile synthesis of porous AlN@ C supporting material for stabilizing phase change thermal storage material | |
CN113464839A (en) | Self-heating type quick hydrogen supply device | |
Wild et al. | Experimental investigation of a thermochemical reactor for high-temperature heat storage via carbonation-calcination based cycles | |
JP2004216245A (en) | Carbon dioxide absorbent, and its production method | |
JPS5947216B2 (en) | Heat storage device for heater | |
JPH0218281B2 (en) | ||
JP2002162184A (en) | Heat storage material, heat storing method and heat dissipating method | |
Sheng et al. | Macroencapsulation of sodium chloride by a double layer strategy for high temperature phase change thermal storage over 800° C | |
JPH0585835B2 (en) | ||
JP7490341B2 (en) | Chemical heat storage device and method for storing heat in chemical heat storage material | |
JPS6298152A (en) | Heat storage apparatus |