JPS62213153A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS62213153A
JPS62213153A JP61054769A JP5476986A JPS62213153A JP S62213153 A JPS62213153 A JP S62213153A JP 61054769 A JP61054769 A JP 61054769A JP 5476986 A JP5476986 A JP 5476986A JP S62213153 A JPS62213153 A JP S62213153A
Authority
JP
Japan
Prior art keywords
capacitor
substrate
capacitors
groove
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054769A
Other languages
Japanese (ja)
Inventor
Miki Takeuchi
幹 竹内
Eiji Takeda
英次 武田
Kiyoo Ito
清男 伊藤
Ryoichi Hori
堀 陵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61054769A priority Critical patent/JPS62213153A/en
Publication of JPS62213153A publication Critical patent/JPS62213153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To control currents between electrodes having a wide facing area, and to prevent the interference of signals between memory cells such as solid capacitor cells by specifying the shape of a groove or stipulating the relationship of substrate concentration, a distance between adjacent grooves, etc., in a memory cell using the side wall section of the groove in an Si substrate as an electrode surface for a capacitor. CONSTITUTION:When the conditions of L>W/2 are satisfied in an interval L with a capacitor oppositely faced to a capacitor 1 in (w) width and (d) depth to the capacitor 1, currents between these two capacitors can be controlled by substrate voltage VBB, and currents can be inhibited at an extremely small value by setting VBB within a proper range. Currents between the capacitors can also be reduced exceedingly by the impurity concentration NB of a layer wrapping a groove shaping the capacitor 1 and by setting the interval under predetermined conditions between the capacitor and the adjacent capacitor. Accordingly, informations between the adjacent capacitors do not interfare, thus normally operating a memory cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に係わL、特に電極が広い面
積で対向する構造、たとえば、平面面積を増大すること
なく大容量を実現する半導体集積回路メモリに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit, particularly a structure in which electrodes face each other over a wide area, for example, to realize a large capacity without increasing the planar area. It relates to semiconductor integrated circuit memory.

〔従来の技術〕[Conventional technology]

半導体集積回路の高集積化に伴ない、電極が広い面積で
対向する構造が生じる。この具体的な例として、ダイナ
ミックMOSメモリのキャノ(シタである溝形キャパシ
タセルがある。 1970年代初頭にIKビットのDR
AMが発売されて以来、3年に4倍の大規模化が達成さ
れてきた。しかし、従来の平面キャパシタでは、この大
規模化に伴なって、信号電荷も比例的に減少し、S/N
比の劣化が大きな問題となる。そこで、シリコン基板を
立体的に利用しようとする動きが生じた。すなわち、シ
リコン基板に掘り込んだ溝の側壁部をキャパシタとして
用いる溝形キャパシタによL、大規模化と信号電荷量の
維持とを両立させることが可能となった。
As semiconductor integrated circuits become more highly integrated, a structure in which electrodes face each other over a wide area is created. A concrete example of this is the trench capacitor cell of dynamic MOS memory.
Since AM was released, it has quadrupled in scale in three years. However, in conventional planar capacitors, as the scale increases, the signal charge also decreases proportionally, and the S/N
Deterioration of the ratio becomes a major problem. This led to a movement to utilize silicon substrates in three-dimensional form. That is, by using a trench capacitor that uses the side wall portion of a trench dug into a silicon substrate as a capacitor, it has become possible to simultaneously increase the scale of L and maintain the amount of signal charge.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様な立体キャパシタにおいては、相隣るセルが広い
面積で対向するため、セル間リーク電流と呼ばれる、制
御困難な電流が流れる。この種の電流の制御が、立体キ
ャパシタセル実現の際の大きな課題となる。
In such a three-dimensional capacitor, since adjacent cells face each other over a large area, a current called an inter-cell leakage current that is difficult to control flows. Controlling this type of current is a major challenge in realizing three-dimensional capacitor cells.

なお、この種の装置として関連するものには例えば、特
開昭51−130178等が挙げられる。
Note that related devices of this type include, for example, Japanese Patent Application Laid-Open No. 51-130178.

本発明の目的は、広い対向面積を持つ電極間の電流を制
御し、例えば立体キャパシタセル間の信号の混信を生じ
ないための方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for controlling current between electrodes having a large opposing area and preventing signal interference between, for example, three-dimensional capacitor cells.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Si基板に掘り込んだ溝の側壁部をキャパシ
タの電極面としたメモリセルにおいて、溝の形状を規定
するか、あるいは基板濃度、相隣る溝間の距離等の関係
を規定することによL、相隣るキャパシタ間の信号が混
信しないようにするものである。これによL、側面面積
を増大することなく電極面積を増大して所望のキャパシ
タ容量を得、かつ誤動作のない高信頼のメモリセルを得
ることができる。なお、以前にも基板濃度と溝間距離の
関係を規定した発明として特開昭59−106146が
あるが、これは曲線で表わされた関係の一部を直線近似
したものであった。本発明は、境界線をほぼ厳密に定式
化したので、広い範囲にわたり適用できる上、溝の形状
や溝間の電圧等の他の条件についても含めているので、
幅広く応用できる。
The present invention provides a memory cell in which the side wall of a trench dug into a Si substrate is used as the electrode surface of a capacitor, and the shape of the trench is defined or the relationship between the substrate concentration, the distance between adjacent trenches, etc. is defined. In particular, this is to prevent signals between adjacent capacitors from interfering with each other. As a result, it is possible to increase the electrode area without increasing the side surface area, obtain a desired capacitance, and obtain a highly reliable memory cell that does not malfunction. Note that there was previously an invention, JP-A-59-106146, which defined the relationship between the substrate concentration and the groove distance, but this was a linear approximation of a part of the relationship expressed by a curve. Since the present invention has almost strictly formulated the boundary lines, it can be applied over a wide range of areas, and also includes other conditions such as the shape of the grooves and the voltage between the grooves.
Can be widely applied.

〔作用〕[Effect]

即ち、幅W、深さdのキャパシタに対し、それと対向す
るキャパシタとの間隔りにおいて、L〉−の条件を満た
すとき、上記二つのキャパシタ間の電流は基板電圧VB
Bにより制御でき、上記VBBを好適な範囲に設定する
ことによL、上記電流を極く小さなものに抑えることが
できる。
That is, for a capacitor of width W and depth d, when the condition L>- is satisfied in the distance between it and the capacitor facing it, the current between the two capacitors is equal to the substrate voltage VB.
By setting VBB in a suitable range, the current L can be suppressed to an extremely small value.

また、キャパシタを形成する溝を包む層の不純物濃度N
B 、と隣接キャパシタ間に間隔を所定の条件で設定す
ることによっても上記キャパシタ間の電流を極く小さく
することができる。
Also, the impurity concentration N of the layer surrounding the trench forming the capacitor is
The current between the capacitors can also be made extremely small by setting the distance between B and the adjacent capacitors under predetermined conditions.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を、ダイナミックRAMにおける溝形キャ
パシタに適用した場合について説明する。
Hereinafter, a case where the present invention is applied to a trench capacitor in a dynamic RAM will be described.

第1図は、溝形キャパシタの構成図を示すものである。FIG. 1 shows a block diagram of a trench capacitor.

ダイナミックRAMにおける一般的なメモリセルはSi
基板と電極との間に絶縁膜をはさむことにより形成され
たコンデンサとスイッチ用MOSトランジスタとで構成
される。
Common memory cells in dynamic RAM are Si
It is composed of a capacitor formed by sandwiching an insulating film between a substrate and an electrode, and a switching MOS transistor.

記憶は、コンデンサに蓄積された電荷が、一定値より多
いか少ないかにより行う。溝形キャパシタにおいては、
Si基板を掘り込んで、その側壁にコンデンサ1を形成
する。スイッチ用MOSトランジスタ2のドレインはビ
ット線3に接続されておL、ゲートはワード線4に接続
されている。
Storage is performed depending on whether the charge accumulated in the capacitor is greater or less than a certain value. In the trench capacitor,
A Si substrate is dug and a capacitor 1 is formed on its side wall. The drain of the switching MOS transistor 2 is connected to the bit line 3, and the gate thereof is connected to the word line 4.

溝形キャパシタの製法を、第2図を用いて説明する。ま
ず、第2図(a)のようにSi基板5上にLOCO3法
によL、フィールド酸化膜6を選択的に形成する。この
後、第2図(b)のように、CF41SF8等を主成分
とした平行平板型プラズマエツチングによL、溝7を形
成する。時間等のエツチング条件を制御することによL
、任意の深さの溝を掘ることができる。マスクとしては
、Si基板上に一5iOt* 5iaN+、 CVD5
iOzの順に膜を形成し、溝を掘る部分のCVD5iO
z、 5iaNn。
A method for manufacturing a groove capacitor will be explained using FIG. 2. First, as shown in FIG. 2(a), a field oxide film 6 is selectively formed on a Si substrate 5 by the LOCO3 method. Thereafter, as shown in FIG. 2(b), L and grooves 7 are formed by parallel plate plasma etching using CF41SF8 as a main component. By controlling etching conditions such as time,
, can dig trenches of any depth. As a mask, 15iOt*5iaN+, CVD5 on a Si substrate.
CVD5iO in the part where a film is formed in the order of iOz and grooves are dug.
z, 5iaNn.

S L Oxをエツチングしたものを用いる。Use etched SL Ox.

次に第2図(Q)のようにキャパシタの絶縁膜8、さら
にプレート9を形成する。これらの形成法は平面キャパ
シタのそれと同じである。プレートには多結晶Siを用
いる。以後、平面キャパシタと同様にして、第1図に示
すような溝形キャパシタを用いたメモリセルが形成され
る。
Next, as shown in FIG. 2(Q), a capacitor insulating film 8 and a plate 9 are formed. The method for forming these is the same as that for planar capacitors. Polycrystalline Si is used for the plate. Thereafter, a memory cell using a trench capacitor as shown in FIG. 1 is formed in the same manner as a planar capacitor.

以上述べてきた溝形キャパシタは、シリコン基板に形成
される反転層を利用したものである。別な方法として、
溝形キャパシタに沿ってn導層を持ち、n導層−プレー
ト間をキャパシタとしだ例を第3図(a)に示す。側壁
にn+Jlを形成するには、ホトエツチング法等を用い
て選択的に拡散すればよい。あるいは、方向性のあるイ
オン打込み法を用いてもよい。
The trench capacitor described above utilizes an inversion layer formed on a silicon substrate. Alternatively,
FIG. 3(a) shows an example in which an n-conducting layer is provided along a groove-shaped capacitor and a capacitor is formed between the n-conducting layer and the plate. To form n+Jl on the sidewall, selective diffusion may be performed using a photoetching method or the like. Alternatively, a directional ion implantation method may be used.

n導層形成の前に、溝にそってB十等のP+を拡散すれ
ば第3図(b)に示すように溝形キャパシタにおいてH
iC構造が実現できる。すなわち、n導層をP導層で包
む形になる。
If P+ such as B is diffused along the trench before forming the n-conducting layer, H
iC structure can be realized. In other words, the n-conducting layer is surrounded by the p-conducting layer.

以上、溝形キャパシタの製法について簡単に説明した。The method for manufacturing a trench capacitor has been briefly explained above.

次に、溝形キャパシタを用いたDRAMセルに、本発明
を適用した実施例を示す。溝形キャパシタを用いたDR
Aにセルにおいては、二つの溝形キャパシタが対向して
近接する配置が生じる。このとき1条件によっては、そ
れぞれのキャパシタに蓄えられた信号が混信する。条件
とは、溝形キャパシタの電位、基板電圧、キャパシタの
形状、キャパシタ間の距離、キャパシタ間の濃度プロフ
ァが正常動作するに必要なレベル以下に押えることがで
きる。以下、P基板のSiを用いた場合について説明す
る。n基板のSiを用いた場合についても本発明は適用
できる。
Next, an embodiment in which the present invention is applied to a DRAM cell using a trench capacitor will be described. DR using trench capacitor
In cell A, two trench capacitors face each other and are located close to each other. At this time, depending on one condition, the signals stored in each capacitor may cause interference. The conditions are that the potential of the trench capacitor, the substrate voltage, the shape of the capacitor, the distance between the capacitors, and the concentration profile between the capacitors can be kept below the level necessary for normal operation. Hereinafter, a case where Si as a P substrate is used will be explained. The present invention is also applicable to the case where Si is used as an n-substrate.

〔実施例1〕 第4図及び第5図に本発明の第1の実施例を示す。第4
図に示す通L、溝形キャパシタは1幅Wたとえば2°μ
m、深さdたとえば4μmの直方体であL、対向するキ
ャパシタの間隔りは、w/2より出きくたとえば1.5
μmとなっている。このとき、キャパシタの対向する面
は第5図に示す通りwXdなる長方形である。これをS
i表面に関して折返すとwX2dの長方形となL、最も
大きい内接円の半径rはw/2である。このように流は
基板電圧VBBにより制御できる。第6図実線にL 1
 、5  p m 、 w 2 μm 、 d 4 p
 m 、キャパシタ間電圧6V、基板濃度]、、5 X
 101!Icxn−” (1)トきのキャパシタ間電
流特性を示す。基板電圧を−4,5v以下に設定すれば
、キャパシタ間電流を必要なレベル10″″δA以下に
押えることができる。
[Embodiment 1] A first embodiment of the present invention is shown in FIGS. 4 and 5. Fourth
The length of the channel capacitor shown in the figure is 1 width W, for example 2°μ
m, depth d, for example, is a rectangular parallelepiped of 4 μm, L, and the distance between opposing capacitors is larger than w/2, for example, 1.5
It is μm. At this time, the opposing surfaces of the capacitor are rectangular wXd as shown in FIG. This is S
When folded with respect to the i surface, L becomes a rectangle of wX2d, and the radius r of the largest inscribed circle is w/2. The current can thus be controlled by the substrate voltage VBB. L 1 on the solid line in Figure 6
, 5 p m , w 2 μm , d 4 p
m, capacitor voltage 6V, substrate concentration], 5
101! Icxn-" (1) shows the inter-capacitor current characteristics. By setting the substrate voltage to -4.5 V or less, the inter-capacitor current can be suppressed to the required level of 10"" δA or less.

一方、L≦−のときには、w=3μm(図6破線)。On the other hand, when L≦−, w=3 μm (broken line in FIG. 6).

w=4μm(図6一点破線)で示すように、キャパシタ
間電流を基板電圧によって制御することができない。
As shown by w=4 μm (dotted line in FIG. 6), the current between the capacitors cannot be controlled by the substrate voltage.

以上の実施例では、キャパシタ幅とキャパシタ間距離と
の関係を規定したが、第7図、第8図に示す通りLがセ
ル深さdより大きくなるような構造においても、基板電
圧によりキャパシタ間電流を制御できる。たとえば、L
l、5μm、w4μm、・81μmの構造において、基
板電圧−465v以下でキャパシタ間電流10−1’A
 以下を得ることができた。
In the above embodiments, the relationship between the capacitor width and the distance between the capacitors is defined, but even in a structure where L is larger than the cell depth d as shown in FIGS. 7 and 8, the relationship between the capacitor width and the distance between the capacitors is Can control current. For example, L
In the structure of l, 5μm, w4μm, ・81μm, the current between the capacitors is 10-1'A when the substrate voltage is -465V or less.
I was able to obtain the following.

〔実施例2〕 第9図及び第10図を用いて、第二の実施例を説明する
。第9図に示すような、対向するキャパシタ間の距離が
L、基板濃度がN^一様である構造において、キャパシ
タ間電圧Vo=6V、基板電圧VBB=−4Vの条件下
では、キャパシタ間の電流が10−”AとなるLとN^
との間には、第10図実線で示すような関係があった。
[Example 2] A second example will be described using FIGS. 9 and 10. In a structure in which the distance between opposing capacitors is L and the substrate concentration is uniform as shown in FIG. L and N where the current is 10-”A
There was a relationship as shown by the solid line in Figure 10.

すなわち、g−L=const この実線より右上の領域、たとえばL=2.0μmのと
きには、基板濃度2X10”am″″8以上を用いれば
、キャパシタ間電流を10−”A以下にすることができ
る。
In other words, g-L=const In the area to the upper right of this solid line, for example, when L=2.0 μm, if a substrate concentration of 2×10”am””8 or more is used, the current between the capacitors can be reduced to 10-”A or less. .

〔実施例3〕 第11図によL、前述の実施例に関係した第三の実施例
を示す、基板濃度1 、5 X 10 lBam−”、
基板電圧−4vの条件下では、キャパシタ間の電流が1
0−”aAとなるキャパシタ間電圧Voとキャパシタ間
隔りとの間には、第11図実線で示すような関係があっ
た。すなわち、 Vo+IVBBl+$ * L=const (φ=0
.813V)この実線より左上の領域、たとえば E扉〒IVei+φが2.4のときには、Ll、6μm
以上を用いれば、キャパシタ間電流をIQ−18A以下
にすることができる。
[Example 3] FIG. 11 shows a third example related to the previous example, with a substrate concentration of 1.
Under the condition of substrate voltage -4V, the current between the capacitors is 1
There was a relationship as shown by the solid line in Figure 11 between the capacitor-to-capacitor voltage Vo, which is 0-"aA, and the capacitor spacing. That is, Vo+IVBBl+$ * L=const (φ=0
.. 813V) In the upper left area of this solid line, for example, when door E〒IVei+φ is 2.4, Ll is 6 μm.
By using the above, the current between the capacitors can be reduced to IQ-18A or less.

上の二実施例を組み合わせれば、キャパシタ間電流が1
O−18A以下となる領域を広い範囲にわたって定める
ことができる。すなわち、ただし、NAO= 1.5 
X 10”am−”、Lo=2.2u m r V n
o =6 V + V aso =4 V + φ=O
−813V vを満たすようにL、N^y Vo、 V
BBを定めれば、いかなる場合でもキャパシタ間電流は
、メモリセルの正常動作に必要なレベル以下に押えられ
る。
If the above two embodiments are combined, the current between the capacitors will be 1
It is possible to define a wide range of regions where the temperature is O-18A or less. That is, provided that NAO=1.5
X 10"am-", Lo=2.2um r V n
o = 6 V + V aso = 4 V + φ=O
L, N^y Vo, V to satisfy -813V v
By determining BB, the current between the capacitors can be kept below the level required for normal operation of the memory cell in any case.

〔実施例4〕 第12図及び第13図に第4の実施例を示す。[Example 4] A fourth embodiment is shown in FIGS. 12 and 13.

第12図に示す通L、溝に沿ってn導層を形成し。An n-conducting layer is formed along the groove L shown in FIG.

さらにこれを包むように基板濃度より高濃度のP導層を
形成する。このP導層形成は、その厚さdに比例した分
だけキャパシタ間の距離を広げたのと同じキャパシタ間
電流の変化をもたらす。その様子を第13図に示す、直
線の傾きは、基板濃度N^とP÷層濃度NBとの関数で
あL、この結果と、前述の実施例とを組み合わせれば、
第12図に示す構造において、キャパシタ間リーフ電流
を10−18A以下とし、メモリを正常動作させるため
の条件が定められる。すなわち。
Furthermore, a P conductive layer having a higher concentration than the substrate is formed so as to surround this. This formation of the P conductive layer brings about the same change in the current between the capacitors as if the distance between the capacitors was increased by an amount proportional to the thickness d. The situation is shown in FIG. 13. The slope of the straight line is a function L of the substrate concentration N^ and P÷ layer concentration NB. Combining this result with the above example, we get
In the structure shown in FIG. 12, the inter-capacitor leaf current is set to 10-18 A or less, which is a condition for normal operation of the memory. Namely.

ただし、NAQ= 1 、5 X 101Bam−”、
Lo= 2.2um、Voo=6V、Vano=−4V
、$=0.813Vs上式を満たすように、キャパシタ
間隔L、基板濃度NA、キャパシタ間電圧電圧o 、基
板電圧V a Bt溝に沿ったP+十層度及び厚さNa
及びdti−設定することによL、キャパシタ間の信号
が混信することのないダイナミックメモリを得ることが
できる。
However, NAQ=1, 5×101Bam-”,
Lo=2.2um, Voo=6V, Vano=-4V
, $=0.813VsTo satisfy the above equation, capacitor spacing L, substrate concentration NA, capacitor-to-capacitor voltage o, substrate voltage V a P + 10 layer degree and thickness Na along Bt groove
By setting L and dti, it is possible to obtain a dynamic memory that does not cause signal interference between L and capacitors.

〔発明の効果〕〔Effect of the invention〕

以上に示した本発明の溝形キャパシタの構成に従えば、
相隣るキャパシタ間の情報が混信することなく、メモリ
セルを正常動作させることができる。
According to the structure of the trench capacitor of the present invention shown above,
Memory cells can operate normally without interference of information between adjacent capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図(a) (b) (c) 、第3@(a
)(b)は溝形シャバシタセルを示す断面図、第4図。 第7図は対向するメモリセルを示す図、第5図。 第8図はメモリセルの相対する面の形状、第6図。 第10図、第11図、第13図はメモリセルの特性を示
す図、第9図、第12図は隣接する溝形キャパシタを示
す断面図である。 1・・・キャパシタ、2・・・スイッチ用MOSトラン
ジスタ、3・・・ビット線、4・・・ワード線、5・・
・シリ、コン基板、6・・・LOCO3、7・・・溝、
8・・・フィールド酸化膜、9・・・プレート多結晶シ
リコン。 篤 1 図 ’Hz  図 第 に 図 キャへ°シフ間電;Fi、、7−L  (Δ]第7 図 猜 10  口 LolWt)
Figure 1, Figure 2 (a) (b) (c), Figure 3 @ (a
)(b) is a cross-sectional view showing a groove-shaped shibashita cell, FIG. FIG. 7 is a diagram showing opposing memory cells, FIG. FIG. 8 shows the shapes of opposing surfaces of memory cells; FIG. FIGS. 10, 11, and 13 are diagrams showing characteristics of memory cells, and FIGS. 9 and 12 are sectional views showing adjacent trench capacitors. 1... Capacitor, 2... MOS transistor for switch, 3... Bit line, 4... Word line, 5...
・Silicon, con board, 6...LOCO3, 7...groove,
8...Field oxide film, 9...Plate polycrystalline silicon. Atsushi 1 Figure 'Hz Figure 2 Figure 2 °Schiff interval; Fi,, 7-L (Δ] Figure 7 10 Mouth LolWt)

Claims (1)

【特許請求の範囲】 1、シリコン基体に掘り込んだ溝の側壁を含む領域に設
けた蓄積容量部とスイッチ用素子部とを持つメモリセル
を2つ以上有し、次の2つの条件すなわち第1に相隣る
溝のうち少なくとも一方の溝について、その対向面をシ
リコン表面に対して折り返した図形に内接する最大の円
の半径rが、相隣る溝の間隔L以下であること、第2に
溝の形状は任意で、溝を基板と同じ導電形でかつ同じか
、または高濃度の層で包み、その高濃度層の濃度N_B
、厚さd、相隣る溝の間隔L、基板濃度N_A、溝間の
電圧V_D、基板電圧V_B_Bが、次式 ▲数式、化学式、表等があります▼ ただし、V_D_O=6V、V_B_B_O=−4V、
φ=0.813V、L_O=2.2μm、N_A_O=
1.5×10^1^5cm^−^δの範囲内にあること
のうち、少なくとも一方を満たすことを特徴とする半導
体メモリ。
[Claims] 1. It has two or more memory cells each having a storage capacitance section and a switching element section provided in a region including the sidewall of a trench dug into a silicon substrate, and the following two conditions are met. For at least one of the grooves adjacent to 1, the radius r of the maximum circle inscribed in the figure obtained by folding the opposing surface against the silicon surface is equal to or less than the interval L between the adjacent grooves; 2. The shape of the groove is arbitrary, and the groove is covered with a layer of the same conductivity type as the substrate and the same or high concentration, and the concentration of the high concentration layer is N_B.
, thickness d, interval L between adjacent grooves, substrate concentration N_A, voltage between grooves V_D, and substrate voltage V_B_B are expressed by the following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_D_O = 6V, V_B_B_O = -4V ,
φ=0.813V, L_O=2.2μm, N_A_O=
A semiconductor memory characterized by satisfying at least one of the following conditions: 1.5×10^1^5 cm^-^δ.
JP61054769A 1986-03-14 1986-03-14 Semiconductor memory Pending JPS62213153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054769A JPS62213153A (en) 1986-03-14 1986-03-14 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054769A JPS62213153A (en) 1986-03-14 1986-03-14 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS62213153A true JPS62213153A (en) 1987-09-19

Family

ID=12979975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054769A Pending JPS62213153A (en) 1986-03-14 1986-03-14 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS62213153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199514B2 (en) 2014-12-17 2019-02-05 Infineon Technologies Austria Ag Methods for manufacturing a semiconductor device having a non-ohmic contact formed between a semiconductor material and an electrically conductive contact layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199514B2 (en) 2014-12-17 2019-02-05 Infineon Technologies Austria Ag Methods for manufacturing a semiconductor device having a non-ohmic contact formed between a semiconductor material and an electrically conductive contact layer

Similar Documents

Publication Publication Date Title
JP3057661B2 (en) Semiconductor device
US4364074A (en) V-MOS Device with self-aligned multiple electrodes
US4355374A (en) Semiconductor memory device
US4717942A (en) Dynamic ram with capacitor groove surrounding switching transistor
US4084175A (en) Double implanted planar mos device with v-groove and process of manufacture thereof
JPH01125858A (en) Semiconductor device and manufacture thereof
JPS6037619B2 (en) semiconductor memory device
KR19990044184A (en) EEPROM - Manufacturing Method of Semiconductor Structure
US5156993A (en) Fabricating a memory cell with an improved capacitor
JPH10256507A (en) Semiconductor device
JP5701477B2 (en) Field effect transistor, memory cell, and method of manufacturing field effect transistor
US4156289A (en) Semiconductor memory
EP0033130A2 (en) Semiconductor memory device
US4379305A (en) Mesh gate V-MOS power FET
JPS5816565A (en) Insulating gate type field effect transistor
JPS62213153A (en) Semiconductor memory
JPS6058663A (en) Memory device for temporary storage of charge
JP2521928B2 (en) Semiconductor memory device
JPS6167955A (en) Semiconductor memory device and manufacture thereof
JPH02168673A (en) Mis transistor
CN110335897B (en) Multi-pole type honeycomb electronic transistor structure
JPS6058662A (en) Memory device for temporary storage of charge
KR900007233B1 (en) Semiconductor device
JPS62211946A (en) Semiconductor memory
JPH1140810A (en) Controllable conduction device