JPS62211953A - Bipolar transistor - Google Patents

Bipolar transistor

Info

Publication number
JPS62211953A
JPS62211953A JP5567086A JP5567086A JPS62211953A JP S62211953 A JPS62211953 A JP S62211953A JP 5567086 A JP5567086 A JP 5567086A JP 5567086 A JP5567086 A JP 5567086A JP S62211953 A JPS62211953 A JP S62211953A
Authority
JP
Japan
Prior art keywords
type
region
base
single crystal
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5567086A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5567086A priority Critical patent/JPS62211953A/en
Publication of JPS62211953A publication Critical patent/JPS62211953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain the bipolar transistor having a large current amplification factor even when the impurity density in a base region is high by a method wherein a single crystal insulating film of 5-20Angstrom in thickness is provided on the interface of an emitter region and a base region. CONSTITUTION:An N-type Si substrate 1 is a collector, a collector electrode 8 consists of a current lead-out electrode, and a base region 2 consists of a P-type Si. A P-type Si region 3 is the region to be used to lead out a base electrode 4 which is formed by diffusion. A calcium fluoride film 5 is grown by performing a molecular beam epitaxial growing method, and it is set at 5-20Angstrom in thickness, desirably at 10Angstrom . An emitter region 6 consisting of N-type Si and an emitter electrode 7 are formed thereon successively. As the lattice constants of calcium fluoride and silicon differ only 0.6%, the calcium fluoride film 5 on the base region 2 consisting of P-type Si is grown in single crystal, and the N-type Si on the calcium fluoride film 5 is also grown in single crystal.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明はバイポーラトランジスタに関し、特に屯結晶半
導体のみを用いたnprI型バイポーラ1〜ランジスタ
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to bipolar transistors, and more particularly to the structure of nprI type bipolar transistors 1 to 1 transistors using only crystalline semiconductors.

〔従来の技術〕[Conventional technology]

シリコン羊結晶を用いるnpn型バイポーラトランジス
タは、電流駆動能力が大きいなめ、超高速動作の集積回
路の基本素子として重要である。
NPN-type bipolar transistors using silicon crystals have a large current driving capability and are therefore important as basic elements of integrated circuits operating at ultra-high speeds.

npn型バイポーラトランジスタを高速化するにはベー
ス抵抗の低減が重要となる。
In order to increase the speed of npn type bipolar transistors, it is important to reduce the base resistance.

〔発明が解決しようとする問題点]1 ベース抵抗を下げるためには、例えばベース領域をp型
不純物濃度を高めることが考えられる。
[Problems to be Solved by the Invention] 1 In order to lower the base resistance, it is conceivable to increase the p-type impurity concentration in the base region, for example.

しかし、この時は同時にベース電流か増大するため、電
流増幅率が低下しかえって低速化する。
However, at this time, the base current increases at the same time, so the current amplification factor decreases and the speed slows down.

このベース電流増大は、ベースからエミ・・7りへ流れ
る正孔電流増大によるものである。したがって、エミッ
タとベースの接合部にエミッタからの電子は自由に注入
されるが、ベースからの正孔は閉止する機能をもつ領域
を形成すれば、ベース抵抗を丁げながらしかも電流増幅
率を低下さぜないnpnl〜ランジスタが実現可能とな
る。
This increase in base current is due to an increase in hole current flowing from the base to the emitter. Therefore, electrons from the emitter can be freely injected into the emitter-base junction, but holes from the base can be blocked by forming a region that reduces the base resistance and reduces the current amplification factor. This makes it possible to realize npnl transistors that do not cause any damage.

[1発明の目的〕 本発明の目的は、ベース領域の不純物濃度が高くても電
流増幅率の大きなバイポーラ1ヘランジスタを提供する
ことにある。
[1.Object of the Invention] An object of the present invention is to provide a bipolar 1-herald transistor with a large current amplification factor even if the impurity concentration in the base region is high.

1、発明の名称 本発明のバイポーラトランジスタは、コレクタ。1. Name of the invention The bipolar transistor of the present invention has a collector.

ベース、エミッタの各領域にm結晶半導体をもちいるバ
イポーラ1〜ランジスタであって、ベース。
The base is a bipolar transistor that uses an m-crystalline semiconductor in each region of the base and emitter.

エミッタ界面に厚さ5〜20人の単結晶絶縁膜を設けた
ものである。
A single crystal insulating film with a thickness of 5 to 20 layers is provided at the emitter interface.

l1応発明の作用・原理〕 本発明によるバイポーラ1〜ランジスタに設置さ′れた
単結晶絶縁膜中を電子は透過できるが正孔は透過できな
い。一般に正孔は電子に較べ有効質量が大きいため前記
絶縁膜が5Å以上の厚さで存在すると透過できなくなる
。一方電子は20人程度の厚さまで透過可能である。こ
のため5〜20人の単結晶絶縁膜をエミッタとベース界
面に設置すれば、ベースからエミッタに流れ込む正孔電
流は大幅に低減できる。
11 Operation and Principle of the Invention] Electrons can pass through the single crystal insulating film provided in the bipolar transistor 1 to the transistor according to the present invention, but holes cannot. In general, holes have a larger effective mass than electrons, so if the insulating film has a thickness of 5 Å or more, they cannot pass through. On the other hand, electrons can penetrate up to a thickness of about 20 people. Therefore, if a single crystal insulating film of 5 to 20 layers is installed at the interface between the emitter and the base, the hole current flowing from the base to the emitter can be significantly reduced.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の断面図である。図中1はn
型Si基板でコレクタとして働き、8は電流とりだし川
のコレクタ電極である。2はn型Siからなるベース領
域、3は拡散により形成したベース電極とりたしのため
のn型Si領域であり、4はベース電極である79は二
酸化硅素膜である。
FIG. 1 is a sectional view of an embodiment of the present invention. 1 in the figure is n
The type Si substrate acts as a collector, and 8 is the collector electrode from which the current is taken out. 2 is a base region made of n-type Si, 3 is an n-type Si region formed by diffusion for removing the base electrode, 4 is the base electrode, and 79 is a silicon dioxide film.

ベース領域2に接して、単結晶絶縁膜としてのフッ化カ
ルシウム膜5が設置されている。フッ化カルシウム膜5
は、分子線エピタキシャル法で成長させ、厚さ10人に
設定されている。そしてこの北に、連続してn型Siか
らなるエミッタ領域6およびエミッタ電極7が形成され
ている。
A calcium fluoride film 5 as a single crystal insulating film is provided in contact with the base region 2 . Calcium fluoride film 5
is grown by molecular beam epitaxial method, and the thickness is set to 10. To the north of this, an emitter region 6 and an emitter electrode 7 made of n-type Si are continuously formed.

フッ化カルシウムとシリコンの格子常数は0.6%しか
違わないため、n型Siからなるベース領域2」二のフ
ッ化カルシウム膜5は単結晶で成長し、フッ化カルシウ
ム膜5」二のn型Siも単結晶で成長する。
Since the lattice constants of calcium fluoride and silicon differ by only 0.6%, the calcium fluoride film 5 in the base region 2'2 made of n-type Si grows as a single crystal, and the calcium fluoride film 5'2'n Type Si also grows as a single crystal.

このように構成された本実施例において、ベース領域3
のp型不純物濃度を5 X 1.0 +9cIn−3、
エミッタ領域6の[1型不純物濃度を3×1−018C
TIlづとしたとき、電流増幅率は1000と極めて太
きな値が得られた。この結果ベース抵抗は従来値に較べ
]/” ] O以下に低減することか可能となった。
In this embodiment configured in this way, the base region 3
The p-type impurity concentration is 5 x 1.0 +9cIn-3,
Emitter region 6 [type 1 impurity concentration is 3×1-018C]
When TI1 was set, the current amplification factor had an extremely large value of 1000. As a result, it has become possible to reduce the base resistance to below \"]O compared to the conventional value.

また上記実施例では、半導体単結晶としてSiを用いた
場合について説明したが、その他の半導体、例えばGe
、SiC,GaAs、 InP、 InAs、GaSb
、 TnSb等の■=V族化合物半導体でも全く同様に
用いることができる。更に半導体として混晶たとえば、
5i−Ge、 Ae GaAs 、 TnGaAs 、
 InGaP等を用いることももちろん可能である。全
体が同一種類の半導体である必要もない。例えば第1図
における1がn型GaAs、2がn型GaAs、6がn
型Aff GaAsであってもよい。
Further, in the above embodiments, the case where Si was used as the semiconductor single crystal was explained, but other semiconductors, such as Ge, etc.
, SiC, GaAs, InP, InAs, GaSb
, TnSb, etc., can also be used in exactly the same way. Furthermore, mixed crystals as semiconductors, for example,
5i-Ge, AeGaAs, TnGaAs,
Of course, it is also possible to use InGaP or the like. There is no need for the entire semiconductor to be of the same type. For example, in FIG. 1, 1 is n-type GaAs, 2 is n-type GaAs, and 6 is n-type GaAs.
It may also be of type Aff GaAs.

すなわちヘテロバイポーラトランジスタにも適用可能で
ある。
In other words, it is also applicable to hetero bipolar transistors.

また単結晶絶縁膜としては、フッ化カルシウムの他、フ
ッ化バリウム、フッ化ストロンチウムおよびこれらの混
晶か適当である。単結晶絶縁膜の厚さは十分薄いので半
導体との格子不整合として10%程度の存在までが許容
される。
In addition to calcium fluoride, barium fluoride, strontium fluoride, and mixed crystals thereof are suitable for the single crystal insulating film. Since the thickness of the single crystal insulating film is sufficiently thin, a lattice mismatch of about 10% with the semiconductor is allowed.

〔発明の効果〕〔Effect of the invention〕

一5= 以上説明したように本発明は、エミッタ・ベース界面に
厚さ5〜20人の単結晶絶縁膜を設けることにより、ベ
ース領域の不純lll71濃度が高くても電流増幅率の
大きなバイポーラ1ヘランジスタが得られる。
15 = As explained above, the present invention provides a bipolar 1, which has a large current amplification factor even if the impurity ll71 concentration in the base region is high, by providing a single crystal insulating film with a thickness of 5 to 20 at the emitter-base interface. Helangista is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図である。 1・・n型Si基板、2・・・ベース領域、3・・・n
型Si領域、4・・ベース電極、5・・フッ化カルシウ
ム膜。 6・・・エミッタ領域、7・・エミッタ電極、8・・・
コレクタ電極、9・・・二酸化硅素膜。
FIG. 1 is a sectional view of an embodiment of the present invention. 1...n-type Si substrate, 2...base region, 3...n
Type Si region, 4. Base electrode, 5. Calcium fluoride film. 6... Emitter region, 7... Emitter electrode, 8...
Collector electrode, 9... silicon dioxide film.

Claims (1)

【特許請求の範囲】[Claims] コレクタ、ベース、エミッタの各領域に単結晶半導体を
もちいるバイポーラトランジスタにおいて、ベース・エ
ミッタ界面に厚さ5〜20Åの単結晶絶縁膜を設けたこ
とを特徴とするバイポーラトランジスタ。
1. A bipolar transistor using a single crystal semiconductor in each of the collector, base, and emitter regions, characterized in that a single crystal insulating film with a thickness of 5 to 20 Å is provided at the base-emitter interface.
JP5567086A 1986-03-12 1986-03-12 Bipolar transistor Pending JPS62211953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5567086A JPS62211953A (en) 1986-03-12 1986-03-12 Bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5567086A JPS62211953A (en) 1986-03-12 1986-03-12 Bipolar transistor

Publications (1)

Publication Number Publication Date
JPS62211953A true JPS62211953A (en) 1987-09-17

Family

ID=13005298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5567086A Pending JPS62211953A (en) 1986-03-12 1986-03-12 Bipolar transistor

Country Status (1)

Country Link
JP (1) JPS62211953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265246A (en) * 1989-04-06 1990-10-30 Nec Corp Bipolar transistor
KR100700914B1 (en) 2006-02-21 2007-03-28 한국전자통신연구원 Bipolar Phototransistor and Fabrication Process Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168275A (en) * 1982-03-29 1983-10-04 Fujitsu Ltd Semiconductor device
JPS6052055A (en) * 1983-08-31 1985-03-23 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168275A (en) * 1982-03-29 1983-10-04 Fujitsu Ltd Semiconductor device
JPS6052055A (en) * 1983-08-31 1985-03-23 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265246A (en) * 1989-04-06 1990-10-30 Nec Corp Bipolar transistor
KR100700914B1 (en) 2006-02-21 2007-03-28 한국전자통신연구원 Bipolar Phototransistor and Fabrication Process Method Thereof

Similar Documents

Publication Publication Date Title
US4959702A (en) Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate
US5986287A (en) Semiconductor structure for a transistor
US5326992A (en) Silicon carbide and SiCAlN heterojunction bipolar transistor structures
JP2611640B2 (en) Heterojunction bipolar transistor
US3445734A (en) Single diffused surface transistor and method of making same
US6423990B1 (en) Vertical heterojunction bipolar transistor
JPH04196436A (en) Semiconductor device
JP2576828B2 (en) High gain MIS transistor
US5912481A (en) Heterojunction bipolar transistor having wide bandgap, low interdiffusion base-emitter junction
JPS62211953A (en) Bipolar transistor
JP2000357801A (en) Hetero-junction semiconductor device
JPH047096B2 (en)
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
US5315135A (en) Semiconductor device having I2 L gate with heterojunction
JPH02150032A (en) Hetero junction bipolar transistor
JPH0793323B2 (en) Field effect transistor
JPH04130773A (en) Thyristor element
JPH05335327A (en) Heterojunction bipolar transistor
JP2518347B2 (en) Method for manufacturing bipolar transistor
JPS63250174A (en) Hetero-junction type bipolar transistor
JPH02210835A (en) Semiconductor integrated circuit device
JPH01134968A (en) Bipolar type semiconductor device
JPH0582771A (en) Manufacture of semiconductor device
JPH0571172B2 (en)
JPH022629A (en) Bipolar transistor and manufacture thereof