JPS62211861A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS62211861A
JPS62211861A JP61052106A JP5210686A JPS62211861A JP S62211861 A JPS62211861 A JP S62211861A JP 61052106 A JP61052106 A JP 61052106A JP 5210686 A JP5210686 A JP 5210686A JP S62211861 A JPS62211861 A JP S62211861A
Authority
JP
Japan
Prior art keywords
alloy
alkali metal
secondary battery
negative electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052106A
Other languages
Japanese (ja)
Inventor
Takashi Kitamura
隆 北村
Tadaaki Miyazaki
忠昭 宮崎
Shinichi Toyosawa
真一 豊澤
Tadashi Nakajima
正 中島
Kinya Suzuki
欽也 鈴木
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61052106A priority Critical patent/JPS62211861A/en
Publication of JPS62211861A publication Critical patent/JPS62211861A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the coulomb efficiency and the cycle life in high capacity charge-discharge by forming a negative electrode in a nonaqueous secondary battery with a specified alloy in which magnesium is contained. CONSTITUTION:A nonaqueous secondary battery is formed with a nonaqueous electrolyte containing an alkali metal ion, a positive electrode capable of charge- discharge, and a negative electrode which absorbs an alkali metal ion during charge and desorbs the alkali metal ion absorbed into an electrolyte during discharge. The negative electrode is formed with an alloy of one or more metals selected from a group of zinc, tin, antimony, lead, bismuth, and thallium, and magnesium, or an alloy obtained by adding an alkali metal to the above alloy. Thereby, the coulomb efficiency of the secondary battery is remarkably increased, and decrease in capacity and coulomb efficiency caused by repeated charge-discharge is retarded to increase the cycle life.

Description

【発明の詳細な説明】 産業上のセ 本発明は充放電可能であって、しかも充放電効率及びサ
イクル寿命に優れた電池電圧の高い非水電解質二次電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery that is chargeable and dischargeable, has excellent charge-discharge efficiency and cycle life, and has a high battery voltage.

僅漣Jす1権 近年、IC等のメモリーバックアップ、時計。Choren Jsu 1st right In recent years, memory backup for ICs, etc., and clocks.

自動車、ポータプル機器、音響機器等の多方面の産業分
野において、充放電可能であって、しかも充放電効率及
びサイクル寿命に優れた電池電圧の高い二次電池が求め
られている。
BACKGROUND OF THE INVENTION In a wide variety of industrial fields such as automobiles, portable equipment, and audio equipment, there is a demand for secondary batteries that can be charged and discharged, have excellent charging/discharging efficiency, and cycle life, and have a high battery voltage.

従来より、こうした二次電池を得るために、リチウム等
のアルカリ金属を負極に用い、また、二硫化チタン(T
iS2)をはじめとする各種の層間化合物やポリアセチ
レン等の導電性高分子物質などを正極活物質として用い
、更には電解質として過塩素酸リチウム(L i CQ
 04)などをプロピレンカーボネート等の有機溶媒に
溶解した二次電池の開発が活発に行なわれている。
Conventionally, in order to obtain such secondary batteries, alkali metals such as lithium have been used for negative electrodes, and titanium disulfide (T
Various interlayer compounds such as iS2) and conductive polymer materials such as polyacetylene are used as positive electrode active materials, and lithium perchlorate (LiCQ) is used as an electrolyte.
04) and the like dissolved in an organic solvent such as propylene carbonate are actively being developed.

発明が解決しようとする間 点 しかしながら、この種の二次電池は、現在実用化されて
いる例がまだ極めて少ない。その主な理由は、充放電回
数(サイクル)寿命が短いこと。
Problems to be Solved by the Invention However, there are still very few examples of this type of secondary battery being put into practical use. The main reason is that the number of charge/discharge cycles (cycles) and life are short.

充放電効率(クーロン効率)が低いことなどによるもの
であり、これは負極の劣化が大きいことが大きな原因で
ある。例えばリチウムを負極に用いた場合、充電時に電
解質中のリチウムイオンがリチウム負極板上に析出する
時に均質に析出させることが難しく、デンドライト(樹
枝状)のリチウムが発生し、正極・負極間のセパレータ
を貫通して短絡させたり、リチウムが微粒上に析出し、
脱落するなどの現象が起き、サイクル寿命を著しく低下
させるといった欠点を有する。
This is due to low charge/discharge efficiency (Coulombic efficiency), and a major cause of this is the large deterioration of the negative electrode. For example, when lithium is used as a negative electrode, when lithium ions in the electrolyte precipitate on the lithium negative electrode plate during charging, it is difficult to deposit homogeneously, and dendrite lithium is generated, causing a separator between the positive and negative electrodes. lithium may penetrate and cause a short circuit, or lithium may precipitate on fine particles.
It has the disadvantage that phenomena such as falling off occur, significantly reducing the cycle life.

このため、このような負極の欠点を改良することを目的
として従来から各種の方法が提案されているが、これら
の提案もいまだ種々の問題を有する。例えば、リチウム
とアルミニウム、銀、鉛などとの合金を負極に用いる提
案がなされているが、リチウム−アルミニウム合金の場
合は、デンドライトの発生は見られないものの、充放電
を繰り返すと電極(負極)の微粒化、崩壊が生じること
For this reason, various methods have been proposed in the past for the purpose of improving such drawbacks of negative electrodes, but these proposals still have various problems. For example, proposals have been made to use alloys of lithium, aluminum, silver, lead, etc. as negative electrodes, but in the case of lithium-aluminum alloys, although dendrite formation is not observed, repeated charging and discharging will cause the electrode (negative electrode) to Atomization and disintegration of particles occur.

合金α相のリチウム拡散速度が遅いためクーロン効率が
不満足であることなどの欠点を有する。また、リチウム
−鉛合金は充放電の繰返しによる電極の崩壊がリチウム
−アルミニウム合金以上に激しい上、低リチウム濃度の
合金ではクーロン効率も悪い等の問題を有し、リチウム
−銀合金では電気化学的な合金形成速度が小さく、微小
電流領域でしか使用し得ないという問題がある。
It has drawbacks such as unsatisfactory Coulombic efficiency due to slow lithium diffusion rate in the alloy α phase. In addition, lithium-lead alloys have problems such as electrode collapse more violently than lithium-aluminum alloys due to repeated charging and discharging, alloys with low lithium concentrations have poor coulombic efficiency, and lithium-silver alloys have problems such as electrochemical The problem is that the alloy formation rate is low, and it can only be used in the microcurrent region.

このように従来の二次電池用負極として実用上満足でき
るものは少なく、従ってアルカリ金属イオンの吸蔵放出
能力が大きく、クーロン効率が高く、サイクル寿命の長
い負極材料の開発が望まれる。
As described above, there are few conventional negative electrodes for secondary batteries that are practically satisfactory, and it is therefore desired to develop a negative electrode material that has a large capacity to absorb and release alkali metal ions, has a high Coulombic efficiency, and has a long cycle life.

本発明は上記事情に鑑みなされたもので、充放電効率が
高く、サイクル寿命の長い非水電解質二次電池を提供す
ることを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery with high charge/discharge efficiency and a long cycle life.

皿尤占を  するための一 本発明は上記目的を達成するため、アルカリ金属イオン
を含む電解質と、再充放電可能な正極と、充電時にアル
カリ金属イオンを吸蔵し、放電時に電解質中ヘアルカリ
金属イオンを放出する負極とを備えた二次電池において
、前記負極を形成する材料として、亜鉛、錫、アンチモ
ン、鉛、ビスマス及びタリウムから選ばれる1種又は2
種以上の金属とマグネシウムとの合金又は該合金にアル
カリ金属を添加した合金を用いたものである。
In order to achieve the above object, the present invention includes an electrolyte containing alkali metal ions, a rechargeable and dischargeable positive electrode, an alkali metal ion which is occluded during charging, and an alkali metal ion contained in the electrolyte during discharging. In a secondary battery equipped with a negative electrode that emits
An alloy of at least one metal and magnesium, or an alloy in which an alkali metal is added to the alloy is used.

即ち、本発明者らはクーロン効率の向上、サイクル寿命
、特に高い充放電容量での充放電の繰返しによるサイク
ル寿命の向上を達成し得る負極材料につき鋭意検討を行
なった結果、上記マグネシウム含有合金を負極材料とし
て用いた場合、これらの材料はいずれも後述する実施例
に示したようにマグネシウムを含有しない負極材料に比
して高い容量で充放電の繰返しを行なった場合でもクー
ロン効率が高く、しかも繰返しによる容量及びクーロン
効率の低下が少なく、従ってアルカリ金属イオンの吸蔵
放出能力が優秀で優れた負極特性を示し、前記目的を達
成し得る非常に良好な性能が得られることを知見し1本
発明をなすに至ったものである。
That is, the present inventors have conducted intensive studies on negative electrode materials that can improve coulombic efficiency and cycle life, especially through repeated charging and discharging at high charge/discharge capacity. When used as negative electrode materials, all of these materials have higher coulombic efficiency even when repeatedly charged and discharged at a higher capacity than negative electrode materials that do not contain magnesium, as shown in the examples below. It has been found that the capacity and coulombic efficiency decrease little due to repetition, and therefore the alkali metal ion storage and desorption ability is excellent, and the negative electrode characteristics are excellent, and very good performance that can achieve the above objectives can be obtained. 1. The present invention. This is what we have come to do.

以下5本発明につき更に詳しく説明する。The following five inventions will be explained in more detail.

本発明に係る二次電池は、上述したように特定のマグネ
シウム含有合金、即ち亜鉛、錫、アンチモン、鉛、ビス
マス及びタリウムの中から選ばれる1種又は2種以上の
金属からなる合金構成成分とマグネシウムとの合金、あ
るいは前記合金構成成分とアルカリ金属及びマグネシウ
ムからなる合金を負極材料として負極に用い、これを再
充放電可能な正極及びアルカリ金属イオンを含む電解質
と組み合わせて二次電池を構成するものである。
As mentioned above, the secondary battery according to the present invention has a specific magnesium-containing alloy, that is, an alloy component consisting of one or more metals selected from zinc, tin, antimony, lead, bismuth, and thallium. An alloy with magnesium, or an alloy consisting of the alloy constituents, an alkali metal, and magnesium is used as a negative electrode material, and this is combined with a rechargeable and dischargeable positive electrode and an electrolyte containing alkali metal ions to constitute a secondary battery. It is something.

ここで、本発明に用いられる亜鉛、錫、アンチモン、鉛
、ビスマス及びタリウムの中から1種又は2種以上の金
属からなる合金構成成分(以下、A成分と称する。)と
マグネシウムとの合金において、その組成は必ずしも制
限されないが、原子比でマグネシウムを1〜50%、特
に5〜20%含むものが好適であり、一方、A成分とア
ルカリ金属及びマグネシウムからなる合金において、そ
の組成も必ずしも制限されないが、上記のA成分とマグ
ネシウムとからなる合金に対しアルカリ金属を1−・8
0%、特に5〜60%含むものが好適である。この場合
、アルカリ金属としてはリチウムが好適に用いられる。
Here, in the alloy of magnesium and an alloy component (hereinafter referred to as component A) consisting of one or more metals selected from zinc, tin, antimony, lead, bismuth, and thallium used in the present invention, Although its composition is not necessarily limited, it is preferable that it contains 1 to 50%, especially 5 to 20%, of magnesium in terms of atomic ratio.On the other hand, in the case of an alloy consisting of component A, an alkali metal, and magnesium, the composition is not necessarily limited. However, when an alkali metal is added to the alloy consisting of the above A component and magnesium, 1-.8
0%, especially 5 to 60% is preferable. In this case, lithium is preferably used as the alkali metal.

なお、これらの本発明に用いられるマグネシウム含有合
金は、合金成分が必ずしも均質状態で存在している必要
はない。即ち、本発明に係るマグネシウム含有合金とし
ては各種製造方法に従って製造したものが使用し得、例
えば全合金成分を真空又は不活性ガス雰囲気下で加熱溶
融して均一に混合した後に冷却固化して合金化する方法
により製造したもののほか、A成分とマグネシウムとの
合金に必要に応じてアルカリ金属を電気化学的に導入す
る方法により製造したもの、A成分とマグネシウムとの
合金上にアルカリ金属を積層し、次いでこれをアルカリ
金属塩の電解液中に浸漬する方法により製造したものな
どが使用し得る。
Note that the alloy components of the magnesium-containing alloy used in the present invention do not necessarily need to be present in a homogeneous state. That is, the magnesium-containing alloy according to the present invention can be manufactured according to various manufacturing methods. For example, all alloy components are heated and melted in a vacuum or an inert gas atmosphere, mixed uniformly, and then cooled and solidified to form an alloy. In addition to those manufactured by the method of oxidation, those manufactured by the method of electrochemically introducing an alkali metal into the alloy of component A and magnesium as required, and those manufactured by laminating an alkali metal on the alloy of component A and magnesium. , which is then immersed in an electrolytic solution of an alkali metal salt, etc. can be used.

本発明の二次電池の正極に用いる物質は特に制限されず
、その目的等に応じて適宜選択、使用することができる
。例示すると、Tie、。
The material used for the positive electrode of the secondary battery of the present invention is not particularly limited, and can be appropriately selected and used depending on the purpose. For example, Tie.

Cr、O,、V、○s t Vs Ols v L i
 Co Ox +L i Cr○2. M n O2、
Cu O、M o O、。
Cr, O,, V, ○s t Vs Ols v Li
Co Ox +L i Cr○2. M n O2,
Cu O, M o O,.

Cu、V、O,、等の金属酸化物、TiS、、FeS。Metal oxides such as Cu, V, O, TiS, FeS.

CuCo54.Mob、等の金属硫化物。CuCo54. Metal sulfides such as Mob.

NbSe、、VSe2等の金属セレン化物などが挙げら
れる。また、ポリアセチレン、ポリベンゼン、ポリパラ
フェニレン、ポリアニリン、ポリトリフェニルアミン、
ポリ(ジブ1−キシフェニレン)、ポリフェニレンビニ
レン等のベンゼン及びその誘導体のポリマー、ポリピリ
ジン、ポリキノリン、ポリチオフェン、ポリフラン、ポ
リピロール、アントラセンやナフタリン等のへテロ又は
多核芳香族化合物のポリマーなどの有機導電性高分子材
料も正極材料として好適に用いることができる。
Examples include metal selenides such as NbSe and VSe2. In addition, polyacetylene, polybenzene, polyparaphenylene, polyaniline, polytriphenylamine,
High organic conductivity such as polymers of benzene and its derivatives such as poly(dibu-1-xyphenylene) and polyphenylene vinylene, polymers of hetero or polynuclear aromatic compounds such as polypyridine, polyquinoline, polythiophene, polyfuran, polypyrrole, anthracene and naphthalene. Molecular materials can also be suitably used as positive electrode materials.

本発明二次電池を構成する非水電解質に用いられ、前記
正負極にそれぞれ吸蔵され得るイオンを生成する化合物
は、アニオンとカチオンの組合わせよりなる化合物であ
って、アニオンの例としてはPFG−,5bF6−、A
sFG−,5bCQG−(1)如きVA族元素のハロゲ
ン化物アニオン、B F4−。
The compound used in the non-aqueous electrolyte constituting the secondary battery of the present invention and generating ions that can be occluded in the positive and negative electrodes is a compound consisting of a combination of an anion and a cation, and an example of the anion is PFG- ,5bF6-,A
halide anions of group VA elements such as sFG-, 5bCQG-(1), B F4-;

AnCQ4−の如きIIrA族元素のハロゲン化物アニ
オン、I−(I3−)+ B r−、CQ−の如きハロ
ゲンアニオン、CQ04−の如き過塩素酸アニオン、H
F2−、CF、So、−,5CN−,5ob−。
Halide anions of group IIrA elements such as AnCQ4-, halogen anions such as I-(I3-)+Br-, CQ-, perchlorate anions such as CQ04-, H
F2-, CF, So, -, 5CN-, 5ob-.

H5O,−等を挙げることができるが、必ずしもこれら
のアニオンに限定されるものではない。また、カチオン
としてはLi”、Na÷、に÷の如きアルカリ金属イオ
ンを挙げることができる。
Examples include H5O,-, but the anion is not necessarily limited to these anions. In addition, examples of cations include alkali metal ions such as Li'', Na÷, and Ni÷.

このようなアニオン、カチオンをもつ電解質の具体例と
しては、LiPF、、LiSbF6゜L I A s 
F @ g L z CQ O4t L iI g L
 iB r +LiCQ、NaPF5.Na5bF、。
Specific examples of electrolytes having such anions and cations include LiPF, LiSbF6゜LIAs
F @ g L z CQ O4t L iI g L
iB r +LiCQ, NaPF5. Na5bF,.

NaAs F、、NaCQO4,Na I、KPF、°
NaAs F, , NaCQO4, Na I, KPF, °
.

KSbF、、KAsF、、KCQO,、LiBF4゜L
iAQCI2.、LiHF、、Li5CN、等が挙げら
れる。これらのうちでは、特にLiCQO,。
KSbF, KAsF, KCQO, LiBF4゜L
iAQCI2. , LiHF, , Li5CN, and the like. Among these, especially LiCQO.

L iB F 4及びL i P F、から選ばれた1
種又は2種以上が好適である。
1 selected from L iB F 4 and L i P F
A species or two or more species are preferred.

なお、これらの電解質は通常溶媒により溶解された状態
で使用されるが、本発明はこれら溶媒として非水溶媒を
用いるものである。この場合、比較的極性の大きい溶媒
が好適に用いられ、具体的には、プロピレンカーボネー
ト、エチレンカーボネート、ベンゾニトリル、アセトニ
トリル、テトラヒドロフラン、2−メチルテトラヒドロ
フラン。
Note that these electrolytes are normally used in a state dissolved in a solvent, but in the present invention, a non-aqueous solvent is used as the solvent. In this case, relatively highly polar solvents are preferably used, specifically propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, and 2-methyltetrahydrofuran.

γ−ブチロラクトン、トリエチルフォスフェート、トリ
エチルフォスファイト、硫酸ジメチル、ジメチルホルム
アミド、ジメチルアセトアミド、ジメチルスルフオキシ
ド、ジオキサン、ジメトキシエタン、ポリエチレングリ
コール、スルフオラン、ジクロロエタン、クロルベンゼ
ン、ニトロベンゼン等の1種又は2種以上の混合物を挙
げることができる。中でもプロピレン−カーボネート、
γ−プチロラクトン、ジメトキシエタン及びテトラヒド
ロフランから選ばれた1種または2種以上の混合溶媒が
好適である。
One or more of γ-butyrolactone, triethyl phosphate, triethyl phosphite, dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, etc. Mention may be made of mixtures of. Among them, propylene carbonate,
One or more mixed solvents selected from γ-butyrolactone, dimethoxyethane, and tetrahydrofuran are suitable.

なお、電解液中の電解質濃度としては1moQ/Qより
高<、6mon/12より低い範囲、特に2moQ/Q
〜3taoQ/Qの範囲とすることが放電容量やエネル
ギー密度、二次電池を構成した場合の充放電サイクル寿
命等の電池性能の良い電池を形成し得る点で好適である
In addition, the electrolyte concentration in the electrolyte is in the range higher than 1moQ/Q, lower than 6mon/12, especially 2moQ/Q.
It is preferable to set the range of Q/Q to 3 taoQ/Q from the viewpoint of forming a battery with good battery performance such as discharge capacity, energy density, and charge/discharge cycle life when forming a secondary battery.

光凱夏肱来 以上説明したように1本発明の二次電池は、負極材料と
して亜鉛、錫、アンチモン、鉛、ビスマス及びタリウム
の中から選ばれる1種又は2種以上の金属とマグネシウ
ムとの合金、あるいは該合金にアルカリ金属を添加した
合金を用いたことにより、二次電池のクーロン効率が飛
躍的に増大し。
As explained above, the secondary battery of the present invention comprises magnesium and one or more metals selected from zinc, tin, antimony, lead, bismuth, and thallium as negative electrode materials. By using an alloy or an alloy in which an alkali metal is added to the alloy, the coulombic efficiency of the secondary battery can be dramatically increased.

サイクル特性も良好であり、このため各種正極の能力を
十分に発揮させることができ、負極の原因による二次電
池の機能の低下の問題を可及的になくすことができて、
充放電効率及びサイクル寿命に優れた電池電圧の高い二
次電池の実用化を可能にするものである。
The cycle characteristics are also good, which makes it possible to fully utilize the capabilities of various positive electrodes, and to eliminate as much as possible the problem of deterioration in secondary battery function caused by negative electrodes.
This makes it possible to put into practical use secondary batteries with high battery voltage and excellent charge/discharge efficiency and cycle life.

次に実施例と比較例を示し本発明を具体的に説明するが
、本発明はこれ等の実施例に制限されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〔実施例1〜10.比較例1〜6〕 表に示す種類の負極材料により形成した1cmX 1c
mX Lamの板状の負極A、4cmX 4cn+X 
0 、4mmのpt板上にポリアニリン1gを電解重合
法により付着形成してなる正極B、3mo12/lit
のL i B F4を溶解させたプロピレンカーボネー
ト(電解液)C1更にリチウム板を参照電極りとして使
用し、図面に示す試験セルを構成した。なお、負極を形
成するにあたり、圧延可能な負極材料に対しては圧延法
により、圧延不能な負極材料に対してはカッターを用い
て切り出すことにより負極を形成した。
[Examples 1 to 10. Comparative Examples 1 to 6] 1cm×1c formed from the types of negative electrode materials shown in the table
mX Lam plate-shaped negative electrode A, 4cmX 4cn+X
0. Positive electrode B, 3 mo12/lit, made by depositing 1 g of polyaniline on a 4 mm PT plate by electrolytic polymerization.
Using propylene carbonate (electrolytic solution) C1 in which L i B F4 was dissolved, and a lithium plate as a reference electrode, the test cell shown in the drawing was constructed. In forming the negative electrode, a rollable negative electrode material was formed by a rolling method, and a non-rollable negative electrode material was cut out using a cutter.

上記の試験セルを4mAで25時間充電して負極にリチ
ウムを吸蔵させた後、4mAで参照電極に対比して負極
電位が1.5vになるまで放電して負極に吸蔵されたリ
チウムを電解液中へ放出する充放電の繰返しを行ない、
第1サイクルと第10サイクル目の充放電効率(放電電
気量の充電電気量100mAHに対する割合)を求め1
両者の充放電効率から二次電池としての充放電効率及び
サイクル寿命を評価した。なお、負極材料としてリチウ
ム含有合金を用いた場合には、予めリチウムを吸蔵して
いることになるので1サイクル目において充電を行なう
ことなく、4mAで25時間放電するのみとした。また
、上記の充放電の繰返しの際、正極ではBF4−イオン
のドープ、脱ドープが行なわれている。
The above test cell was charged at 4 mA for 25 hours to occlude lithium in the negative electrode, and then discharged at 4 mA until the negative electrode potential became 1.5 V compared to the reference electrode, and the lithium occluded in the negative electrode was removed from the electrolyte. By repeating charging and discharging,
Calculate the charging/discharging efficiency (ratio of the amount of discharged electricity to the amount of charged electricity of 100mAH) for the 1st cycle and the 10th cycle.1
The charging/discharging efficiency and cycle life as a secondary battery were evaluated from the charging/discharging efficiency of both. Note that when a lithium-containing alloy is used as the negative electrode material, since lithium is occluded in advance, charging is not performed in the first cycle, and the battery is only discharged at 4 mA for 25 hours. Further, during the repetition of the above-mentioned charging and discharging, doping and dedoping of BF4- ions are performed at the positive electrode.

以上の結果を第1表に併記する。The above results are also listed in Table 1.

第1表 第1表の結果から本発明に係る負極材料を用いたものは
、二次電池にとって必要な充放電効率、サイクル寿命に
優れた効果を示すことが確認された。
From the results shown in Table 1, it was confirmed that the negative electrode material according to the present invention exhibited excellent charge/discharge efficiency and cycle life, which are necessary for secondary batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図面は電池性能を調べるために用いた電解セルの概略図
である。
The drawing is a schematic diagram of an electrolytic cell used to examine battery performance.

Claims (1)

【特許請求の範囲】[Claims] 1、アルカリ金属イオンを含む非水電解質と再充放電可
能な正極と、充電時にアルカリ金属イオンを吸蔵し、放
電時に非水電解質中へアルカリ金属イオンを放出する負
極とを備えた二次電池において、前記負極を形成する材
料として亜鉛、錫、アンチモン、鉛、ビスマス及びタリ
ウムの中から選ばれる1種または2種以上の金属とマグ
ネシウムとの合金又は該合金にアルカリ金属を添加した
合金を使用したことを特徴とする非水電解質二次電池。
1. In a secondary battery equipped with a nonaqueous electrolyte containing alkali metal ions, a rechargeable and dischargeable positive electrode, and a negative electrode that stores alkali metal ions during charging and releases alkali metal ions into the nonaqueous electrolyte during discharge. , an alloy of magnesium and one or more metals selected from zinc, tin, antimony, lead, bismuth, and thallium, or an alloy in which an alkali metal is added to the alloy is used as the material forming the negative electrode. A non-aqueous electrolyte secondary battery characterized by:
JP61052106A 1986-03-10 1986-03-10 Nonaqueous electrolyte secondary battery Pending JPS62211861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052106A JPS62211861A (en) 1986-03-10 1986-03-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052106A JPS62211861A (en) 1986-03-10 1986-03-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS62211861A true JPS62211861A (en) 1987-09-17

Family

ID=12905602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052106A Pending JPS62211861A (en) 1986-03-10 1986-03-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS62211861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130004A (en) * 1994-12-19 2000-10-10 Motorola, Inc. Electrode materials and electrochemical devices using same
US6713213B2 (en) 1999-06-08 2004-03-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery with an organic magnesium electrolyte compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130004A (en) * 1994-12-19 2000-10-10 Motorola, Inc. Electrode materials and electrochemical devices using same
US6713213B2 (en) 1999-06-08 2004-03-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery with an organic magnesium electrolyte compound

Similar Documents

Publication Publication Date Title
JP6004506B2 (en) Alkali metal-sulfur secondary battery
US9023518B2 (en) Lithium—sulfur battery with performance enhanced additives
JP2004103548A (en) Positive electrode for lithium-sulfur battery, and lithium-sulfur battery containing same
JP2007538365A (en) Additive for lithium secondary battery
JPH0351067B2 (en)
JPS634569A (en) Nonaqueous electrolyte secondary battery
JPH0636797A (en) Lithium secondary battery
JPS62211861A (en) Nonaqueous electrolyte secondary battery
JPH0765855A (en) Lithium battery
KR100826084B1 (en) Additives for lithium secondarty battery
US20240213528A1 (en) Solid state electrolyte for anode-free metal battery cell
JPH06302336A (en) Nonaqueous electrolyte secondary battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
KR20040013416A (en) Lithium-suflur battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JP2023161891A (en) Cathode for lithium sulfur battery, lithium sulfur battery, and charge and discharge method for the same
JPS62176048A (en) Nonaqueous electrolyte secondary battery
JPS6290869A (en) Nonaqueous electrolyte battery
JP3185113B2 (en) Lithium secondary battery
JPS62176047A (en) Secondary battery
JPH09161779A (en) Manufacture of nonaqueous electrolyte lithium secondary battery
JPH10308237A (en) Lithium secondary battery
JPH0831452A (en) Organic electrolyte secondary battery
JPH0398262A (en) Nonaqueous electrolytic secondary battery